心理学报 ›› 2023, Vol. 55 ›› Issue (5): 685-695.doi: 10.3724/SP.J.1041.2023.00685
收稿日期:
2021-10-18
发布日期:
2023-02-14
出版日期:
2023-05-25
通讯作者:
王小娟, E-mail: wangxj@snnu.edu.cn;杨剑峰, E-mail: yangjf@snnu.edu.cn
基金资助:
CHEN Fakun, CHEN Tian, CAI Wenqi, WANG Xiaojuan(), YANG Jianfeng()
Received:
2021-10-18
Online:
2023-02-14
Published:
2023-05-25
摘要:
左侧额中回(MFG)是汉字阅读脑机制研究发现的一个典型脑区, 它表现出在汉字阅读中的特异激活, 一种普遍的解释认为其负责了汉字独特的视觉空间加工。但是, 该解释没有得到直接的证据支持。本研究操纵汉字材料的视觉呈现空间频率, 使用功能性近红外光谱成像(fNIRS)技术对此问题进行探讨。通过构建3 (字类型:真字、假字和非字) × 3 (空间频率:完整频谱、低空间频率和高空间频率)的重复测量实验设计, 记录被试在完成重复刺激检测的one-back任务时MFG的血氧浓度变化。结果发现左侧MFG表现出显著的字类型主效应, 即假字比真字和非字需要更多MFG的激活; 而且, 左侧MFG还表现出显著的字类型与空间频率的交互作用, 即在低空间频率条件下假字比真字和非字具有更强的MFG激活, 而在另两种频率条件下并没有发现字类型的显著激活差异。结果表明左侧MFG的确对汉字的空间信息敏感, 尤其是在需要更多字形/正字法加工的假字条件下以及对低空间频率信息的加工上都需要更多MFG的激活。研究结果为左侧MFG参与汉字正字法信息的视觉空间加工提供了直接的证据。
中图分类号:
陈发坤, 陈甜, 蔡文琦, 王小娟, 杨剑峰. (2023). 左侧额中回参与汉字视觉空间分析的fNIRS证据. 心理学报, 55(5), 685-695.
CHEN Fakun, CHEN Tian, CAI Wenqi, WANG Xiaojuan, YANG Jianfeng. (2023). fNIRS evidence for left middle frontal gyrus involved in visual-spatial analysis of Chinese characters. Acta Psychologica Sinica, 55(5), 685-695.
效应类型 | 正确率 | 反应时 | ||||
---|---|---|---|---|---|---|
F | p | η2 p | F | p | η2 p | |
字类型 | F (2, 54) = 12.88 | 0.001 | 0.323 | F (2, 54) = 7.02 | 0.002 | 0.206 |
空间频率 | F (2, 54) = 0.04 | 0.964 | 0.001 | F (2, 54) = 1.00 | 0.373 | 0.036 |
交互作用 | F (4, 108) = 3.72 | 0.007 | 0.121 | F (4, 108) = 0.98 | 0.419 | 0.035 |
表1 字类型和空间频率主效应及交互作用的正确率和反应时结果
效应类型 | 正确率 | 反应时 | ||||
---|---|---|---|---|---|---|
F | p | η2 p | F | p | η2 p | |
字类型 | F (2, 54) = 12.88 | 0.001 | 0.323 | F (2, 54) = 7.02 | 0.002 | 0.206 |
空间频率 | F (2, 54) = 0.04 | 0.964 | 0.001 | F (2, 54) = 1.00 | 0.373 | 0.036 |
交互作用 | F (4, 108) = 3.72 | 0.007 | 0.121 | F (4, 108) = 0.98 | 0.419 | 0.035 |
条件 | 通道10(额中回) | 通道13(额中回) | ||||
---|---|---|---|---|---|---|
t(27) | p | Cohen d | t(27) | p | Cohen d | |
完整 | ||||||
真−假字 | −2.23 | 0.034 | 0.42 | −1.16 | 0.255 | 0.22 |
真−非字 | −0.37 | 0.712 | 0.07 | 1.12 | 0.275 | 0.21 |
假−非字 | 1.80 | 0.083 | 0.35 | 2.33 | 0.027 | 0.44 |
低频 | ||||||
真−假字 | −3.17 | 0.004 | 0.60 | −2.30 | 0.030 | 0.44 |
真−非字 | −1.41 | 0.169 | 0.27 | 0.03 | 0.978 | 0.01 |
假−非字 | 2.46 | 0.020 | 0.47 | 3.70 | 0.001 | 0.70 |
高频 | ||||||
真−假字 | 0.92 | 0.365 | 0.18 | 1.54 | 0.134 | 0.29 |
真−非字 | −0.79 | 0.436 | 0.15 | 0.07 | 0.942 | 0.01 |
假−非字 | −1.13 | 0.268 | 0.21 | −0.64 | 0.528 | 0.12 |
表2 额中回通道(10和13)不同空间频率下真字、假字和非字的两两对比结果
条件 | 通道10(额中回) | 通道13(额中回) | ||||
---|---|---|---|---|---|---|
t(27) | p | Cohen d | t(27) | p | Cohen d | |
完整 | ||||||
真−假字 | −2.23 | 0.034 | 0.42 | −1.16 | 0.255 | 0.22 |
