心理学报 ›› 2023, Vol. 55 ›› Issue (10): 1620-1636.doi: 10.3724/SP.J.1041.2023.01620
收稿日期:
2022-10-28
发布日期:
2023-07-26
出版日期:
2023-10-25
通讯作者:
张文新, E-mail: 基金资助:
CAO Yanmiao, FANG Huici, ZHU Xinyue, JI Linqin, ZHANG Wenxin()
Received:
2022-10-28
Online:
2023-07-26
Published:
2023-10-25
摘要:
青少年抑郁是遗传基因与环境动态交互作用的结果, 但是现有研究忽视了抑郁遗传效应的发展动态性。本研究通过对1086名青少年(平均年龄12.32, 50%女生)进行3年的追踪, 分别从遗传效应的年龄差异以及遗传效应影响抑郁发展轨迹的角度, 考察BDNF基因与同伴关系对青少年抑郁的动态影响。结果显示:(1)在3个时间点上, BDNF基因与同伴拒绝交互影响青少年抑郁, 但其作用模式存在年龄差异:12岁时, MetMet基因型携带者对环境敏感性高于ValMet基因型携带者; 13岁时, MetMet和ValVal基因型携带者对环境的敏感性均高于ValMet基因型携带者; 14岁时, ValVal基因型携带者对环境的敏感性高于ValMet基因型携带者。(2)青少年早期抑郁呈线性增长趋势, 但是抑郁初始水平与增长速度无关。(3) BDNF基因与同伴拒绝交互预测青少年抑郁的初始水平, 相比ValMet基因型, 携带MetMet基因型的青少年在经历同伴拒绝后抑郁初始水平更高。(4) BDNF基因显著预测青少年抑郁增长速度, 相比ValMet基因型携带者, 携带MetMet和ValVal基因型的青少年抑郁增长速度更快。
中图分类号:
曹衍淼, 方惠慈, 朱欣悦, 纪林芹, 张文新. (2023). BDNF基因、同伴关系与青少年早期抑郁:基于动态发展视角. 心理学报, 55(10), 1620-1636.
CAO Yanmiao, FANG Huici, ZHU Xinyue, JI Linqin, ZHANG Wenxin. (2023). Associations among brain-derived neurotrophic factor gene, peer relationships, and depression across early adolescence: Dynamic genetic effects. Acta Psychologica Sinica, 55(10), 1620-1636.
变量 | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. T1 抑郁 | 0.19 | 0.22 | 1 | ||||||||
2. T2 抑郁 | 0.22 | 0.24 | 0.61*** | 1 | |||||||
3. T3 抑郁 | 0.27 | 0.25 | 0.53*** | 0.68*** | 1 | ||||||
4. T1 同伴拒绝 | −0.17 | 0.70 | 0.12*** | 0.09** | 0.08* | 1 | |||||
5. T2 同伴拒绝 | −0.13 | 0.76 | 0.15*** | 0.18*** | 0.11*** | 0.59*** | 1 | ||||
6. T3 同伴拒绝 | −0.11 | 0.80 | 0.12*** | 0.16*** | 0.11*** | 0.57*** | 0.71*** | 1 | |||
7. T1 同伴接纳 | 0.07 | 0.99 | −0.12*** | −0.10*** | −0.09** | −0.24*** | −0.24*** | −0.23*** | 1 | ||
8. T2 同伴接纳 | 0.11 | 1.02 | −0.09*** | −0.12*** | −0.11*** | −0.24*** | −0.34*** | −0.27*** | 0.46*** | 1 | |
9. T3 同伴接纳 | 0.11 | 0.98 | −0.11*** | −0.13*** | −0.14*** | −0.22*** | −0.27*** | −0.32*** | 0.38*** | 0.52*** | 1 |
表1 描述统计与相关系数表
变量 | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. T1 抑郁 | 0.19 | 0.22 | 1 | ||||||||
2. T2 抑郁 | 0.22 | 0.24 | 0.61*** | 1 | |||||||
3. T3 抑郁 | 0.27 | 0.25 | 0.53*** | 0.68*** | 1 | ||||||
4. T1 同伴拒绝 | −0.17 | 0.70 | 0.12*** | 0.09** | 0.08* | 1 | |||||
5. T2 同伴拒绝 | −0.13 | 0.76 | 0.15*** | 0.18*** | 0.11*** | 0.59*** | 1 | ||||
6. T3 同伴拒绝 | −0.11 | 0.80 | 0.12*** | 0.16*** | 0.11*** | 0.57*** | 0.71*** | 1 | |||
7. T1 同伴接纳 | 0.07 | 0.99 | −0.12*** | −0.10*** | −0.09** | −0.24*** | −0.24*** | −0.23*** | 1 | ||
8. T2 同伴接纳 | 0.11 | 1.02 | −0.09*** | −0.12*** | −0.11*** | −0.24*** | −0.34*** | −0.27*** | 0.46*** | 1 | |
9. T3 同伴接纳 | 0.11 | 0.98 | −0.11*** | −0.13*** | −0.14*** | −0.22*** | −0.27*** | −0.32*** | 0.38*** | 0.52*** | 1 |
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05+ | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003+ | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.03 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.05 |
BDNF 2 (ValVal vs. ValMet) | 0.004 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴拒绝 | 0.03 | 0.01 | 0.12*** | 0.04 | 0.01 | 0.18*** | 0.03 | 0.01 | 0.10*** |
ΔR2 | 0.01** | 0.03*** | 0.01** | ||||||
交互效应 | |||||||||
BDNF 1 ×拒绝 | 0.05 | 0.02 | 0.10** | 0.07 | 0.02 | 0.13*** | 0.03 | 0.02 | 0.06+ |
BDNF 2 ×拒绝 | 0.02 | 0.02 | 0.05 | 0.04 | 0.02 | 0.09** | 0.06 | 0.02 | 0.12*** |
ΔR2 | 0.01* | 0.01*** | 0.01** |
表2 BDNF基因与同伴拒绝对青少年抑郁的交互作用(T1~T3)
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05+ | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003+ | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.03 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.05 |
BDNF 2 (ValVal vs. ValMet) | 0.004 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴拒绝 | 0.03 | 0.01 | 0.12*** | 0.04 | 0.01 | 0.18*** | 0.03 | 0.01 | 0.10*** |
ΔR2 | 0.01** | 0.03*** | 0.01** | ||||||
交互效应 | |||||||||
BDNF 1 ×拒绝 | 0.05 | 0.02 | 0.10** | 0.07 | 0.02 | 0.13*** | 0.03 | 0.02 | 0.06+ |
BDNF 2 ×拒绝 | 0.02 | 0.02 | 0.05 | 0.04 | 0.02 | 0.09** | 0.06 | 0.02 | 0.12*** |
ΔR2 | 0.01* | 0.01*** | 0.01** |
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05+ | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003 | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.04 |
BDNF 2 (ValVal vs. ValMet) | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴接纳 | −0.03 | 0.01 | −0.12*** | −0.03 | 0.01 | −0.12*** | −0.03 | 0.01 | −0.14*** |
ΔR2 | 0.02 | 0.02 | 0.02 | ||||||
交互效应 | |||||||||
BDNF 1 ×接纳 | −0.01 | 0.02 | −0.03 | −0.02 | 0.02 | −0.05 | −0.02 | 0.02 | −0.04 |
BDNF 2 ×接纳 | −0.01 | 0.02 | −0.02 | 0.001 | 0.02 | 0.003 | −0.02 | 0.02 | −0.05 |
ΔR2 | 0.001 | 0.002 | 0.002 |
表3 BDNF基因与同伴接纳对青少年抑郁的交互作用(T1~T3)
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05+ | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003 | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.04 |
BDNF 2 (ValVal vs. ValMet) | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴接纳 | −0.03 | 0.01 | −0.12*** | −0.03 | 0.01 | −0.12*** | −0.03 | 0.01 | −0.14*** |
ΔR2 | 0.02 | 0.02 | 0.02 | ||||||
交互效应 | |||||||||
BDNF 1 ×接纳 | −0.01 | 0.02 | −0.03 | −0.02 | 0.02 | −0.05 | −0.02 | 0.02 | −0.04 |
BDNF 2 ×接纳 | −0.01 | 0.02 | −0.02 | 0.001 | 0.02 | 0.003 | −0.02 | 0.02 | −0.05 |
ΔR2 | 0.001 | 0.002 | 0.002 |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | 0.01 (0.19) | 0.08 (0.25) | 6.74 (—)a | 6.74 (—)a | −0.74 (—)a | −0.74 (—)a |
95% CI of C | [−0.38, 0.39] | [−0.41, 0.56] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.02 (0.01) | 0.00 (—)a | 0.04 (0.01)*** | 0.00 (—)a | 0.02 (0.01) |
