心理学报 ›› 2020, Vol. 52 ›› Issue (2): 173-183.doi: 10.3724/SP.J.1041.2020.00173
白学军1,2, 邵梦灵1,2, 刘婷1,2, 尹建忠3, 金花1,2()
收稿日期:
2018-11-08
发布日期:
2019-12-24
出版日期:
2020-02-25
通讯作者:
金花
E-mail:jinhua@mail.tjnu.edu.cn
基金资助:
BAI Xuejun1,2, SHAO Mengling1,2, LIU Ting1,2, YIN Jianzhong3, JIN Hua1,2()
Received:
2018-11-08
Online:
2019-12-24
Published:
2020-02-25
Contact:
JIN Hua
E-mail:jinhua@mail.tjnu.edu.cn
摘要:
以往研究发现, 球类运动员视知觉脑区的结构不同于非运动员, 但这些脑区结构的差异是训练经历引起还是天生结构不同所导致的, 尚未可知。本研究拟采用纵向设计, 以处于成年早期的成人非运动员为被试(23~27岁), 随机分成实验组和对照组, 实验组参加12周的羽毛球运动训练, 对照组在此期间不进行任何有规律的运动训练, 采集干预实验前后所有被试的结构像和弥散张量成像数据。结果发现, 实验组训练后左下枕叶、颞中回、颞下回灰质体积增加, 双侧内囊后肢、上放射冠各向异性分数(FA)增加, 进一步分析发现, FA增加的原因是径向扩散系数(RD)下降。提示羽毛球运动可增加成人与视运动知觉有关脑区的灰质容量, 增加纤维束的髓鞘厚度。
中图分类号:
白学军, 邵梦灵, 刘婷, 尹建忠, 金花. (2020). 羽毛球运动重塑成年早期的大脑灰质和白质结构. 心理学报, 52(2), 173-183.
BAI Xuejun, SHAO Mengling, LIU Ting, YIN Jianzhong, JIN Hua. (2020). Altered structural plasticity in early adulthood after badminton training. Acta Psychologica Sinica, 52(2), 173-183.
图1 交互作用显著的灰质体积脑区 注:该图为MNI空间下的轴状图, 图中左为右半球, 右为左半球。A:左下枕叶(x = -33, y = -78, z = -6, k = 111, F = 60.50, pFWE < 0.001), B:左颞下回(x = -44, y = -50, z = -9, k = 127, F = 56.18, pFWE = 0.001), C:左颞中回(x = -51, y = -39, z = 8, k = 79, F = 51.08, pFWE = 0.002)。
脑区 | 对照组 | 实验组 | ||
---|---|---|---|---|
前测 | 后测 | 前测 | 后测 | |
左下枕叶 | 0.243 ± 0.042 | 0.243 ± 0.043 | 0.227 ± 0.034 | 0.252 ± 0.039 |
左颞下回 | 0.323 ± 0.073 | 0.321 ± 0.074 | 0.286 ± 0.048 | 0.310 ± 0.045 |
左颞中回 | 0.390 ± 0.089 | 0.379 ± 0.091 | 0.368 ± 0.067 | 0.382 ± 0.068 |
表1 两组被试交互作用显著脑区的灰质体积值(M ± SD)
脑区 | 对照组 | 实验组 | ||
---|---|---|---|---|
前测 | 后测 | 前测 | 后测 | |
左下枕叶 | 0.243 ± 0.042 | 0.243 ± 0.043 | 0.227 ± 0.034 | 0.252 ± 0.039 |
左颞下回 | 0.323 ± 0.073 | 0.321 ± 0.074 | 0.286 ± 0.048 | 0.310 ± 0.045 |
左颞中回 | 0.390 ± 0.089 | 0.379 ± 0.091 | 0.368 ± 0.067 | 0.382 ± 0.068 |
图3 FA交互作用显著的脑区 注:该图为MNI空间下的轴状图, 图中的左为右半球, 右为左半球。A:左内囊后肢(x = -24, y = -11, z = 15, k = 32, pTFCE = 0.045), B:右内囊后肢(x = 25, y = -13, z = 15, k = 253, pTFCE = 0.019), C:左上放射冠(x = -27, y = -18, z = 21, k = 79, pTFCE = 0.040), D:右上放射冠(x = 29, y = -17, z = 21, k = 22, pTFCE = 0.049; x = 27, y = -20, z = 25, k = 6, pTFCE = 0.050; x = 21, y = -17, z = 39, k = 126, pTFCE = 0.044)。绿色:平均FA骨架。底图:标准空间MNI152图。
脑区 | 对照组 | 实验组 | ||
---|---|---|---|---|
前测 | 后测 | 前测 | 后测 | |
左内囊后肢 | 0.664 ± 3.64×10-2 | 0.645 ± 3.25×10-2 | 0.638 ± 3.24×10-2 | 0.656 ± 3.41×10-2 |
右内囊后肢 | 0.686 ± 3.16×10-2 | 0.673 ± 2.85×10-2 | 0.659 ± 3.20×10-2 | 0.676 ± 2.48×10-2 |
左上放射冠 | 0.642 ± 2.80×10-2 | 0.627 ± 2.89×10-2 | 0.617 ± 2.54×10-2 | 0.629 ± 2.69×10-2 |
右上放射冠 | 0.601 ± 3.42×10-2 | 0.59 ± 3.63×10-2 | 0.561 ± 2.80×10-2 | 0.576 ± 2.66×10-2 |
表2 两组被试的FA值(M ± SD)
脑区 | 对照组 | 实验组 | ||
---|---|---|---|---|
前测 | 后测 | 前测 | 后测 | |
左内囊后肢 | 0.664 ± 3.64×10-2 | 0.645 ± 3.25×10-2 | 0.638 ± 3.24×10-2 | 0.656 ± 3.41×10-2 |
右内囊后肢 | 0.686 ± 3.16×10-2 | 0.673 ± 2.85×10-2 | 0.659 ± 3.20×10-2 | 0.676 ± 2.48×10-2 |
左上放射冠 | 0.642 ± 2.80×10-2 | 0.627 ± 2.89×10-2 | 0.617 ± 2.54×10-2 | 0.629 ± 2.69×10-2 |
右上放射冠 | 0.601 ± 3.42×10-2 | 0.59 ± 3.63×10-2 | 0.561 ± 2.80×10-2 | 0.576 ± 2.66×10-2 |