真−非字 | −0.37 | 0.712 | 0.07 | 1.12 | 0.275 | 0.21 |
假−非字 | 1.80 | 0.083 | 0.35 | 2.33 | 0.027 | 0.44 |
低频 | ||||||
真−假字 | −3.17 | 0.004 | 0.60 | −2.30 | 0.030 | 0.44 |
真−非字 | −1.41 | 0.169 | 0.27 | 0.03 | 0.978 | 0.01 |
假−非字 | 2.46 | 0.020 | 0.47 | 3.70 | 0.001 | 0.70 |
高频 | ||||||
真−假字 | 0.92 | 0.365 | 0.18 | 1.54 | 0.134 | 0.29 |
真−非字 | −0.79 | 0.436 | 0.15 | 0.07 | 0.942 | 0.01 |
假−非字 | −1.13 | 0.268 | 0.21 | −0.64 | 0.528 | 0.12 |
通道 | 字类型 | 交互作用 | ||||
---|---|---|---|---|---|---|
F(2, 54) | p | η2 p | F(4, 108) | p | η2 p | |
8 (中央前回) | 3.23 | 0.047 | 0.107 | / | / | / |
23 (额上回) | 4.15 | 0.021 | 0.133 | / | / | / |
18 (中央后回) | 4.09 | 0.022 | 0.131 | / | / | / |
41 (枕中回) | / | / | / | 2.73 | 0.033 | 0.092 |
附表1 主效应和交互作用显著的非MFG通道
通道 | 字类型 | 交互作用 | ||||
---|---|---|---|---|---|---|
F(2, 54) | p | η2 p | F(4, 108) | p | η2 p | |
8 (中央前回) | 3.23 | 0.047 | 0.107 | / | / | / |
23 (额上回) | 4.15 | 0.021 | 0.133 | / | / | / |
18 (中央后回) | 4.09 | 0.022 | 0.131 | / | / | / |
41 (枕中回) | / | / | / | 2.73 | 0.033 | 0.092 |
通道 | 真字 vs. 假字 | 真字 vs. 非字 | 假字 vs. 非字 | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
8 (中央前回) | −2.63 | 0.014 | 0.81 | −0.70 | 0.493 | 0.21 | 1.75 | 0.091 | 0.57 |
23 (额上回) | −2.96 | 0.006 | 0.70 | −1.07 | 0.296 | 0.25 | 1.72 | 0.097 | 0.47 |
18 (中央后回) | −1.20 | 0.242 | 0.29 | −2.50 | 0.019 | 0.64 | −1.68 | 0.105 | 0.43 |
附表2 非额中回通道字类型主效应下的多重比较结果
通道 | 真字 vs. 假字 | 真字 vs. 非字 | 假字 vs. 非字 | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
8 (中央前回) | −2.63 | 0.014 | 0.81 | −0.70 | 0.493 | 0.21 | 1.75 | 0.091 | 0.57 |
23 (额上回) | −2.96 | 0.006 | 0.70 | −1.07 | 0.296 | 0.25 | 1.72 | 0.097 | 0.47 |
18 (中央后回) | −1.20 | 0.242 | 0.29 | −2.50 | 0.019 | 0.64 | −1.68 | 0.105 | 0.43 |
条件 | 真字 vs. 假字 | 真字 vs. 非字 | 假字 vs. 非字 | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
完整 | −2.66 | 0.013 | 0.50 | −0.10 | 0.919 | −0.02 | 2.03 | 0.052 | 0.38 |
低频 | −2.60 | 0.015 | 0.49 | −2.06 | 0.049 | −0.39 | 1.11 | 0.279 | 0.21 |
高频 | 0.77 | 0.447 | 0.15 | −0.52 | 0.608 | −0.10 | −1.14 | 0.264 | 0.22 |
附表3 枕中回(通道41)不同空间频率下真字、假字和非字的两两比较结果
条件 | 真字 vs. 假字 | 真字 vs. 非字 | 假字 vs. 非字 | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
完整 | −2.66 | 0.013 | 0.50 | −0.10 | 0.919 | −0.02 | 2.03 | 0.052 | 0.38 |
低频 | −2.60 | 0.015 | 0.49 | −2.06 | 0.049 | −0.39 | 1.11 | 0.279 | 0.21 |
高频 | 0.77 | 0.447 | 0.15 | −0.52 | 0.608 | −0.10 | −1.14 | 0.264 | 0.22 |
[1] |
Allen, P. A., Smith, A. F., Lien, M.-C., Kaut, K. P., & Canfield, A. (2009). A multistream model of visual word recognition. Attention Perception & Psychophysics, 71(2), 281-296.
