心理学报 ›› 2023, Vol. 55 ›› Issue (9): 1397-1410.doi: 10.3724/SP.J.1041.2023.01397
• 研究报告 • 下一篇
庞超1, 陈颜璋2, 王莉2, 杨喜端1, 贺雅1, 李芷莹1, 欧阳小钰1, 傅世敏1, 南威治1()
收稿日期:
2022-11-30
发布日期:
2023-06-09
出版日期:
2023-09-25
通讯作者:
南威治
E-mail:nanwz@gzhu.edu.cn
基金资助:
PANG Chao1, CHEN Yanzhang2, WANG Li2, YANG Xiduan1, HE Ya1, LI Zhiying1, OUYANG Xiaoyu1, FU Shimin1, NAN Weizhi1()
Received:
2022-11-30
Online:
2023-06-09
Published:
2023-09-25
Contact:
NAN Weizhi
E-mail:nanwz@gzhu.edu.cn
摘要:
视觉工作记忆不同加工阶段(编码、维持)对多特征客体信息的注意选择模式是否相同目前仍存在争议。本研究采用变化觉察范式, 引入前注意线索和后注意线索, 分别探测在视觉工作记忆编码和维持两个阶段中的注意选择模式。3个实验结果显示, 在前注意线索试次中, 被试对任务相关特征变化的觉察显著受到任务无关特征变化的干扰, 表现为任务无关特征变化条件相比于不变条件的反应更慢, 报告标准更低; 且该干扰效应并不受记忆负荷的影响。而在后注意线索试次中, 仅在低记忆负荷条件下(实验1a/1b)存在干扰效应, 当记忆负荷增大后(实验2/3)干扰效应消失。结果表明, 在视觉工作记忆编码阶段, 客体中任务相关与无关特征均被编码进视觉工作记忆并相互竞争注意资源; 而在维持阶段, 任务无关特征仅在低记忆负荷条件下得到加工。结果揭示, 在编码阶段的注意选择模式是基于客体的; 而维持阶段的注意选择模式是基于特征的, 且受到记忆负荷的调控。
中图分类号:
庞超, 陈颜璋, 王莉, 杨喜端, 贺雅, 李芷莹, 欧阳小钰, 傅世敏, 南威治. (2023). 客体信息在视觉工作记忆编码和维持阶段的不同注意选择模式. 心理学报, 55(9), 1397-1410.
PANG Chao, CHEN Yanzhang, WANG Li, YANG Xiduan, HE Ya, LI Zhiying, OUYANG Xiaoyu, FU Shimin, NAN Weizhi. (2023). Different attentional selection modes of object information in the encoding and maintenance stages of visual working memory. Acta Psychologica Sinica, 55(9), 1397-1410.
[1] |
Awh E., Vogel E. K., & Oh S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208.
doi: 10.1016/j.neuroscience.2005.08.023 pmid: 16324792 |
[2] |
Baddeley A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423.
doi: 10.1016/s1364-6613(00)01538-2 pmid: 11058819 |
[3] | Baddeley A. D., & Hitch G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47-89. |
[4] |
Bocincova A., & Johnson J. S. (2019). The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory. Cortex, 111, 196-209.
doi: S0010-9452(18)30346-0 pmid: 30508678 |
[5] |
Brown R., & McNeill D. (1966). The “tip of the tongue” phenomenon. Journal of Verbal Learning and Verbal Behavior, 5(4), 325-337.
doi: 10.1016/S0022-5371(66)80040-3 URL |
[6] | Cohen J. (2013). Statistical power analysis for the behavioral sciences. Routledge. |
[7] |
Cowan N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170.
doi: 10.3758/s13423-016-1191-6 URL |
[8] |
Ernst Z. R., Boynton G. M., & Jazayeri M. (2013). The spread of attention across features of a surface. Journal of Neurophysiology, 110(10), 2426-2439.