B2 | 0.08 (0.02)*** | 0.09 (0.02)*** | 0.003 (0.01) | 0.04 (0.02)*** | 0.04 (0.02)*** | 0.05 (0.02)*** |
B3 | 0.04 (0.02) * | 0.04 (0.02)* | 0.001 (0.02) | 0.04 (0.01)*** | 0.04 (0.02)*** | 0.05 (0.02)*** |
B4 | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) |
R2 | 0.022 | 0.024 | 0.004 | 0.017 | 0.014 | 0.019 |
F(df) | 6.14 (4, 1069)*** | 5.23 (5, 1068)*** | 1.56 (3, 1070) | 4.69 (4, 1069)*** | 5.22 (3, 1070)** | 5.05 (4, 1069)*** |
F vs. 1 (df) | — | 1.55 (1, 1068) | 19.79 (1, 1069)*** | — | 8.78 (1, 1069)** | — |
F vs. 2 (df) | 1.55 (1, 1068) | — | 10.68 (2, 1068)*** | 7.25 (1, 1068)** | 5.17 (2, 1068)** | 5.82 (1, 1068)* |
AIC | −253.53 | −253.09 | −235.83 | −247.82 | −246.74 | −249.25 |
BIC | −223.65 | −218.23 | −210.93 | −217.95 | −221.85 | −219.38 |
表4 BDNF基因与同伴拒绝对青少年抑郁的再参数化分析(T1)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | 0.01 (0.19) | 0.08 (0.25) | 6.74 (—)a | 6.74 (—)a | −0.74 (—)a | −0.74 (—)a |
95% CI of C | [−0.38, 0.39] | [−0.41, 0.56] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.02 (0.01) | 0.00 (—)a | 0.04 (0.01)*** | 0.00 (—)a | 0.02 (0.01) |
B2 | 0.08 (0.02)*** | 0.09 (0.02)*** | 0.003 (0.01) | 0.04 (0.02)*** | 0.04 (0.02)*** | 0.05 (0.02)*** |
B3 | 0.04 (0.02) * | 0.04 (0.02)* | 0.001 (0.02) | 0.04 (0.01)*** | 0.04 (0.02)*** | 0.05 (0.02)*** |
B4 | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) |
R2 | 0.022 | 0.024 | 0.004 | 0.017 | 0.014 | 0.019 |
F(df) | 6.14 (4, 1069)*** | 5.23 (5, 1068)*** | 1.56 (3, 1070) | 4.69 (4, 1069)*** | 5.22 (3, 1070)** | 5.05 (4, 1069)*** |
F vs. 1 (df) | — | 1.55 (1, 1068) | 19.79 (1, 1069)*** | — | 8.78 (1, 1069)** | — |
F vs. 2 (df) | 1.55 (1, 1068) | — | 10.68 (2, 1068)*** | 7.25 (1, 1068)** | 5.17 (2, 1068)** | 5.82 (1, 1068)* |
AIC | −253.53 | −253.09 | −235.83 | −247.82 | −246.74 | −249.25 |
BIC | −223.65 | −218.23 | −210.93 | −217.95 | −221.85 | −219.38 |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | −0.27 (0.14) | −0.31 (0.19) | 6.01 (—)a | 6.01 (—)a | −1.01 (—)a | −1.01 (—)a |
95% CI of C | [−0.54, 0.01] | [−0.68, 0.06] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.03 (0.01)* | 0.00 (—)a | 0.06 (0.01)*** | 0.00 (—)a | 0.04 (0.01)*** |
B2 | 0.12 (0.02)*** | 0.12 (0.02)*** | 0.001 (0.02) | 0.06 (0.01)*** | 0.07 (0.02) *** | 0.09 (0.02)*** |
B3 | 0.08 (0.02)*** | 0.08 (0.02)*** | 0.000 (0.01) | 0.06 (0.02)*** | 0.06 (0.02) *** | 0.08 (0.02)*** |
B4 | 0.00 (0.01) | 0.00 (0.01) | 0.01 (0.02) | 0.00 (0.01) | 0.01 (0.01) | 0.00 (0.01) |
R2 | 0.045 | 0.049 | 0.001 | 0.034 | 0.031 | 0.044 |
F(df) | 12.76 (4, 1073)*** | 11.07 (5, 1072)*** | 0.29 (3, 1074) | 9.52 (4, 1073)*** | 11.56 (3, 1074)** | 12.26 (4, 1073)*** |
F vs. 1 (df) | — | 4.17 (1, 1072)* | 50.13 (1, 1073)*** | — | 15.86 (1, 1073)** | — |
F vs. 2 (df) | 4.17 (1, 1072)* | — | 27.22 (2, 1072)*** | 16.72 (1, 1072)** | 10.04 (2, 1072)** | 6.09 (1, 1072)* |
AIC | −94.49 | −96.68 | −47.27 | −81.99 | −80.68 | −92.58 |
BIC | −64.60 | −61.80 | −22.36 | −52.10 | −55.77 | −62.68 |
表5 BDNF基因与同伴拒绝对青少年抑郁的再参数化分析(T2)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | −0.27 (0.14) | −0.31 (0.19) | 6.01 (—)a | 6.01 (—)a | −1.01 (—)a | −1.01 (—)a |
95% CI of C | [−0.54, 0.01] | [−0.68, 0.06] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.03 (0.01)* | 0.00 (—)a | 0.06 (0.01)*** | 0.00 (—)a | 0.04 (0.01)*** |
B2 | 0.12 (0.02)*** | 0.12 (0.02)*** | 0.001 (0.02) | 0.06 (0.01)*** | 0.07 (0.02) *** | 0.09 (0.02)*** |
B3 | 0.08 (0.02)*** | 0.08 (0.02)*** | 0.000 (0.01) | 0.06 (0.02)*** | 0.06 (0.02) *** | 0.08 (0.02)*** |
B4 | 0.00 (0.01) | 0.00 (0.01) | 0.01 (0.02) | 0.00 (0.01) | 0.01 (0.01) | 0.00 (0.01) |
R2 | 0.045 | 0.049 | 0.001 | 0.034 | 0.031 | 0.044 |
F(df) | 12.76 (4, 1073)*** | 11.07 (5, 1072)*** | 0.29 (3, 1074) | 9.52 (4, 1073)*** | 11.56 (3, 1074)** | 12.26 (4, 1073)*** |
F vs. 1 (df) | — | 4.17 (1, 1072)* | 50.13 (1, 1073)*** | — | 15.86 (1, 1073)** | — |
F vs. 2 (df) | 4.17 (1, 1072)* | — | 27.22 (2, 1072)*** | 16.72 (1, 1072)** | 10.04 (2, 1072)** | 6.09 (1, 1072)* |
AIC | −94.49 | −96.68 | −47.27 | −81.99 | −80.68 | −92.58 |
BIC | −64.60 | −61.80 | −22.36 | −52.10 | −55.77 | −62.68 |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | −0.54 (0.24) | −0.57 (0.28) | 6.04 (—)a | 6.04 (—)a | −0.80 (—)a | −0.80 (—)a |
95% CI of C | [−1.04, −0.05] | [−1.11, −0.03] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.005 (0.01) | 0.00 (—)a | 0.03 (0.01)*** | 0.00 (—)a | 0.01 (0.01) |
B2 | 0.05 (0.02)** | 0.05 (0.02)** | −0.002 (0.003) | 0.03 (0.01)*** | 0.05 (0.02)** | 0.05 (0.02)** |
B3 | 0.08 (0.02)*** | 0.08 (0.02)*** | −0.003 (0.003) | 0.03 (0.01)** | 0.07 (0.02)*** | 0.07 (0.02)*** |
B4 | 0.01 (0.01) | 0.01 (0.02) | 0.02 (0.02) | 0.01 (0.02) | 0.01 (0.02) | 0.01 (0.02) |
R2 | 0.026 | 0.026 | 0.003 | 0.015 | 0.025 | 0.026 |
F(df) | 7.02 (4, 1047)*** | 5.64 (5, 1046)*** | 1.19 (3, 1048) | 3.98 (4, 1047)** | 9.08 (3, 1048)** | 6.93 (4, 1047)*** |
F vs. 1 (df) | — | 0.13 (1, 1046) | 24.44 (1, 1047)*** | — | 0.86 (1, 1047) | — |
F vs. 2 (df) | 0.13 (1, 1046) | — | 12.27 (2, 1046)*** | 12.10 (1, 1046)** | 0.49 (2, 1046) | 0.49 (1, 1046) |
AIC | 38.42 | 40.29 | 60.69 | 50.39 | 37.28 | 38.78 |
BIC | 68.17 | 75.00 | 85.49 | 80.14 | 62.06 | 68.53 |
表6 BDNF基因与同伴拒绝对青少年抑郁的再参数化分析(T3)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model a | 弱: Model b | 强: Model c | 弱: Model d | 强: Model e | 弱: Model f | |
C | −0.54 (0.24) | −0.57 (0.28) | 6.04 (—)a | 6.04 (—)a | −0.80 (—)a | −0.80 (—)a |
95% CI of C | [−1.04, −0.05] | [−1.11, −0.03] | —a | —a | —a | —a |