doi: 10.3758/APP.71.2.281 URL |
[2] |
Ashtiani, M. N., Kheradpisheh, S. R., Masquelier, T., & Ganjtabesh, M. (2017). Object categorization in finer levels relies more on higher spatial frequencies and takes longer. Frontiers in Psychology, 8, 1261.
doi: 10.3389/fpsyg.2017.01261 pmid: 28790954 |
[3] | Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., ... Cooper, R. J. (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage, 85(Pt. 1), 181-191. |
[4] |
Calderone, D. J., Hoptman, M. J., Martinez, A., Nair-Collins, S., Mauro, C. J., Bar, M., ... Butler, P. D. (2013). Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex, 23(8), 1849-1858.
doi: 10.1093/cercor/bhs169 URL |
[5] | Cao, F., & Perfetti, C. A. (2016). Neural signatures of the reading-writing connection: Greater involvement of writing in Chinese reading than English reading. Plos One, 11(12), e0168414. |
[6] |
Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage, 54(4), 2808-2821.
doi: 10.1016/j.neuroimage.2010.10.069 pmid: 21047559 |
[7] |
Defenderfer, J., Kerr-German, A., Hedrick, M., & Buss, A. T. (2017). Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: An event-related fNIRS study. Neuropsychologia, 106, 31-41.
doi: S0028-3932(17)30330-5 pmid: 28888891 |
[8] | Feng, X. X., Altarelli, I., Monzalvo, K., Ding, G. S., Ramus, F., Shu, H., ... Dehaene-Lambertz, G. (2020). A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife, 9, e54591. |
[9] |
Fiset, D., Blais, C., Ethier-Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008). Features for identification of uppercase and lowercase letters. Psychological Science, 19(11), 1161-1168.
doi: 10.1111/j.1467-9280.2008.02218.x pmid: 19076489 |
[10] | Guo, X. C. (1999). Effects of spatial frequency, strokes and word frequency on Chinese character recognition. Chinese Journal of Ergonomics, 5(4), 5-11. |
[郭小朝. (1999). 空间频率、笔画数及字频对汉字识别的影响. 人类工效学, 5(4), 5-11.] | |
[11] |
Horie, S., Yamasaki, T., Okamoto, T., Kan, S., Ogata, K., Miyauchi, S., & Tobimatsu, S. (2012). Distinct role of spatial frequency in dissociative reading of ideograms and phonograms: An fMRI study. Neuroimage, 63(2), 979-988.
doi: 10.1016/j.neuroimage.2012.03.046 pmid: 22480729 |
[12] |
Horie, S., Yamasaki, T., Okamoto, T., Nakashima, T., Ogata, K., & Tobimatsu, S. (2012). Differential roles of spatial frequency on reading processes for ideograms and phonograms: A high-density ERP study. Neuroscience Research, 72(1), 68-78.
