[1] |
Adam K. C. S., Robison M. K., & Vogel E. K. (2018). Contralateral delay activity tracks fluctuations in working memory performance. Journal of Cognitive Neuroscience, 30(9), 1229-1240.
doi: 10.1162/jocn_a_01233
pmid: 29308988
|
[2] |
Ahmad F. N., & Hockley W. E. (2014). The role of familiarity in associative recognition of unitized compound word pairs. The Quarterly Journal of Experimental Psychology, 67(12), 2301-2324.
|
[3] |
Asp I. E., Störmer V. S., & Brady T. F. (2021). Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. Journal of Cognitive Neuroscience, 33(5), 902-918.
doi: 10.1162/jocn_a_01693
pmid: 34449847
|
[4] |
Baddeley A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839.
doi: 10.1038/nrn1201
pmid: 14523382
|
[5] |
Baddeley A. D., Papagno C., & Vallar G. (1988). When long-term learning depends on short-term storage. Journal of Memory and Language, 27(5), 586-595.
|
[6] |
Bao X. H., Ji M., Huang J., He L. G., & You X. Q. (2014). The Effects of activation levels of visual long-term memory on visual short-term memory. Acta Psychologica Sinica, 46(8), 1086-1093.
doi: 10.3724/SP.J.1041.2014.01086
|
|
[鲍旭辉, 姬鸣, 黄杰, 何立国, 游旭群. (2014). 视觉长时记忆激活度对促进视觉短时记忆的影响. 心理学报, 46(8), 1086-1093.]
|
[7] |
Brady T. F., & Störmer V. S. (2022). The role of meaning in visual working memory: Real-world objects, but not simple features, benefit from deeper processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 942-958.
|
[8] |
Brady T. F., Störmer V. S., & Alvarez G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459-7464.
|
[9] |
Chen S. D., Chen Y. Q., Gao W., Luo L., Yang J. M., & Yuan J. J. (2019). The automaticity in cognitive processing: From dichotomy to gradual view. Advances in Psychological Science, 27(9), 1556-1563.
doi: 10.3724/SP.J.1042.2019.01556
|
|
[陈圣栋, 陈永强, 高伟, 罗利, 杨洁敏, 袁加锦. (2019). 认知加工的自动化现象:从二分法到渐进观. 心理科学进展, 27(9), 1556-1563.]
doi: 10.3724/SP.J.1042.2019.01556
|
[10] |
Conci M., Kreyenmeier P., Kröll L., Spiech C., & Müller H. J. (2021). The nationality benefit: Long-term memory associations enhance visual working memory for color-shape conjunctions. Psychonomic Bulletin & Review, 28(6), 1982-1990.
|
[11] |
Cowan N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.
doi: 10.1017/s0140525x01003922
pmid: 11515286
|
[12] |
Cowan N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170.
|
[13] |
Delorme A., & Makeig S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009
pmid: 15102499
|
[14] |
Fukuda K., & Woodman G. F. (2017). Visual working memory buffers information retrieved from visual long- term memory. Proceedings of the National Academy of Sciences, 114(20), 5306-5311.
|
[15] |
Gagnepain P., Henson R. N., & Davis M. H. (2012). Temporal predictive codes for spoken words in auditory cortex. Current Biology, 22, 615-621.
doi: 10.1016/j.cub.2012.02.015
pmid: 22425155
|
[16] |
Hebb D. O. (1949). The organization of behavior. New York: Wiley & Sons.
|
[17] |
Jeneson A., & Squire L. R. (2012). Working memory, long-term memory, and medial temporal lobe function. Learning & Memory, 19(1), 15-25.
|
[18] |
Jung T. -P., Makeig S., Humphries C., Lee T. -W., Mckeown M. J., Iragui V., & Sejnowski T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178.
pmid: 10731767
|
[19] |
Li X., Xiong Z., Theeuwes J., & Wang B. (2020). Visual memory benefits from prolonged encoding time regardless of stimulus type. Journal of Experimental psychology. Learning, Memory, and Cognition, 46(10), 1998-2005.
|
[20] |
Liu Z., & Guo C. (2022). Effects of unitization on associative and item recognition: The “benefits-only” account. Acta Psychologica Sinica, 54(12), 1443-1454.
doi: 10.3724/SP.J.1041.2022.01443
|
|
[刘泽军, 郭春彦. (2022). 整合对联结再认和项目再认的促进作用: “只有收益”观点. 心理学报, 54(12), 1443-1454.]
doi: 10.3724/SP.J.1041.2022.01443
|
[21] |
Logan G. D. (1985). Skill and automaticity: Relations, implications, and future directions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 39(2), 367-386.
|
[22] |
Luck S. J., & Vogel E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
|
[23] |
Moors A., & De Houwer J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297-326.