B1 | 0.00 (—)a | 0.005 (0.01) | 0.00 (—)a | 0.03 (0.01)*** | 0.00 (—)a | 0.01 (0.01) |
B2 | 0.05 (0.02)** | 0.05 (0.02)** | −0.002 (0.003) | 0.03 (0.01)*** | 0.05 (0.02)** | 0.05 (0.02)** |
B3 | 0.08 (0.02)*** | 0.08 (0.02)*** | −0.003 (0.003) | 0.03 (0.01)** | 0.07 (0.02)*** | 0.07 (0.02)*** |
B4 | 0.01 (0.01) | 0.01 (0.02) | 0.02 (0.02) | 0.01 (0.02) | 0.01 (0.02) | 0.01 (0.02) |
R2 | 0.026 | 0.026 | 0.003 | 0.015 | 0.025 | 0.026 |
F(df) | 7.02 (4, 1047)*** | 5.64 (5, 1046)*** | 1.19 (3, 1048) | 3.98 (4, 1047)** | 9.08 (3, 1048)** | 6.93 (4, 1047)*** |
F vs. 1 (df) | — | 0.13 (1, 1046) | 24.44 (1, 1047)*** | — | 0.86 (1, 1047) | — |
F vs. 2 (df) | 0.13 (1, 1046) | — | 12.27 (2, 1046)*** | 12.10 (1, 1046)** | 0.49 (2, 1046) | 0.49 (1, 1046) |
AIC | 38.42 | 40.29 | 60.69 | 50.39 | 37.28 | 38.78 |
BIC | 68.17 | 75.00 | 85.49 | 80.14 | 62.06 | 68.53 |
预测因素 | 截距 | 斜率 | χ2(df) | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|
Model 1: 无条件模型 | 1.01 (0.05)*** | 0.50 (0.07)*** | 1.60 (1) | 0.99 | 0.99 | 0.02 [0.00, 0.09] | 0.01 |
Model 2: 性别 | 0.06 (0.04) | −0.02 (0.04) | 2.25 (2) | 1.00 | 0.99 | 0.01 [0.00, 0.06] | 0.01 |
Model 3: BDNF 1 (MetMet vs. ValMet) | −0.03 (0.04) | 0.11 (0.05)* | 2.30 (4) | 1.00 | 1.00 | 0.00 [0.00, 0.04] | 0.01 |
BDNF 2 (ValVal vs. ValMet) | 0.01 (0.04) | 0.09 (0.05)* | |||||
Model 4a: T1同伴拒绝 | 0.14 (0.05)** | −0.04 (0.04) | 2.32 (5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5a: BDNF 1×T1同伴拒绝 | 0.11 (0.06)* | −0.06 (0.04) | 3.49 (7) | 1.00 | 1.00 | 0.00 [0.00, 0.02] | 0.004 |
BDNF 2×T1同伴拒绝 | 0.06 (0.06) | 0.02 (0.04) | |||||
Model 4b: T1同伴接纳 | −0.14 (0.04)*** | 0.02 (0.04) | 2.32 (5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5b: BDNF 1×T1同伴接纳 | −0.04 (0.04) | −0.06 (0.05) | 3.22 (7) | 1.00 | 1.00 | 0.00 [0.00, 0.02] | 0.004 |
BDNF 2×T1同伴接纳 | −0.02 (0.05) | 0.04 (0.05) | |||||
Model 4c: T1同伴地位(补充) | −0.18 (0.04)*** | 0.04 (0.04) | 2.34(5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5c: BDNF 1×T1同伴地位 | −0.10 (0.05)* | −0.001 (0.05) | 2.46(7) | 1.00 | 1.00 | 0.00 [0.00, 0.01] | 0.004 |
BDNF 2×T1同伴地位 | −0.05 (0.06) | 0.02 (0.05) |
表7 BDNF基因与同伴关系对青少年抑郁发展轨迹的影响
预测因素 | 截距 | 斜率 | χ2(df) | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|
Model 1: 无条件模型 | 1.01 (0.05)*** | 0.50 (0.07)*** | 1.60 (1) | 0.99 | 0.99 | 0.02 [0.00, 0.09] | 0.01 |
Model 2: 性别 | 0.06 (0.04) | −0.02 (0.04) | 2.25 (2) | 1.00 | 0.99 | 0.01 [0.00, 0.06] | 0.01 |
Model 3: BDNF 1 (MetMet vs. ValMet) | −0.03 (0.04) | 0.11 (0.05)* | 2.30 (4) | 1.00 | 1.00 | 0.00 [0.00, 0.04] | 0.01 |
BDNF 2 (ValVal vs. ValMet) | 0.01 (0.04) | 0.09 (0.05)* | |||||
Model 4a: T1同伴拒绝 | 0.14 (0.05)** | −0.04 (0.04) | 2.32 (5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5a: BDNF 1×T1同伴拒绝 | 0.11 (0.06)* | −0.06 (0.04) | 3.49 (7) | 1.00 | 1.00 | 0.00 [0.00, 0.02] | 0.004 |
BDNF 2×T1同伴拒绝 | 0.06 (0.06) | 0.02 (0.04) | |||||
Model 4b: T1同伴接纳 | −0.14 (0.04)*** | 0.02 (0.04) | 2.32 (5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5b: BDNF 1×T1同伴接纳 | −0.04 (0.04) | −0.06 (0.05) | 3.22 (7) | 1.00 | 1.00 | 0.00 [0.00, 0.02] | 0.004 |
BDNF 2×T1同伴接纳 | −0.02 (0.05) | 0.04 (0.05) | |||||
Model 4c: T1同伴地位(补充) | −0.18 (0.04)*** | 0.04 (0.04) | 2.34(5) | 1.00 | 1.00 | 0.00 [0.00, 0.03] | 0.01 |
Model 5c: BDNF 1×T1同伴地位 | −0.10 (0.05)* | −0.001 (0.05) | 2.46(7) | 1.00 | 1.00 | 0.00 [0.00, 0.01] | 0.004 |
BDNF 2×T1同伴地位 | −0.05 (0.06) | 0.02 (0.05) |
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003 | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.03 | 0.01 | 0.02 | 0.01 | 0.03 | 0.02 | 0.04 |
BDNF 2 (ValVal vs. ValMet) | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴地位 | −0.03 | 0.01 | −0.15*** | −0.04 | 0.01 | −0.19 | −0.04 | 0.01 | −0.15*** |
ΔR2 | 0.02*** | 0.04*** | 0.03*** | ||||||
交互效应 | |||||||||
BDNF 1 ×同伴地位 | −0.04 | 0.02 | −0.09* | −0.06 | 0.02 | −0.11*** | −0.03 | 0.02 | −0.07+ |
BDNF 2 ×同伴地位 | −0.02 | 0.02 | −0.05 | −0.02 | 0.02 | −0.05 | −0.05 | 0.02 | −0.10** |
ΔR2 | 0.01* | 0.01** | 0.01* |
表A1 BDNF基因与同伴地位对青少年抑郁的交互作用(T1~T3)
变量 | T1 抑郁 | T2 抑郁 | T3 抑郁 | ||||||
---|---|---|---|---|---|---|---|---|---|
b | SE | β | b | SE | β | b | SE | β | |
控制变量 | |||||||||
性别 | 0.02 | 0.01 | 0.05 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.05 |
ΔR2 | 0.003 | 0.001 | 0.002 | ||||||
主效应 | |||||||||
BDNF 1 (MetMet vs. ValMet) | −0.01 | 0.02 | −0.03 | 0.01 | 0.02 | 0.01 | 0.03 | 0.02 | 0.04 |
BDNF 2 (ValVal vs. ValMet) | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06+ |
同伴地位 | −0.03 | 0.01 | −0.15*** | −0.04 | 0.01 | −0.19 | −0.04 | 0.01 | −0.15*** |
ΔR2 | 0.02*** | 0.04*** | 0.03*** | ||||||
交互效应 | |||||||||
BDNF 1 ×同伴地位 | −0.04 | 0.02 | −0.09* | −0.06 | 0.02 | −0.11*** | −0.03 | 0.02 | −0.07+ |
BDNF 2 ×同伴地位 | −0.02 | 0.02 | −0.05 | −0.02 | 0.02 | −0.05 | −0.05 | 0.02 | −0.10** |
ΔR2 | 0.01* | 0.01** | 0.01* |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | −0.02(0.38) | −0.36(0.67) | −7.88(—)a | −7.88(—)a | 4.67(—)a | 4.67 (—)a |
95% CI of C | [−0.77, 0.72] | [−1.68, 0.96] | —a | —a | —a | —a |
B1 | −0.00(—)a | −0.02(0.01)* | 0.00(—)a | −0.02(0.01)*** | 0.00(—)a | −0.02(0.01)*** |
B2 | −0.04(0.01)*** | −0.04(0.01)*** | −0.003(0.01) | −0.03(0.01)*** | −0.003(0.003) | −0.02(0.01)*** |
B3 | −0.03(0.01)** | −0.02(0.01)** | −0.001(0.01) | −0.02(0.01)*** | −0.01(0.003) | −0.03(0.01)*** |
B4 | −0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) |
R2 | 0.025 | 0.030 | 0.005 | 0.027 | 0.006 | 0.026 |