脑区 | 对照组 | 实验组 | ||||
---|---|---|---|---|---|---|
前测 | 后测 | η2 | 前测 | 后测 | η2 | |
左内囊后肢 | 3.83 × 10-4 ± 8.56 × 10-6 | 4.10 × 10-4 ± 8.23 × 10-6 | 0.34 | 4.17 × 10-4 ± 7.93 × 10-6 | 3.98 × 10-4 ± 7.62 × 10-6 | 0.24 |
右内囊后肢 | 3.68 × 10-4 ± 7.96 × 10-6 | 3.84 × 10-4 ± 6.37 × 10-6 | 0.23 | 4.04 × 10-4 ± 7.37 × 10-6 | 3.83 × 10-4 ± 5.89 × 10-6 | 0.34 |
左上放射冠 | 4.28 × 10-4 ± 8.83 × 10-6 | 4.55 × 10-4 ± 8.94 × 10-6 | 0.29 | 4.71 × 10-4 ± 8.18 × 10-6 | 4.60 × 10-4 ± 8.27 × 10-6 | - |
右上放射冠 | 4.36 × 10-4 ± 6.21 × 10-6 | 4.54 × 10-4 ± 6.79 × 10-6 | 0.35 | 4.84 × 10-4 ± 5.75 × 10-6 | 4.69 × 10-4 ± 6.29 × 10-6 | 0.30 |
表3 两组被试4个ROIs脑区的RD值(M ± SD)
脑区 | 对照组 | 实验组 | ||||
---|---|---|---|---|---|---|
前测 | 后测 | η2 | 前测 | 后测 | η2 | |
左内囊后肢 | 3.83 × 10-4 ± 8.56 × 10-6 | 4.10 × 10-4 ± 8.23 × 10-6 | 0.34 | 4.17 × 10-4 ± 7.93 × 10-6 | 3.98 × 10-4 ± 7.62 × 10-6 | 0.24 |
右内囊后肢 | 3.68 × 10-4 ± 7.96 × 10-6 | 3.84 × 10-4 ± 6.37 × 10-6 | 0.23 | 4.04 × 10-4 ± 7.37 × 10-6 | 3.83 × 10-4 ± 5.89 × 10-6 | 0.34 |
左上放射冠 | 4.28 × 10-4 ± 8.83 × 10-6 | 4.55 × 10-4 ± 8.94 × 10-6 | 0.29 | 4.71 × 10-4 ± 8.18 × 10-6 | 4.60 × 10-4 ± 8.27 × 10-6 | - |
右上放射冠 | 4.36 × 10-4 ± 6.21 × 10-6 | 4.54 × 10-4 ± 6.79 × 10-6 | 0.35 | 4.84 × 10-4 ± 5.75 × 10-6 | 4.69 × 10-4 ± 6.29 × 10-6 | 0.30 |
[1] | Abernethy B . (1996). Training the visual-perceptual skills of athletes: Insights from the study of motor expertise. The American Journal of Sports Medicine, 24(6), S89-S92. |
[2] | Abernethy B., & Zawi K . (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353-367. |
[3] | Abreu A. M., Macaluso E., Azevedo R. T., Cesari P., Urgesi C., & Aglioti S. M . (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35(10), 1646-1654. |
[4] | Alder D., Ford P. R., Causer J., & Williams A. M . (2014). The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots. Human Movement Science, 37, 167-179. |
[5] | Baeck J., Kim Y., Seo J., Ryeom H., Lee J., Choi S., ... Chang Y . (2012). Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behavioural Brain Research, 234(1), 26-32. |
[6] | Beaulieu C . (2002). The basis of anisotropic water diffusion in the nervous system - A technical review. NMR in Biomedicine, 15(7-8), 435-455. |
[7] | Bezzola L., Merillat S., Gaser C., & Jancke L . (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience, 31(35), 12444-12448. |
[8] | Bilalic M., Langner R., Erb M., & Grodd W . (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology: General, 139(4), 728-742. |
[9] | Bishop D. T., Wright M. J., Jackson R. C., & Abernethy B . (2013). Neural bases for anticipation skill in soccer: An fMRI Study. Journal of Sport & Exercise Psychology, 35, 98-109. |
[10] | Blumenfeld-Katzir T., Pasternak O., Dagan M., & Assaf Y . (2011). Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One, 6(6), e20678. |
[11] | Chekroud S. R., Gueorguieva R., Zheutlin A. B., Paulus M., Krumholz H. M., Krystal J. H., & Chekroud A. M . (2018). Association between physical exercise and mental health in 1·2 million individuals in the USA between 2011 and 2015: A cross-sectional study. The Lancet Psychiatry, 5(9), 739-746. |