doi: 10.1152/jn.00828.2012 pmid: 23883860 |
[9] |
Foerster R. M., & Schneider W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37-45.
doi: S0010-0277(17)30304-9 pmid: 29223864 |
[10] |
Fukuda K., Awh E., & Vogel E. K. (2010). Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 20(2), 177-182.
doi: 10.1016/j.conb.2010.03.005 pmid: 20362427 |
[11] |
Gao T., Gao Z., Li J., Sun Z., & Shen M. (2011). The perceptual root of object-based storage: An interactive model of perception and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1803-1823.
doi: 10.1037/a0025637 URL |
[12] |
Gao Z., Yu S., Zhu C., Shui R., Weng X., Li P., & Shen M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6, 22822.
doi: 10.1038/srep22822 pmid: 26956084 |
[13] |
Gazzaley A., & Nobre A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135.
doi: 10.1016/j.tics.2011.11.014 pmid: 22209601 |
[14] |
Gilchrist A. L., Duarte A., & Verhaeghen P. (2016). Retrospective cues based on object features improve visual working memory performance in older adults. Aging, Neuropsychology, and Cognition, 23(2), 184-195.
doi: 10.1080/13825585.2015.1069253 URL |
[15] |
Griffin I. C., & Nobre A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.
doi: 10.1162/089892903322598139 pmid: 14709235 |
[16] |
Heathcote D., Walker P., & Hitch G. J. (1994). Feature independence and the recovery of feature conjunctions. The Journal of General Psychology, 121(3), 253-266.
doi: 10.1080/00221309.1994.9921200 URL |
[17] |
Isenberg L., Nissen M. J., & Marchak L. C. (1990). Attentional processing and the independence of color and orientation. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 869-878.
doi: 10.1037/0096-1523.16.4.869 URL |
[18] |
Jiang Y., Olson I. R., & Chun M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683-702.
doi: 10.1037/0278-7393.26.3.683 URL |
[19] |
Kuo B.-C., Stokes M. G., & Nobre A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24(1), 51-60.
doi: 10.1162/jocn_a_00087 URL |
[20] |
Lavie N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.
doi: 10.1016/j.tics.2004.12.004 pmid: 15668100 |
[21] | Lin P.-H., & Luck S. J. (2012). Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task. Frontiers in Psychology, 3, 42. |
[22] |
Luck S. J., & Vogel E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
doi: 10.1038/36846 |
[23] |
Luria R., & Vogel E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632-1639.
doi: 10.1016/j.neuropsychologia.2010.11.031 pmid: 21145333 |
[24] |
Markov Y. A., Tiurina N. A., & Utochkin I. S. (2019). Different features are stored independently in visual working memory but mediated by object-based representations. Acta Psychologica, 197, 52-63.
doi: S0001-6918(18)30551-1 pmid: 31100548 |
[25] |
Mongillo G., Barak O., & Tsodyks M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543-1546.
doi: 10.1126/science.1150769 pmid: 18339943 |
[26] |
Niklaus M., Nobre A. C., & van Ede F. (2017). Feature-based attentional weighting and spreading in visual working memory. Scientific Reports, 7, 42384.
doi: 10.1038/srep42384 pmid: 28233830 |
[27] | Nobre A. C., Griffin I. C., & Rao A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 4. |
[28] |
O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584-587.
doi: 10.1038/44134 |
[29] |
Park Y. E., Sy J. L., Hong S. W., & Tong F. (2017). Reprioritization of features of multidimensional objects stored in visual working memory. Psychological Science, 28(12), 1773-1785.
doi: 10.1177/0956797617719949 pmid: 28957016 |
[30] |
Pashler H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4), 369-378.
doi: 10.3758/BF03210419 URL |
[31] |
Rerko L., & Oberauer K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1075-1096.
doi: 10.1037/a0031172 URL |
[32] |
Rouder J. N., Morey R. D., Morey C. C., & Cowan N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324-330.