F(df) | 6.89(4, 1069) | 6.52(5, 1068) | 1.97(3, 1070) | 7.31(4, 1069)*** | 2.00(3, 1070) | 7.05(4, 1069)*** |
F vs. 1 (df) | — | 4.93(1, 1068)* | 21.52(1, 1069)*** | — | 21.44(1, 1069)*** | — |
F vs. 2 (df) | 4.93(1, 1068)* | — | 13.27(2, 1068)*** | 3.29(1, 1068) | 13.23(2, 1068)*** | 4.31(1, 1068)* |
AIC | −256.45 | −259.40 | −237.05 | −258.10 | −237.13 | −257.07 |
BIC | −226.58 | −224.55 | −212.15 | −228.22 | −212.23 | −227.20 |
表A2 BDNF基因与同伴地位对青少年抑郁的再参数化分析(T1)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | −0.02(0.38) | −0.36(0.67) | −7.88(—)a | −7.88(—)a | 4.67(—)a | 4.67 (—)a |
95% CI of C | [−0.77, 0.72] | [−1.68, 0.96] | —a | —a | —a | —a |
B1 | −0.00(—)a | −0.02(0.01)* | 0.00(—)a | −0.02(0.01)*** | 0.00(—)a | −0.02(0.01)*** |
B2 | −0.04(0.01)*** | −0.04(0.01)*** | −0.003(0.01) | −0.03(0.01)*** | −0.003(0.003) | −0.02(0.01)*** |
B3 | −0.03(0.01)** | −0.02(0.01)** | −0.001(0.01) | −0.02(0.01)*** | −0.01(0.003) | −0.03(0.01)*** |
B4 | −0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) | 0.02(0.01) |
R2 | 0.025 | 0.030 | 0.005 | 0.027 | 0.006 | 0.026 |
F(df) | 6.89(4, 1069) | 6.52(5, 1068) | 1.97(3, 1070) | 7.31(4, 1069)*** | 2.00(3, 1070) | 7.05(4, 1069)*** |
F vs. 1 (df) | — | 4.93(1, 1068)* | 21.52(1, 1069)*** | — | 21.44(1, 1069)*** | — |
F vs. 2 (df) | 4.93(1, 1068)* | — | 13.27(2, 1068)*** | 3.29(1, 1068) | 13.23(2, 1068)*** | 4.31(1, 1068)* |
AIC | −256.45 | −259.40 | −237.05 | −258.10 | −237.13 | −257.07 |
BIC | −226.58 | −224.55 | −212.15 | −228.22 | −212.23 | −227.20 |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | 0.45(0.33) | 0.47(0.52) | −7.22(—)a | −7.22(—)a | 4.74(—)a | 4.74(—)a |
95% CI of C | [−0.20, 1.09] | [−0.55, 1.49] | —a | —a | —a | —a |
B1 | 0.00(—)a | −0.02(0.01)** | 0.00(—)a | −0.03(0.01)*** | 0.00(—)a | −0.03(0.01)*** |
B2 | −0.05(0.01)*** | −0.05(0.01)*** | −0.002(0.002) | −0.03(0.01)*** | −0.01(0.004)* | −0.03(0.01)*** |
B3 | −0.03(0.01)*** | −0.03(0.01)*** | −0.001(0.002) | −0.03(0.01)*** | −0.01(0.004)* | −0.03(0.01)*** |
B4 | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) |
R2 | 0.033 | 0.040 | 0.001 | 0.033 | 0.010 | 0.035 |
F(df) | 9.25(4, 1073) *** | 8.85(5, 1072)*** | 0.46(3, 1074) | 9.20(4, 1073)*** | 3.51(3, 1074) | 9.63(4, 1073)*** |
F vs. 1 (df) | — | 7.05(1, 1072)** | 35.59(1, 1073)*** | — | 26.22(1, 1073)*** | — |
F vs. 2 (df) | 7.05(1, 1072)** | — | 21.42(2, 1072)*** | 7.27(1, 1072)** | 16.71(2, 1072)*** | 5.57(1, 1072)* |
AIC | −80.97 | −86.04 | −47.79 | −80.75 | −56.94 | −82.45 |
BIC | −51.07 | −51.16 | −22.88 | −50.85 | −32.03 | −52.55 |
表A3 BDNF基因与同伴地位对青少年抑郁的再参数化分析(T2)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | 0.45(0.33) | 0.47(0.52) | −7.22(—)a | −7.22(—)a | 4.74(—)a | 4.74(—)a |
95% CI of C | [−0.20, 1.09] | [−0.55, 1.49] | —a | —a | —a | —a |
B1 | 0.00(—)a | −0.02(0.01)** | 0.00(—)a | −0.03(0.01)*** | 0.00(—)a | −0.03(0.01)*** |
B2 | −0.05(0.01)*** | −0.05(0.01)*** | −0.002(0.002) | −0.03(0.01)*** | −0.01(0.004)* | −0.03(0.01)*** |
B3 | −0.03(0.01)*** | −0.03(0.01)*** | −0.001(0.002) | −0.03(0.01)*** | −0.01(0.004)* | −0.03(0.01)*** |
B4 | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) |
R2 | 0.033 | 0.040 | 0.001 | 0.033 | 0.010 | 0.035 |
F(df) | 9.25(4, 1073) *** | 8.85(5, 1072)*** | 0.46(3, 1074) | 9.20(4, 1073)*** | 3.51(3, 1074) | 9.63(4, 1073)*** |
F vs. 1 (df) | — | 7.05(1, 1072)** | 35.59(1, 1073)*** | — | 26.22(1, 1073)*** | — |
F vs. 2 (df) | 7.05(1, 1072)** | — | 21.42(2, 1072)*** | 7.27(1, 1072)** | 16.71(2, 1072)*** | 5.57(1, 1072)* |
AIC | −80.97 | −86.04 | −47.79 | −80.75 | −56.94 | −82.45 |
BIC | −51.07 | −51.16 | −22.88 | −50.85 | −32.03 | −52.55 |
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | 0.97(0.39) | 1.26(0.62) | −7.47(—)a | −7.47(—)a | 4.19(—)a | 4.19(—)a |
95% CI of C | [0.04, 2.48] | —a | —a | —a | —a | |
B1 | 0.00(—)a | −0.01(0.01) | 0.00(—)a | −0.03(0.01)*** | 0.00(—)a | −0.02(0.01)*** |
B2 | −0.03(0.01)*** | −0.03(0.01)*** | 0.001(0.002) | −0.02(0.01)*** | −0.01(0.004)** | −0.03(0.01)*** |
B3 | −0.05(0.01)*** | −0.05(0.01)*** | 0.001(0.002) | −0.02(0.01)*** | −0.02(0.004)*** | −0.03(0.01)*** |
B4 | 0.02(0.02) | 0.02(0.02) | 0.02(0.02) | 0.01(0.02) | 0.02(0.02) | 0.01(0.02) |
R2 | 0.033 | 0.035 | 0.002 | 0.026 | 0.019 | 0.032 |
F(df) | 8.96(4, 1047)*** | 7.69(5, 1046)*** | 0.85(3, 1048) | 7.06(4, 1047)*** | 6.70(3, 1048)*** | 8.61(4, 1047)*** |
F vs. 1 (df) | — | 2.55(1, 1046) | 33.20(1, 1047)*** | — | 15.46(1, 1047)*** | — |
F vs. 2 (df) | 2.55(1, 1046) | — | 17.90(2, 1046)*** | 9.96(1, 1046)** | 9.02(2, 1046)*** | 3.89(1, 1046)+ |
AIC | 30.88 | 30.32 | 61.72 | 38.28 | 44.30 | 32.22 |
BIC | 60.63 | 65.02 | 86.51 | 68.04 | 69.09 | 61.97 |
表A4 BDNF基因与同伴地位对青少年抑郁的再参数化分析(T3)
参数 | 不同易感模型 | 素质−压力模型 | 优势敏感模型 | |||
---|---|---|---|---|---|---|
强: Model 1 | 弱: Model 2 | 强: Model 3 | 弱: Model 4 | 强: Model 5 | 弱: Model 6 | |
C | 0.97(0.39) | 1.26(0.62) | −7.47(—)a | −7.47(—)a | 4.19(—)a | 4.19(—)a |
95% CI of C | [0.04, 2.48] | —a | —a | —a | —a | |
B1 | 0.00(—)a | −0.01(0.01) | 0.00(—)a | −0.03(0.01)*** | 0.00(—)a | −0.02(0.01)*** |
B2 | −0.03(0.01)*** | −0.03(0.01)*** | 0.001(0.002) | −0.02(0.01)*** | −0.01(0.004)** | −0.03(0.01)*** |
B3 | −0.05(0.01)*** | −0.05(0.01)*** | 0.001(0.002) | −0.02(0.01)*** | −0.02(0.004)*** | −0.03(0.01)*** |
B4 | 0.02(0.02) | 0.02(0.02) | 0.02(0.02) | 0.01(0.02) | 0.02(0.02) | 0.01(0.02) |
R2 | 0.033 | 0.035 | 0.002 | 0.026 | 0.019 | 0.032 |
F(df) | 8.96(4, 1047)*** | 7.69(5, 1046)*** | 0.85(3, 1048) | 7.06(4, 1047)*** | 6.70(3, 1048)*** | 8.61(4, 1047)*** |