[12] | Di X., Zhu S., Jin H., Wang P., Ye Z., Zhou K., ... Rao H . (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2(4), 225-233. |
[13] | Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311-312. |
[14] | Everts R., Lidzba K., Wilke M., Kiefer C., Mordasini M., Schroth G., ... Steinlin M . (2009). Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Human Brain Mapping, 30(2), 473-483. |
[15] | Gaser C., & Schlaug G . (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245. |
[16] | Ge Y., Grossman R. I., Babb J. S., Rabin M. L., Mannon L. J., & Kolson D. L . (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis. American Journal of Neuroradiology, 23, 1327-1333. |
[17] | Gong D., He H., Ma W., Liu D., Huang M., Dong L., ... Yao D . (2016). Functional integration between salience and central executive networks: A role for action video game experience. Neural Plasticity, 2016, 1-9. |
[18] | Gong D., Ma W., Gong J., He H., Dong L., Zhang D., ... Yao D . (2017). Action video game experience related to altered large-scale white matter networks. Neural Plasticity, 2017, 1-7. |
[19] | Grezes J., Fonlupt P., Bertenthal B., Delon-Martin C., Segebarth C., & Decety J . (2001). Does perception of biological motion rely on specific brain regions? Neuroimage, 13(5), 775-785. |
[20] | Hamzei F., Glauche V., Schwarzwald R., & May A . (2012). Dynamic gray matter changes within cortex and striatum after short motor skill training are associated with their increased functional interaction. Neuroimage, 59(4), 3364-3372. |
[21] | Hohmann T., Troje N. F., Olmos A., & Munzert J . (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403-415. |
[22] | Hu J., Ma H., Zhu S., Li P., Xu H., Fang Y., ... Lu H. D . (2018). Visual motion processing in macaque V2. Cell Report, 25(1), 157-167. |
[23] | Hulsdunker T., Struder H. K., & Mierau A . (2017). Visual motion processing subserves faster visuomotor reaction in badminton players. Medicine and Science in Sports and Exercise, 49(6), 1097-1110. |
[24] | iReaerch. (2015. China internet + sports report. Retrieved February 11, 2019, from http://report.iresearch.cn/report_pdf.aspx?id=2423 |
[ 艾瑞咨询. (2015. 中国互联网+体育报告. 2019-02-11取自 http://report.iresearch.cn/report_pdf.aspx?id=2423] | |
[25] | Jancke L., Koeneke S., Hoppe A., Rominger C., & Hanggi J . (2009). The architecture of the golfer's brain. PLoS One, 4(3), e4785. |
[26] | Jin H., Xu G., Zhang J. X., Gao H., Ye Z., Wang P., ... Lin C . (2011). Event-related potential effects of superior action anticipation in professional badminton players. Neuroscience Letters, 492(3), 139-144. |
[27] | Jin H., Xu G., Zhang J. X., Ye Z., Wang S., Zhao L., ... Mo L . (2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78(3), 308-314. |
[28] | Jonasson L. S., Nyberg L., Kramer A. F., Lundquist A., Riklund K., & Boraxbekk C . (2017). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, 1-15. |
[29] | Kalpouzos G., Chetelat G., Baron J. C., Landeau B., Mevel K., Godeau C., ... Desgranges B . (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112-124. |