doi: 10.1016/j.neures.2011.10.003 pmid: 22020307 |
[13] | Huppert, T. J., Franceschini, M. A., Diamond, S. G., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280-D298. |
[14] |
Jordan, T. R., Dixon, J., McGowan, V. A., Kurtev, S., & Paterson, K. B. (2016). Fast and slow readers and the effectiveness of the spatial frequency content of text: Evidence from reading times and eye movements. Journal of Experimental Psychology. Human Perception and Performance, 42(8), 1066-1071.
doi: 10.1037/xhp0000234 URL |
[15] |
Kuo, W. J., Yeh, T. C., Lee, J. R., Chen, L. F., Lee, P. L., Chen, S. S., ... Hsieh, J. C. (2004). Orthographic and phonological processing of Chinese characters: An fMRI study. Neuroimage, 21(4), 1721-1731.
doi: 10.1016/j.neuroimage.2003.12.007 URL |
[16] |
Kveraga, K., Boshyan, J., & Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience, 27(48), 13232-13240.
doi: 10.1523/JNEUROSCI.3481-07.2007 pmid: 18045917 |
[17] |
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13336-13341.
doi: 10.1073/pnas.162486399 pmid: 12244209 |
[18] |
Kwon, M., & Legge, G. E. (2012). Spatial-frequency requirements for reading revisited. Vision Research, 62, 139-147.
doi: 10.1016/j.visres.2012.03.025 pmid: 22521659 |
[19] |
Leonova, A., Pokorny, J., & Smith, V. C. (2003). Spatial frequency processing in inferred PC- and MC-pathways. Vision Research, 43(20), 2133-2139.
pmid: 12855249 |
[20] |
Liu, C., Zhang, W. T., Tang, Y. Y., Mai, X. Q., Chen, H.-C., Tardif, T., & Luo, Y. J. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage, 40(3), 1350-1361.
doi: 10.1016/j.neuroimage.2007.10.014 pmid: 18272399 |
[21] |
Liu, J. Q., Zhang, R. Q., Geng, B. B., Zhang, T. Y., Yuan, D., Otani, S., & Li, X. (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage, 193, 93-102.
doi: S1053-8119(19)30171-5 pmid: 30851445 |
[22] |
Liu, Y., Dunlap, S., Fiez, J., & Perfettil, C. A. (2007). Evidence for neural accommodation to a writing system following learning. Human Brain Mapping, 28(11), 1223-1234.
doi: 10.1002/hbm.20356 pmid: 17274024 |
[23] |
Mercure, E., Dick, F., Halit, H., Kaufman, J., & Johnson, M. H. (2008). Differential lateralization for words and faces: Category or psychophysics? Journal of Cognitive Neuroscience, 20(11), 2070-2087.
doi: 10.1162/jocn.2008.20137 pmid: 18416685 |
[24] |
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59.
doi: 10.1002/hbm.20131 pmid: 15846822 |
[25] |
Perfetti, C., Cao, F., & Booth, J. (2013). Specialization and universals in the development of reading skill: How Chinese research informs a universal science of reading. Scientific Studies of Reading, 17(1), 5-21.
doi: 10.1080/10888438.2012.689786 pmid: 24744605 |
[26] |
Perfetti, C. A., Liu, Y., Fiez, J., Nelson, J., Bolger, D. J., & Tan, L. H. (2007). Reading in two writing systems: Accommodation and assimilation of the brain's reading network. Bilingualism: Language and Cognition, 10(2), 131-146.
doi: 10.1017/S1366728907002891 URL |
[27] |
Perfetti, C. A., Liu, Y., & Tan, L. H. (2005). The lexical constituency model: Some implications of research on Chinese for general theories of reading. Psychological Review, 112(1), 43-59.
pmid: 15631587 |
[28] |
Petras, K., Ten Oever, S., Jacobs, C., & Goffaux, V. (2019). Coarse-to-fine information integration in human vision. Neuroimage, 186, 103-112.
doi: S1053-8119(18)32070-6 pmid: 30403971 |
[29] |
Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., ... Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes a combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768-2780.
doi: 10.1162/jocn.2010.21424 URL |
[30] | Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5-29. |
[31] |
Roberts, D. J., Woollams, A. M., Kim, E., Beeson, P. M., Rapcsak, S. Z., & Ralph, M. A. L. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage. Cerebral Cortex, 23(11), 2568-2580.
doi: 10.1093/cercor/bhs224 URL |
[32] | Sato, H., Kiguchi, M., Maki, A., Fuchino, Y., Obata, A., Yoro, T., & Koizumi, H. (2006). Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months. Journal of Biomedical Optics, 11(1), 014021. |
[33] |
Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5561-5566.