doi: 10.1037/0033-2909.132.2.297
pmid: 16536645
|
[24] |
Morey C. C., & Cowan N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11(2), 296-301.
|
[25] |
Norris D. (2017). Short-term memory and long-term memory are still different. Psychological Bulletin, 143(9), 992-1009.
doi: 10.1037/bul0000108
pmid: 28530428
|
[26] |
Oberauer K., Awh E., & Sutterer D. W. (2017). The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(1), 1-22.
|
[27] |
Parks C. M., & Yonelinas A. P. (2015). The importance of unitization for familiarity-based learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 881-903.
|
[28] |
Polyn S. M., Natu V. S., Cohen J. D., & Norman K. A. (2005). Category-specific cortical activity precedes retrieval during memory search. Science, 310(5756), 1963-1966.
doi: 10.1126/science.1117645
pmid: 16373577
|
[29] |
Rouder J. N., Morey R. D., Morey C. C., & Cowan N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324-330.
|
[30] |
Staresina B. P., Gray J. C., & Davachi L. (2009). Event congruency enhances episodic memory encoding through semantic elaboration and relational binding. Cerebral Cortex, 19(5), 1198-1207.
|
[31] |
Sun H., Zimmer H. D., & Fu X. (2011). The influence of expertise and of physical complexity on visual short-term memory consolidation. Quarterly Journal of Experimental Psychology, 64(4), 707-729.
|
[32] |
Sun Y., Song J., Xin X., Ding X., & Li S. (2021). Same- category advantage on the capacity of visual working memory. Acta Psychologica Sinica, 53(11), 1189-1202.
|
|
[孙彦良, 宋佳汝, 辛晓雯, 丁晓伟, 李寿欣. (2021). 视觉工作记忆的同类别存储优势. 心理学报, 53(11), 1189-1202.]
doi: 10.3724/SP.J.1041.2021.01189
|
[33] |
Tibon R., Gronau N., Scheuplein A. L., Mecklinger A., & Levy D. A. (2014). Associative recognition processes are modulated by the semantic unitizability of memoranda. Brain and Cognition, 92, 19-31.
|
[34] |
Vogel E. K., Woodman G. F., & Luck S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27(1), 92-114.
|
[35] |
Wheeler M. E., & Treisman A. M. (2002). Binding in short- term visual memory. Journal of Experimental Psychology: General, 131(1), 48-64.
|
[36] |
Xie W., & Zhang W. (2017a). Familiarity increases the number of remembered Pokémon in visual short-term memory. Memory & Cognition, 45(4), 677-689.
|
[37] |
Xie W., & Zhang W. (2017b). Familiarity speeds up visual short-term memory consolidation. Journal of Experimental Psychology: Human Perception & Performance, 43(6), 1207-1221.
|
[38] |
Xie W., & Zhang W. (2018). Familiarity speeds up visual short-term memory consolidation: Electrophysiological evidence from contralateral delay activities. Journal of Cognitive Neuroscience, 30(1), 1-13.
doi: 10.1162/jocn_a_01188
pmid: 28891784
|
[39] |
Xu L., Feng J., & Yu L. (2022). Avalanche criticality in individuals, fluid intelligence, and working memory. Human Brain Mapping, 43(8), 2534-2553.
doi: 10.1002/hbm.25802
pmid: 35146831
|
[40] |
Yamins D. L., Hong H., Cadieu C. F., Solomon E. A., Seibert D., & DiCarlo J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619-8624.
|
[41] |
Yonelinas A. P., Aly M., Wang W. -C., & Koen J. D. (2010). Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus, 20(11), 1178-1194.
doi: 10.1002/hipo.20864
pmid: 20848606
|
[42] |
Zhang Y., Liang T. F., Ye C. X., & Liu Q. (2020). The inhibitory effect of long-term associative representation on working memory. Acta Psychologica Sinica, 52(5), 562-571.
doi: 10.3724/SP.J.1041.2020.00562
|
|
[张引, 梁腾飞, 叶超雄, 刘强. (2020). 长时联结表征对工作记忆的抑制效应. 心理学报, 52(5), 562-571.]
doi: 10.3724/SP.J.1041.2020.00562
|
[43] |
Zhou Y., Curtis C. E., Sreenivasan K. K., & Fougnie D. (2022). Common neural mechanisms control attention and working memory. Journal of Neuroscience, 42(37), 7110-7120.
doi: 10.1523/JNEUROSCI.0443-22.2022
pmid: 35927036
|
[44] |
Zimmer H. D., & Fischer B. (2020). Visual working memory of Chinese characters and expertise: The expert’s memory advantage is based on long-term knowledge of visual word forms. Frontiers in Psychology, 11, 516.
|