[30] | Kim J., Loy D. N., Liang H., Trinkaus K., Schmidt R. E., & Song S . (2007). Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magnetic Resonance in Medicine, 58(2), 253-260. |
[31] | Kong L., Wang S., Gao H., Wang P., Lin H., Bai L., ... Jin H . (2012). Better processing of dynamic information in badminton player with higher action anticipatory skill. Journal of Nanjing Institute of Physical Education (Social Science), 26(2), 105-109. |
[ 孔丽娜, 王树芳, 高宏巍, 王品, 林慧妍, 白利华 , .. 金花. (2012). 高球路预期能力的羽毛球运动员能更好地加工动态信息. 南京体育学院学报(社会科学版), 26(2), 105-109.] | |
[32] | Lakhani B., Borich M. R., Jackson J. N., Wadden K. P., Peters S., Villamayor A., ... Boyd L. A . (2016). Motor skill acquisition promotes human brain myelin plasticity. Neural Plasticity, 2016, 1-7. |
[33] | Lestou V., Pollick F. E., & Kourtzi Z . (2008). Neural substrates for action understanding at different description levels in the human brain. Journal of Cognitive Neuroscience, 20(2), 324-341. |
[34] | Liang Z., Yin D., Liu T., Zhu Z., Lin H., & Jin H . (2019). High perceptual sensitivity to global motion in badminton players. International Journal of Sport Psychology, under review. |
[35] | Liu L . (2018). Analysis on the development status of badminton and table tennis industries in 2018 Domestic competition strength is strong. Retrieved February 11, 2019, from https://www.sohu.com/a/221173517_99900941. |
[ 刘凌云 . (2018). 2018年羽毛球、乒乓球行业发展现状分析国内竞争实力强. 2019-02-11取自https://www.sohu.com/a/221173517_99900941.] | |
[36] | Liu T., Shao M., Yin D., Li Y., Yang N., Yin R., ... Hong H . (2017). The effect of badminton training on the ability of same-domain action anticipation for adult novices: Evidence from behavior and ERPs. Neuroscience Letters, 660, 6-11. |
[37] | Lovden M., Schaefer S., Noack H., Bodammer N. C., Kuhn S., Heinze H. J., ... Lindenberger U . (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620.e9-620.e22. |
[38] | Luo C., Guo Z. W., Lai Y. X., Liao W., Liu Q., Kendrick K. M., ... Li H . (2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PLoS One, 7(5), e36568. |
[39] | Oldfield R. C . (1971). The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9(1), 97-113. |
[40] | Park I. S., Lee Y. N., Kwon S., Lee N. J., & Rhyu I. J . (2015). White matter plasticity in the cerebellum of elite basketball athletes. Anatomy & Cell Biology, 48(4), 262-267. |
[41] | Pelphrey K. A., Morris J. P., & McCarthy G . (2004). Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. Journal of Cognitive Neuroscience, 16(10), 1706-1716. |
[42] | Peuskens H., Vanrie J., Verfaillie K., & Orban G. A . (2005). Specificity of regions processing biological motion. European Journal of Neuroscience, 21(10), 2864-2875. |
[43] | Pfefferbaum A., Mathalon D. H., Sullivan E. V., Rawles J. M., Zipursky R. B., & Lim K. O . (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874-887. |
[44] | Reid L. B., Sale M. V., Cunnington R., Mattingley J. B., & Rose S. E . (2017). Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography. Human Brain Mapping, 38(9), 4302-4312. |