F vs. 1 (df) | — | 2.55(1, 1046) | 33.20(1, 1047)*** | — | 15.46(1, 1047)*** | — |
F vs. 2 (df) | 2.55(1, 1046) | — | 17.90(2, 1046)*** | 9.96(1, 1046)** | 9.02(2, 1046)*** | 3.89(1, 1046)+ |
AIC | 30.88 | 30.32 | 61.72 | 38.28 | 44.30 | 32.22 |
BIC | 60.63 | 65.02 | 86.51 | 68.04 | 69.09 | 61.97 |
预测因素 | 抑郁截距 | 抑郁斜率 | χ2(df) | CFI | RMSEA |
---|---|---|---|---|---|
Model A: 同伴拒绝截距 | 0.20 (0.05)*** | −0.06 (0.05) | 16.29 (7) | 0.99 | 0.04 [0.01, 0.06] |
同伴拒绝斜率 | 0.09 (0.08) | ||||
Model B: 同伴接纳截距 | −0.19 (0.04)*** | −0.01 (0.05) | 4.17(7) | 1.00 | 0.00 [0.00, 0.03] |
同伴接纳斜率 | −0.14 (0.07) | ||||
Model C: 同伴地位截距 | −0.23 (0.05)*** | 0.03 (0.05) | 11.33 (7) | 0.99 | 0.02 [0.00, 0.05] |
同伴地位斜率 | −0.15 (0.08) |
表A5 同伴关系与青少年抑郁的平行潜变量增长模型
预测因素 | 抑郁截距 | 抑郁斜率 | χ2(df) | CFI | RMSEA |
---|---|---|---|---|---|
Model A: 同伴拒绝截距 | 0.20 (0.05)*** | −0.06 (0.05) | 16.29 (7) | 0.99 | 0.04 [0.01, 0.06] |
同伴拒绝斜率 | 0.09 (0.08) | ||||
Model B: 同伴接纳截距 | −0.19 (0.04)*** | −0.01 (0.05) | 4.17(7) | 1.00 | 0.00 [0.00, 0.03] |
同伴接纳斜率 | −0.14 (0.07) | ||||
Model C: 同伴地位截距 | −0.23 (0.05)*** | 0.03 (0.05) | 11.33 (7) | 0.99 | 0.02 [0.00, 0.05] |
同伴地位斜率 | −0.15 (0.08) |
[1] |
Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., Moya, J., Villa, H., van Os, J., Ibáñez, M. I., Ruipérez, M. A., Ortet, G., & Fañanás, L. (2009). Early adversity and 5-HTT/BDNF genes: New evidence of gene-environment interactions on depressive symptoms in a general population. Psychological Medicine, 39(9), 1425-1432. https://doi.org/10.1017/S0033291709005248
doi: 10.1017/S0033291709005248 URL pmid: 19215635 |
[2] |
Aliev, F., Latendresse, S. J., Bacanu, S. A., Neale, M. C., & Dick, D. M. (2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44(2), 165-181. https://doi.org/10.1007/s10519-014-9642-1
doi: 10.1007/s10519-014-9642-1 URL pmid: 24531874 |
[3] |
Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31(4), 183-191. https://doi.org/10.1016/j.tins.2008.01.004
doi: 10.1016/j.tins.2008.01.004 URL pmid: 18329735 |
[4] |
Avenevoli, S., Swendsen, J., He, J. P., Burstein, M., & Merikangas, K. R. (2015). Major depression in the national comorbidity survey-adolescent supplement: Prevalence, correlates, and treatment. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 37-44. https://doi.org/10.1016/j.jaac.2014.10.010
doi: 10.1016/j.jaac.2014.10.010 URL pmid: 25524788 |
[5] |
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497-529. https://doi.org/10.1037/0033-2909.117.3.497
URL pmid: 7777651 |
[6] | Beeson, C. M., Brittain, H., & Vaillancourt, T. (2020). The temporal precedence of peer rejection, rejection sensitivity, depression, and aggression across adolescence. Child Psychiatry & Human Development, 51(5), 781-791. https://doi.org/10.1007/s10578-020-01008-2 |
[7] |
Belmaker, R. H., & Agam, G. (2008). Mechanisms of disease: Major depressive disorder. The New England Journal of Medicine, 358(1), 55-68. https://doi.org/10.1056/NEJMra073096
doi: 10.1056/NEJMra073096 URL pmid: 18172175 |
[8] |
Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16(6), 300-304. https://doi.org/10.1111/j.1467-8721.2007.00525.x
doi: 10.1111/j.1467-8721.2007.00525.x URL |
[9] |
Blackhart, G. C., Eckel, L. A., & Tice, D. M. (2007). Salivary cortisol in response to acute social rejection and acceptance by peers. Biological Psychology, 75(3), 267-276. https://doi.org/10.1016/j.biopsycho.2007.03.005
URL pmid: 17485157 |
[10] |
Boyce, W. T., Levitt, P., Martinez, F. D., McEwen, B. S., & Shonkoff, J. P. (2021). Genes, environments, and time: the biology of adversity and resilience. Pediatrics, 147(2), e20201651. https://doi.org/10.1542/peds.2020-1651
doi: 10.1542/peds.2020-1651 URL |
[11] |
Boyce, W. T., Sokolowski, M. B., & Robinson, G. E. (2020). Genes and environments, development, and time. Proceedings of the National Academy of Sciences, 117(38), 23235-23241. https://doi.org/10.1073/pnas.2016710117
doi: 10.1073/pnas.2016710117 URL |
[12] |
Cao, Y., Chen, G., Ji, L., & Zhang, W. (2021). Inhibitory control mediates the associations between parenting practices and depressive symptoms in adolescents: The moderating role of catechol-O-methyltransferase (COMT) gene. Journal of Youth and Adolescence, 50(10), 2079-2095. https://doi.org/10.1007/s10964-021-01466-4
doi: 10.1007/s10964-021-01466-4 URL pmid: 34259955 |
[13] |
Casey, B. J., Glatt, C. E., Tottenham, N., Soliman, F., Bath, K., Amso, D.,... Lee, F. S. (2009). Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 164(1), 108-120. https://doi.org/10.1016/j.neuroscience.2009.03.081
doi: 10.1016/j.neuroscience.2009.03.081 URL pmid: 19358879 |
[14] |
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386-389. https://doi.org/10.1126/science.1083968
doi: 10.1126/science.1083968 URL pmid: 12869766 |
[15] | Chang, S. H., Yu, Y. H., He, A., Ou, C. Y., Shyu, B. C., & Huang, A. C. W. (2021). BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model. Behavioural Neurology, 2021, 6657716. https://doi.org/10.1155/2021/6657716 |
[16] |
Chen, J., Li, X., & McGue, M. (2013). The interacting effect of the BDNF Val66Met polymorphism and stressful life events on adolescent depression is not an artifact of gene- environment correlation: Evidence from a longitudinal twin study. Journal of Child Psychology and Psychiatry, 54(10), 1066-1073. https://doi.org/10.1111/jcpp.12099
doi: 10.1111/jcpp.2013.54.issue-10 URL |
[17] |
Cole, S. W. (2009). Social regulation of human gene expression. Current Directions in Psychological Science, 18(3), 132-137. https://doi.org/10.1111/j.1467-8721.2009.01623.x