doi: 10.3758/s13423-011-0055-3 URL |
[33] |
Sahan M. I., Verguts T., Boehler C. N., Pourtois G., & Fias W. (2016). Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space. Psychonomic Bulletin & Review, 23(4), 1190-1197.
doi: 10.3758/s13423-015-0990-5 URL |
[34] |
Sasin E., & Fougnie D. (2020). Memory-driven capture occurs for individual features of an object. Scientific Reports, 10(1), 1-10.
doi: 10.1038/s41598-019-56847-4 |
[35] |
Serences J. T., Ester E. F., Vogel E. K., & Awh E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207-214.
doi: 10.1111/j.1467-9280.2009.02276.x pmid: 19170936 |
[36] | Shen M., Li J., Lang X., Gao T., Gao Z., & Shui R.. (2007). The storage mechanism of objects in visual working memory. Acta Psychologica Sinica, 39(5), 761-767. |
[沈模卫, 李杰, 郎学明, 高涛, 高在峰, 水仁德. (2007). 客体在视觉工作记忆中的存储机制. 心理学报, 39(5), 761-767.] | |
[37] |
Shen M., Tang N., Wu F., Shui R., & Gao Z. (2013). Robust object-based encoding in visual working memory. Journal of Vision, 13(2):1,1-11.
doi: 10.1167/13.2.1 pmid: 23378130 |
[38] |
Souza A. S., Rerko L., Lin H.-Y., & Oberauer K. (2014). Focused attention improves working memory: Implications for flexible-resource and discrete-capacity models. Attention, Perception, & Psychophysics, 76(7), 2080-2102.
doi: 10.3758/s13414-014-0687-2 URL |
[39] |
Stefurak D. L., & Boynton R. M. (1986). Independence of memory for categorically different colors and shapes. Perception & Psychophysics, 39(3), 164-174.
doi: 10.3758/BF03212487 URL |
[40] |
Stokes M. G. (2015). ‘Activity-silent’ working memory in prefrontal cortex: A dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394-405.
doi: 10.1016/j.tics.2015.05.004 pmid: 26051384 |
[41] |
Stokes M. G., Kusunoki M., Sigala N., Nili H., Gaffan D., & Duncan J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364-375.
doi: 10.1016/j.neuron.2013.01.039 pmid: 23562541 |
[42] |
Ungerleider L. G., & Haxby J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157-165.
doi: 10.1016/0959-4388(94)90066-3 pmid: 8038571 |
[43] |
van Moorselaar D., Olivers C. N., Theeuwes J., Lamme V. A., & Sligte I. G. (2015). Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1755-1763.
doi: 10.1037/xlm0000124 URL |
[44] |
Ventre-Dominey J., Bailly A., Lavenne F., Lebars D., Mollion H., Costes N., & Dominey P. (2005). Double dissociation in neural correlates of visual working memory: A PET study. Cognitive Brain Research, 25(3), 747-759.
pmid: 16242922 |
[45] |
Vicari S., Bellucci S., & Carlesimo G. A. (2006). Evidence from two genetic syndromes for the independence of spatial and visual working memory. Developmental Medicine and Child Neurology, 48(2), 126-131.
doi: 10.1017/S0012162206000272 pmid: 16417668 |
[46] |
Vogel E. K., Woodman G. F., & Luck S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114.
doi: 10.1037/0096-1523.27.1.92 URL |
[47] |
Wang B., Cao X., Theeuwes J., Olivers C. N., & Wang Z. (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(2), 226-236.
doi: 10.1037/xlm0000295 URL |
[48] |
Wheeler M. E., & Treisman A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48-64.
doi: 10.1037/0096-3445.131.1.48 URL |
[49] |
Wolfe J. M., Friedman-Hill S. R., & Bilsky A. B. (1994). Parallel processing of part-whole information in visual search tasks. Perception & Psychophysics, 55(5), 537-550.