[45] | Rogge A. K., Roder B., Zech A., & Hotting K . (2018). Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage, 179, 471-479. |
[46] | Schmithorst V. J., & Wilke M . (2002). Differences in white matter architecture between musicians and non-musicians: A diffusion tensor imaging study. Neuroscience Letters, 321(1-2), 57-60. |
[47] | Scholz J., Klein M. C., Behrens T. E., & Johansen-Berg H . (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371. |
[48] | Shen G., Zhang J., Wang H., Wu Y., Zeng Y., & Du X . (2014). Altered white matter architecture among college athletes: A diffusion tensor imaging study. Journal of East China Normal University (Natural Science), 2014(#4), 94-101. |
[ 沈国华, 张剑, 王慧, 吴殷, 曾雨雯, 杜小霞 . (2014). 大学生运动员脑白质的变化: 基于磁共振扩散张量成像研究. 华东师范大学学报(自然科学版), (#4), 94-101.] | |
[49] | Smeeton N. J., Ward P., & Williams A. M . (2004). Do pattern recognition skills transfer across sports? A preliminary analysis. Journal of Sports Sciences, 22(2), 205-213. |
[50] | Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., & Cross A. H . (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17(3), 1429-1436. |
[51] | Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., & Toga A. W . (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309-315. |
[52] | Sumiyoshi A., Taki Y., Nonaka H., Takeuchi H., & Kawashima R . (2014). Regional gray matter volume increases following 7 days of voluntary wheel running exercise: A longitudinal VBM study in rats. Neuroimage, 98, 82-90. |
[53] | Sun S. W., Liang H. F., Cross A. H., & Song S. K . (2008). Evolving wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage, 40(1), 1-10. |
[54] | Tamnes C. K., Walhovd K. B., Dale A. M., Ostby Y., Grydeland H., Richardson G., ... Fjell A. M . (2013). Brain development and aging: Overlapping and unique patterns of change. Neuroimage, 68, 63-74. |
[55] | Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . (2010). Dynamic properties of human brain structure: Learning- related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30(35), 11670-11677. |
[56] | Tavor I., Botvinik-Nezer R., Bernstein-Eliav M., Tsarfaty G., & Assaf Y . (2019). Short-term plasticity following motor sequence learning revealed by diffusion MRI. bioRxiv, 553628. |
[57] | Thomas A. G., Marrett S., Saad Z. S., Ruff D. A., Martin A., & Bandettini P. A . (2009). Functional but not structural changes associated with learning: An exploration of longitudinal voxel-based morphometry (VBM). NeuroImage, 48(1), 117-125. |
[58] | Wang B., Fan Y., Lu M., Li S., Song Z., Peng X., ... Huang R . (2013). Brain anatomical networks in world class gymnasts: A DTI tractography study. Neuroimage, 65, 476-487. |
[59] | Wang X., Casadio M., Weber K. N., Mussa-Ivaldi F. A., & Parrish T. B . (2014). White matter microstructure changes induced by motor skill learning utilizing a body machine interface. Neuroimage, 88, 32-40. |
[60] | Wei G., & Luo J . (2010). Sport expert's motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Research, 1341, 52-62. |