doi: 10.1111/j.1467-8721.2009.01623.x URL pmid: 21243077 |
[18] |
Comings, D. E., & MacMurray, J. P. (2000). Molecular heterosis: A review. Molecular Genetics and Metabolism, 71(1-2), 19-31. https://doi.org/10.1006/mgme.2000.3015
doi: 10.1006/mgme.2000.3015 URL pmid: 11001792 |
[19] |
Dalton, E. D., Hammen, C. L., Najman, J. M., & Brennan, P. A. (2014). Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms. Journal of Family Psychology, 28(6), 947-956. https://doi.org/10.1037/fam0000032
doi: 10.1037/fam0000032 URL pmid: 25347540 |
[20] |
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10(1), 37-59. https://doi.org/10.1177/1745691614556682
doi: 10.1177/1745691614556682 URL pmid: 25620996 |
[21] |
Dincheva, I., Lynch, N. B., & Lee, F. S. (2016). The role of BDNF in the development of fear learning. Depression and Anxiety, 33(10), 907-916. https://doi.org/10.1002/da.22497
doi: 10.1002/da.22497 URL pmid: 27699937 |
[22] |
Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59(12), 1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
doi: 10.1016/j.biopsych.2006.02.013 URL pmid: 16631126 |
[23] |
Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23(1), 85-99. https://doi.org/10.1017/S0954579410000660
doi: 10.1017/S0954579410000660 URL pmid: 21262041 |
[24] |
González-Castro, T. B., Nicolini, H., Lanzagorta, N., López-Narváez, L., Genis, A., Pool García, S., & Tovilla-Zárate, C. A. (2015). The role of brain-derived neurotrophic factor (BDNF) Val66Met genetic polymorphism in bipolar disorder: A case-control study, comorbidities, and meta-analysis of 16, 786 subjects. Bipolar Disorders, 17(1), 27-38. https://doi.org/10.1111/bdi.12227
doi: 10.1111/bdi.12227 URL pmid: 25041243 |
[25] |
Gottfredson, N. C., Foshee, V. A., Ennett, S. T., Haberstick, B., & Smolen, A. (2015). Genetic heterogeneity in adolescents’ depressive symptoms in response to victimization. Journal of Clinical Child and Adolescent Psychology, 44(5), 762-774. https://doi.org/10.1080/15374416.2014.910787
doi: 10.1080/15374416.2014.910787 URL pmid: 24819687 |
[26] |
Guyer, A. E., Choate, V. R., Pine, D. S., & Nelson, E. E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7(1), 81-92. https://doi.org/10.1093/scan/nsr043
doi: 10.1093/scan/nsr043 URL pmid: 21828112 |
[27] |
Hankin, B. L., Young, J. F., Abela, J. R. Z., Smolen, A., Jenness, J. L., Gulley, L. D., Technow, J. R., Gottlieb, A. B., Cohen, J. R., & Oppenheimer, C. W. (2015). Depression from childhood into late adolescence: Influence of gender, development, genetic susceptibility, and peer stress. Journal of Abnormal Psychology, 124(4), 803-816. https://doi.org/10.1037/abn0000089
doi: 10.1037/abn0000089 URL pmid: 26595469 |
[28] |
Hankin, B. L., Young, J. F., Abela, J. R., Smolen, A., Jenness, J. L., Gulley, L. D., Technow, J. R., Gottlieb, A. B., Cohen, J. R., & Oppenheimer, C. W. (2015). Depression from childhood into late adolescence: Influence of gender, development, genetic susceptibility, and peer stress. Journal of Abnormal Psychology, 124(4), 803-816. https://doi.org/10.1037/abn0000089
doi: 10.1037/abn0000089 URL pmid: 26595469 |
[29] |
Hare, B. D., & Duman, R. S. (2020). Prefrontal cortex circuits in depression and anxiety: Contribution of discrete neuronal populations and target regions. Molecular Psychiatry, 25(11), 2742-2758. https://doi.org/10.1038/s41380-020-0685-9
doi: 10.1038/s41380-020-0685-9 URL |
[30] |
Hilt, L. M., Sander, L. C., Nolen-Hoeksema, S., & Simen, A. A. (2007). The BDNF Val66Met polymorphism predicts rumination and depression differently in young adolescent girls and their mothers. Neuroscience Letters, 429(1), 12-16. https://doi.org/10.1016/j.neulet.2007.09.053
URL pmid: 17959306 |
[31] |
Ho, T. C., & King, L. S. (2021). Mechanisms of neuroplasticity linking early adversity to depression: Developmental considerations. Translational Psychiatry, 11(1), 1-13. https://doi.org/10.1038/s41398-021-01639-6
doi: 10.1038/s41398-020-01158-w URL |
[32] |
Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E., Walker, S. J., Mickey, B. J., Koeppe, R. A., Langenecker, S. A., & Zubieta, J. K. (2015). It still hurts: Altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Molecular Psychiatry, 20(2), 193-200. https://doi.org/10.1038/mp.2014.185
doi: 10.1038/mp.2014.185 URL pmid: 25600108 |
[33] |
Hyde, J. S., & Mezulis, A. H. (2020). Gender differences in depression: Biological, affective, cognitive, and sociocultural factors. Harvard Review of Psychiatry, 28(1), 4-13. https://doi.org/10.1097/HRP.0000000000000230
doi: 10.1097/HRP.0000000000000230 URL pmid: 31913978 |
[34] |
Ivanova, T., & Beyer, C. (2001). Pre- and postnatal expression of brain-derived neurotrophic factor mRNA/protein and tyrosine protein kinase receptor B mRNA in the mouse hippocampus. Neuroscience Letters, 307(1), 21-24. https://doi.org/10.1016/s0304-3940(01)01905-x
URL pmid: 11516565 |
[35] |
Kageyama, I., Yamada, H., Munetsuna, E., Yamazaki, M., Ando, Y., Mizuno, G., Fujii, R., Nouchi, Y., Wakasugi, T., Sakakibara, T., Teshigawara, A., Ishikawa, H., Shimono, Y., Suzuki, K., Hashimoto, S., & Ohashi, K. (2022). Differential effects of excess high-fructose corn syrup on the DNA methylation of hippocampal neurotrophic factor in childhood and adolescence. PloS One, 17(6), e0270144. https://doi.org/10.1371/journal.pone.0270144
doi: 10.1371/journal.pone.0270144 URL |
[36] | Kovacs, M. (1992). Children’s Depression Inventory (CDI) manual. Toronto, Canada: Multi-Health Systems Inc. |