doi: 10.3758/BF03205311 URL |
[50] |
Woodman G. F. & Vogel E. K. (2005). Fractionating working memory: Consolidation and maintenance are independent processes. Psychological Science, 16(2), 106-113.
pmid: 15686576 |
[51] |
Woodman G. F., & Vogel E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223-229.
doi: 10.3758/PBR.15.1.223 URL |
[52] |
Xu Y. (2010). The neural fate of task-irrelevant features in object-based processing. Journal of Neuroscience, 30(42), 14020-14028.
doi: 10.1523/JNEUROSCI.3011-10.2010 pmid: 20962223 |
[53] |
Ye C., Hu Z., Ristaniemi T., Gendron M., & Liu Q. (2016). Retro-dimension-cue benefit in visual working memory. Scientific Reports, 6, 35573.
doi: 10.1038/srep35573 pmid: 27774983 |
[54] |
Yin J., Zhou J., Xu H., Liang J., Gao Z., & Shen M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Bulletin & Review, 19(2), 218-224.
doi: 10.3758/s13423-011-0201-y URL |
[55] | Zhang Q., Shen M., Tang N., Zhao G., & Gao Z. (2013). Object-based encoding in visual working memory: A life span study. Journal of Vision, 13(10), https://doi.org/10.1167/13.10.11 |
[1] | 孙彦良, 宋佳汝, 辛晓雯, 丁晓伟, 李寿欣. 视觉工作记忆的同类别存储优势[J]. 心理学报, 2021, 53(11): 1189-1202. |
[2] | 叶超雄, 胡中华, 梁腾飞, 张加峰, 许茜如, 刘强. 视觉工作记忆回溯线索效应的产生机制:认知阶段分离[J]. 心理学报, 2020, 52(4): 399-413. |
[3] | 张頔, 郝仁宁, 刘强. 注意范围分布对视觉工作记忆巩固过程的影响[J]. 心理学报, 2019, 51(7): 772-780. |
[4] | 李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. 视觉工作记忆负载类型对注意选择的影响[J]. 心理学报, 2019, 51(5): 527-542. |
[5] | 王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738. |
[6] | 王静, 薛成波, 刘强. 客体同维度特征的视觉工作记忆存储机制[J]. 心理学报, 2018, 50(2): 176-185. |
[7] | 黄羽商, 曹立人. 基于空间方位信息的构型对视觉工作记忆绩效的影响[J]. 心理学报, 2018, 50(11): 1222-1234. |
[8] | 李腾飞, 马 楠, 胡中华, 刘 强. 空间距离对视觉工作记忆巩固的影响[J]. 心理学报, 2017, 49(6): 711-722. |
[9] | 薛成波;叶超雄;张引;刘强. 视觉工作记忆中特征绑定关系的记忆机制[J]. 心理学报, 2015, 47(7): 851-858. |
[10] | 黎翠红;何旭;郭春彦. 多特征刺激在视觉工作记忆中的存储模式[J]. 心理学报, 2015, 47(6): 734-745. |
[11] | 张微;周兵平;臧玲;莫书亮. 网络成瘾倾向者在视觉工作记忆引导下的注意捕获[J]. 心理学报, 2015, 47(10): 1223-1234. |
[12] | 白学军,尹莎莎,杨海波,吕勇,胡伟,罗跃. 视觉工作记忆内容对自上而下注意控制的影响:一项ERP研究[J]. 心理学报, 2011, 43(10): 1103-1113. |
[13] | 张豹,金志成,陈彩琦. 视觉工作记忆对前注意阶段注意定向的调节[J]. 心理学报, 2008, 40(05): 552-561. |
[14] | 沈模卫,李杰,郎学明,高涛,高在峰,水仁德. 客体在视觉工作记忆中的存储机制[J]. 心理学报, 2007, 39(05): 761-767. |
[15] | 陈彩琦,付桂芳, ,金志成. 注意水平对视觉工作记忆客体表征的影响[J]. 心理学报, 2003, 35(05): 591-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||