[61] | Wei G., Luo J., & Li Y . (2009). Brain structure in diving players on MR imaging studied with voxel-based morphometry. Progress in Natural Science, 19(10), 1397-1402. |
[62] | Wei G., Zhang Y., Jiang T., & Luo J . (2011). Increased cortical thickness in sports experts: A comparison of diving players with the controls. PLoS One, 6(2), e17112. |
[63] | Westlye L. T., Walhovd K. B., Dale A. M., Bjornerud A., Due-Tonnessen P., Engvig A., ... Fjell A. M . (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 2055-2068. |
[64] | Wright M. J., Bishop D. T., Jackson R. C., & Abernethy B . (2011). Cortical fMRI activation to opponents' body kinematics in sport-related anticipation: Expert-novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216-221. |
[65] | Wu Y., Zhang J., Zeng Y., & Shen C . (2015). Structural brain plasticity change in athletes associated with different sports. China Sport Science, 35(4), 52-57. |
[ 吴殷, 张剑, 曾雨雯, 沈城 . (2015). 不同类型运动项目对运动员大脑结构可塑性变化研究. 体育科学, 35(4), 52-57.] | |
[66] | Zhang J., Jones M., DeBoy C. A., Reich D. S., Farrell J. A., Hoffman P. N., ... Calabresi P. A . (2009). Diffusion tensor magnetic resonance imaging of wallerian degeneration in rat spinal cord after dorsal root axotomy. The Journal of Neuroscience, 29(10), 3160-3171. |
[67] | Zhang Y., Wei G., Zhuo J., Li Y., Ye W., & Jiang T . (2013). Regional inflation of the thalamus and globus pallidus in diving players. Medicine and Science in Sports and Exercise, 45(6), 1077-1082. |
[1] | 钟毅平, 牛娜娜, 范伟, 任梦梦, 李梅. 动作自主性与社会距离对主动控制感的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(12): 1932-1948. |
[2] | 徐楚言, 朱麟, 王芸萍, 王瑞冰, 刘聪慧. 外语口语焦虑对言语互动质量的影响:fNIRS超扫描研究[J]. 心理学报, 2023, 55(12): 1949-1965. |
[3] | 郝子雨, 李欢欢, 林亦轩. 抑郁症自杀未遂者的痛苦逃避与背外侧前额叶-脑岛有效连接特征[J]. 心理学报, 2023, 55(12): 1966-1978. |
[4] | 尤婷婷, 张利平, 祁国梅, 龙长权. 机会公平在早期加工阶段影响个体实际结果的评价[J]. 心理学报, 2023, 55(12): 1997-2012. |
[5] | 李梅, 李琎, 张冠斐, 钟毅平, 李红. 承诺水平与社会距离对信任投资的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(11): 1859-1871. |
[6] | 覃慧怡, 丁丽洪, 段威, 雷旭. 脑电的重测信度:在多项静息态和任务态实验中的对比[J]. 心理学报, 2023, 55(10): 1587-1596. |
[7] | 曹衍淼, 方惠慈, 朱欣悦, 纪林芹, 张文新. BDNF基因、同伴关系与青少年早期抑郁:基于动态发展视角[J]. 心理学报, 2023, 55(10): 1620-1636. |
[8] | 孟海江, 陈蕾, 王刚, 张剑. 不同形式运动锻炼老年人运动皮层突触可塑性的差异:来自TMS的研究证据[J]. 心理学报, 2023, 55(10): 1653-1661. |
[9] | 胡月琴, 王理中, 陈钢, 甘怡群. CSF3R和行动控制对应激与健康饮食关系的调节作用:应激影响健康行为的个体化模型的初步证据[J]. 心理学报, 2023, 55(9): 1489-1500. |
[10] | 白荣, 高叶淼, 李金文, 刘霞. 远近端人际压力与FKBP5基因对青少年自伤行为的联合影响:基于发展的视角[J]. 心理学报, 2023, 55(9): 1477-1488. |
[11] | 王妹, 程思, 李宜伟, 李红, 张丹丹. 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究[J]. 心理学报, 2023, 55(7): 1063-1073. |
[12] | 陈发坤, 陈甜, 蔡文琦, 王小娟, 杨剑峰. 左侧额中回参与汉字视觉空间分析的fNIRS证据[J]. 心理学报, 2023, 55(5): 685-695. |
[13] | 刘倩文, 王振宏. 亲子关系、感觉加工敏感性与COMT Val158Met多态性对学前儿童亲社会行为的交互影响[J]. 心理学报, 2023, 55(5): 711-725. |
[14] | 李彧, 位东涛, 邱江. 抑郁症的人格类型及其脑功能连接基础[J]. 心理学报, 2023, 55(5): 740-751. |
[15] | 林小楠, 曹衍淼, 张文新, 纪林芹. 多巴胺系统多基因与青少年攻击行为的U型关系:母亲消极教养的调节作用[J]. 心理学报, 2023, 55(4): 588-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||