[37] |
Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. (2018). BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology, 38(3), 579-593. https://doi.org/10.1007/s10571-017-0510-4
doi: 10.1007/s10571-017-0510-4 URL pmid: 28623429 |
[38] |
Lerner, R. M. (1978). Nature, nurture, and dynamic interactionism. Human Development, 21(1), 1-20. https://doi.org/10.1159/000271572
doi: 10.1159/000271572 URL |
[39] |
Lim, M. H., Eres, R., & Vasan, S. (2020). Understanding loneliness in the twenty-first century: An update on correlates, risk factors, and potential solutions. Social Psychiatry and Psychiatric Epidemiology, 55(7), 793-810. https://doi.org/10.1007/s00127-020-01889-7
doi: 10.1007/s00127-020-01889-7 URL pmid: 32524169 |
[40] |
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434-445. https://doi.org/10.1038/nrn2639
doi: 10.1038/nrn2639 URL pmid: 19401723 |
[41] |
Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nature Neuroscience, 10(9), 1089-1093. https://doi.org/10.1038/nn1971
doi: 10.1038/nn1971 URL pmid: 17726474 |
[42] |
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22(3), 491-495. https://doi.org/10.1017/S0954579410000222
doi: 10.1017/S0954579410000222 URL pmid: 20576173 |
[43] |
Meyer, A., Hajcak, G., Hayden, E., Sheikh, H. I., Singh, S. M., & Klein, D. N. (2018). A genetic variant brain-derived neurotrophic factor (BDNF) polymorphism interacts with hostile parenting to predict error-related brain activity and thereby risk for internalizing disorders in children. Development and Psychopathology, 30(1), 125-141. https://doi.org/10.1017/S0954579417000517
doi: 10.1017/S0954579417000517 URL pmid: 28427482 |
[44] |
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110(3), 406-425. https://doi.org/10.1037/0033-2909.110.3.406
doi: 10.1037/0033-2909.110.3.406 URL pmid: 1758917 |
[45] |
Nelemans, S. A., Boks, M., Lin, B., Oldehinkel, T., van Lier, P., Branje, S., & Meeus, W. (2021). Polygenic risk for major depression interacts with parental criticism in predicting adolescent depressive symptom development. Journal of Youth and Adolescence, 50(1), 159-176. https://doi.org/10.1007/s10964-020-01353-4
doi: 10.1007/s10964-020-01353-4 URL pmid: 33230654 |
[46] |
Notaras, M., & van den Buuse, M. (2020). Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Molecular Psychiatry, 25(10), 2251-2274. https://doi.org/10.1038/s41380-019-0639-2
doi: 10.1038/s41380-019-0639-2 URL pmid: 31900428 |
[47] |
Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., Poulton, R., Sears, M. R., Thomson, W. M., & Caspi, A. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20(2), 673-716. https://doi.org/10.1017/S0954579408000333
doi: 10.1017/S0954579408000333 URL pmid: 18423100 |
[48] |
O’Donnell, K. J., Glover, V., Holbrook, J.D., & O’Connor, T. G. (2014). Maternal prenatal anxiety and child brain- derived neurotrophic factor (BDNF) genotype: Effects on internalizing symptoms from 4 to 15 years of age. Development and Psychopathology, 26(4pt2), 1255-1266. https://doi.org/10.1017/S095457941400100X
doi: 10.1017/S095457941400100X URL |
[49] |
Petersen, I. T., Bates, J. E., Goodnight, J. A., Dodge, K. A., Lansford, J. E., Pettit, G. S., Latendresse, S. J., & Dick, D. M. (2012). Interaction between serotonin transporter polymorphism (5-HTTLPR) and stressful life events in adolescents’ trajectories of anxious/depressed symptoms. Developmental Psychology, 48(5), 1463-1475. https://doi.org/10.1037/a0027471
doi: 10.1037/a0027471 URL pmid: 22390669 |
[50] |
Pickles, A., Pickering, K., Simonoff, E., Silberg, J., Meyer, J., & Maes, H. (1998). Genetic “clocks” and “soft” events: A twin model for pubertal development and other recalled sequences of developmental milestones, transitions, or ages at onset. Behavior Genetics, 28(4), 243-253. https://doi.org/10.1023/a:1021615228995
URL pmid: 9803017 |
[51] |
Platt, B., Kadosh, K. C., & Lau, J. Y. (2013). The role of peer rejection in adolescent depression. Depression and Anxiety, 30(9), 809-821. https://doi.org/10.1002/da.22120
doi: 10.1002/da.22120 URL pmid: 23596129 |
[52] |
Pluess, M. (2015). Individual differences in environmental sensitivity. Child Development Perspectives, 9(3), 138-143. https://doi.org/10.1111/cdep.12120
doi: 10.1111/cdep.2015.9.issue-3 URL |
[53] |
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139(4), 901-916. https://doi.org/10.1037/a0030196
doi: 10.1037/a0030196 URL pmid: 23025924 |
[54] |
Rudolph, K. D., Hammen, C., Burge, D., Lindberg, N., Herzberg, D., & Daley, S. E. (2000). Toward an interpersonal life-stress model of depression: The developmental context of stress generation. Development and Psychopathology, 12(2), 215-234. https://doi.org/10.1017/S0954579400002066
URL pmid: 10847625 |
[55] |
Scourfield, J., Rice, F., Thapar, A., Harold, G. T., Martin, N., & McGuffin, P. (2003). Depressive symptoms in children and adolescents: Changing aetiological influences with development. Journal of Child Psychology and Psychiatry, 44(7), 968-976. https://doi.org/10.1111/1469-7610.00181
URL pmid: 14531579 |
[56] |
Shapiro, L. P., Parsons, R. G., Koleske, A. J., & Gourley, S. L. (2017). Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. Journal of Neuroscience Research, 95(5), 1123-1143. https://doi.org/10.1002/jnr.23960
doi: 10.1002/jnr.23960 URL pmid: 27735056 |
[57] |
Silk, J. S., Stroud, L. R., Siegle, G. J., Dahl, R. E., Lee, K. H., & Nelson, E. E. (2012). Peer acceptance and rejection through the eyes of youth: Pupillary, eyetracking and ecological data from the chatroom interact task. Social Cognitive and Affective Neuroscience, 7(1), 93-105. https://doi.org/10.1093/scan/nsr044
doi: 10.1093/scan/nsr044 URL pmid: 21775386 |
[58] | Steinberg, L. (2022). Adolescence (13th ed.). New York: McGraw-Hill. |
[59] |
Subramaniam, P., Rogowska, J., DiMuzio, J., Lopez-Larson, M., McGlade, E., & Yurgelun-Todd, D. (2018). Orbitofrontal connectivity is associated with depression and anxiety in marijuana-using adolescents. Journal of Affective Disorders, 239, 234-241. https://doi.org/10.1016/j.jad.2018.07.002
doi: S0165-0327(18)30055-7 URL pmid: 30025312 |
[60] |
Suri, D., Veenit, V., Sarkar, A., Thiagarajan, D., Kumar, A., Nestler, E. J., Galande, S., & Vaidya, V. A. (2013). Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biological Psychiatry, 73(7), 658-666. https://doi.org/10.1016/j.biopsych.2012.10.023
doi: 10.1016/j.biopsych.2012.10.023 URL pmid: 23237316 |
[61] |
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., Axelson, D., Whalen, P. J., & Casey, B. J. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58(11), 1057-1063. https://doi.org/10.1001/archpsyc.58.11.1057
URL pmid: 11695953 |
[62] |
Torregrossa, M. M., Isgor, C., Folk, J. E., Rice, K. C., Watson, S. J., & Woods, J. H. (2004). The delta-opioid receptor agonist (+) BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology, 29(4), 649-659. https://doi.org/10.1038/sj.npp.1300345
URL pmid: 14647482 |
[63] |
Tsai, S. J. (2018). Critical issues in BDNF Val66Met genetic studies of neuropsychiatric disorders. Frontiers in Molecular Neuroscience, 11, 156. https://doi.org/10.3389/fnmol.2018.00156
doi: 10.3389/fnmol.2018.00156 URL |
[64] | Tsai, S. J., Cheng, C. Y., Yu, Y. W. Y., Chen, T. J., & Hong, C. J. (2003). Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 123(1), 19-22. https://doi.org/10.1002/ajmg.b.20026 |
[65] |
van Roekel, E., Goossens, L., Scholte, R. H., Engels, R. C., & Verhagen, M. (2011). The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness: Longitudinal evidence for gene-environment interactions. Journal of Child Psychology and Psychiatry, 52(10), 1044-1051. https://doi.org/10.1111/j.1469-7610.2011.02424.x
doi: 10.1111/jcpp.2011.52.issue-10 URL |
[66] | Verhagen, M., van Roekel, E., & Engels, R. C. (2014). Involvement of the BDNF gene in loneliness in adolescence: A report of opposite gene effects in boys and girls. PloS One, 9(3), e92768. https://doi.org/10.1371/journal.pone.0092768 |
[67] |
Webster, M. J., Weickert, C. S., Herman, M. M., & Kleinman, J. E. (2002). BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Developmental Brain Research, 139(2), 139-150. https://doi.org/10.1016/s0165-3806(02)00540-0
URL pmid: 12480128 |
[68] |
Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., Stallings, M. C., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17(4), 615-622. https://doi.org/10.1037/a0030003
doi: 10.1037/a0030003 URL pmid: 22984788 |
[69] |
Yoshida, K., Higuchi, H., Kamata, M., Takahashi, H., Inoue, K., Suzuki, T., Itoh, K., & Ozaki, N. (2007). The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. Journal of Psychopharmacology, 21(6), 650-656. https://doi.org/10.1177/0269881106072192
doi: 10.1177/0269881106072192 URL pmid: 17092970 |
[70] |
Zhang, W., Cao, Y., Wang, M., Ji, L., Chen, L., & Deater- Deckard, K. (2015). The dopamine D2 receptor polymorphism (DRD2 TaqIA) interacts with maternal parenting in predicting early adolescent depressive symptoms: Evidence of differential susceptibility and age differences. Journal of Youth and Adolescence, 44(7), 1428-1440. https://doi.org/10.1007/s10964-015-0297-x
doi: 10.1007/s10964-015-0297-x URL pmid: 25941120 |
[71] |
Zhang, W., Li, X., Chen, G., & Cao, Y. (2021). The relationship between positive parenting and adolescent prosocial behaviour: The mediating role of empathy and the moderating role of the oxytocin receptor gene. Acta Psychologica Sinica, 53(9), 976-991.
doi: 10.3724/SP.J.1041.2021.00976 |
[张文新, 李曦, 陈光辉, 曹衍淼. (2021). 母亲积极教养与青少年亲社会行为: 共情的中介作用与OXTR基因的调节作用. 心理学报, 53(9), 976-991.]
doi: 10.3724/SP.J.1041.2021.00976 |
[1] | 张萱, 刘萍萍. 熟悉度促进人们与垃圾分类中的志愿者合作及其作用机制[J]. 心理学报, 2023, 55(8): 1358-1371. |
[2] | 程亚华, 冯瑶, 李宜逊, 马嘉琪, 沈岚岚, 张文建, 伍新春, 冯秋迪. 小学儿童口语词汇知识的发展轨迹及其对阅读能力的预测:一个潜变量增长模型[J]. 心理学报, 2023, 55(7): 1074-1086. |
[3] | 徐冉, 张宝山, 林瑶. 家人情感卷入对老年自我刻板印象的影响:基于潜变量增长模型的分析[J]. 心理学报, 2021, 53(11): 1215-1227. |
[4] | 田相娟, 曹衍淼, 张文新. 母亲消极教养、同伴侵害与FKBP5基因对青少年抑郁的影响[J]. 心理学报, 2020, 52(12): 1407-1420. |
[5] | 曹衍淼, 张文新. 多巴胺系统基因与母亲教养行为对青少年抑郁的影响:一项多基因研究 *[J]. 心理学报, 2019, 51(10): 1102-1115. |
[6] | 张明亮, 司继伟, 杨伟星, 邢淑芬, 李红霞, 张佳佳. BDNF基因rs6265多态性与父母教育卷入对小学儿童基本数学能力的交互作用 *[J]. 心理学报, 2018, 50(9): 1007-1017. |
[7] | 程亚华, 伍新春, 刘红云, 李虹. 小学低年级儿童口语词汇知识的发展轨迹及其影响因素[J]. 心理学报, 2018, 50(2): 206-215. |
[8] | 张杉杉;陈楠;刘红云. LGM模型中缺失数据处理方法的比较: ML方法与Diggle-Kenward选择模型[J]. 心理学报, 2017, 49(5): 699-710. |
[9] | 肖红蕊;黄一帆;龚先旻;王大华. 简化的联合再认范式中情绪对错误记忆影响的年龄差异[J]. 心理学报, 2015, 47(1): 19-28. |
[10] | 刘俊升;周颖;李丹. 童年中晚期孤独感的发展轨迹:一项潜变量增长模型分析[J]. 心理学报, 2013, 45(2): 179-192. |
[11] | 纪林芹;魏星;陈亮;张文新. 童年晚期同伴关系不利与儿童的攻击行为:自我概念与同伴信念的中介作用[J]. 心理学报, 2012, 44(11): 1479-1489. |
[12] | 张晓. 童年早期社会能力的发展:一个潜变量增长模型[J]. 心理学报, 2011, 43(12): 1388-1397. |
[13] | 陈思佚,周仁来. 前瞻记忆的年老化效应:前瞻成分和回溯成分的调节作用[J]. 心理学报, 2010, 42(06): 640-650. |
[14] | 王青,焦书兰,杨玉芳. 基于事件的前瞻性记忆的年老化[J]. 心理学报, 2003, 35(04): 476-482. |
[15] | 陈天勇,韩布新,王金凤. 工作记忆中央执行功能的特异性和可分离性[J]. 心理学报, 2002, 34(06): 21-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||