doi: 10.1073/pnas.0801750105 pmid: 18391194 |
[34] |
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431(7004), 71-76.
doi: 10.1038/nature02865 |
[35] |
Stoeckel, M. C., & Binkofski, F. (2010). The role of ipsilateral primary motor cortex in movement control and recovery from brain damage. Experimental Neurology, 221(1), 13-17.
doi: 10.1016/j.expneurol.2009.10.021 pmid: 19896482 |
[36] |
Sun, Y. F., Yang, Y. H., Desroches, A. S., Liu, L., & Peng, D. L. (2011). The role of the ventral and dorsal pathways in reading Chinese characters and English words. Brain and Language, 119(2), 80-88.
doi: 10.1016/j.bandl.2011.03.012 pmid: 21546073 |
[37] |
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91.
pmid: 15846817 |
[38] |
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5), 836-846.
doi: 10.1006/nimg.2001.0749 pmid: 11304080 |
[39] |
Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J. H., ... Gao, J. H. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18(3), 158-166.
pmid: 12599273 |
[40] |
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J. H., ... Fox, P. T. (2000). Brain activation in the processing of Chinese characters and words: A functional MRI study. Human Brain Mapping, 10(1), 16-27.
pmid: 10843515 |
[41] | Tian, F. H., Lin, Z.-J., & Liu, H. L. (2013). EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 8578, 85782J. |
[42] |
Wang, H., & Legge, G. E. (2018). Comparing the minimum spatial-frequency content for recognizing Chinese and alphabet characters. Journal of Vision, 18(1), 1-13.
doi: 10.1167/18.1.1 pmid: 29297056 |
[43] |
Wang, X., Yang, J., Shu, H., & Zevin, J. D. (2011). Left fusiform BOLD responses are inversely related to word-likeness in a one-back task. Neuroimage, 55(3), 1346-1356.
doi: 10.1016/j.neuroimage.2010.12.062 pmid: 21216293 |
[44] |
Winsler, K., Holcomb, P. J., Midgley, K. J., & Grainger, J. (2017). Evidence for separate contributions of high and low spatial frequencies during visual word recognition. Frontiers in Human Neuroscience, 11, 324.
doi: 10.3389/fnhum.2017.00324 pmid: 28690505 |
[45] |
Woodhead, Z. V., Wise, R. J., Sereno, M., & Leech, R. (2011). Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus. Cerebral Cortex, 21(10), 2307-2312.
doi: 10.1093/cercor/bhr008 URL |
[46] |
Wu, C.-Y., Ho, M.-H. R., & Chen, S.-H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63(1), 381-391.
doi: 10.1016/j.neuroimage.2012.06.047 URL |
[47] |
Yang, J. F., Wang, X. J., Shu, H., & Zevin, J. D. (2011). Brain networks associated with sublexical properties of Chinese characters. Brain and Language, 119(2), 68-79.
doi: 10.1016/j.bandl.2011.03.004 pmid: 21600637 |
[48] |
Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447.
doi: 10.1016/j.neuroimage.2008.08.036 pmid: 18848897 |
[49] | Zhao, J., Bi, H. Y., & Qian, Y. (2013). The influence of visual magnocellular pathway on the recognition of Chinese character. Progress in Biochemistry and Biophysics, 40(2), 141-146. |
[赵婧, 毕鸿燕, 钱怡. (2013). 视觉大细胞通路对汉字识别的影响. 生物化学与生物物理进展, 40(2), 141-146.] | |
[50] |
Zhao, J., Qian, Y., Bi, H. Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068.
doi: 10.1038/srep07068 pmid: 25412386 |
[51] |
Zhao, R., Fan, R., Liu, M. X., Wang, X. J., & Yang, J. F. (2017). Rethinking the function of brain regions for reading Chinese characters in a meta-analysis of fMRI studies. Journal of Neurolinguistics, 44, 120-133.
doi: 10.1016/j.jneuroling.2017.04.001 URL |
[1] | 孙雨生;张智君;吴彬星. 上下文预期在快速场景识别中的作用[J]. 心理学报, 2017, 49(5): 577-589. |
[2] | 白学军;张琪涵;章鹏;周菘;刘颖;宋星;彭国慧. 基于fNIRS的运动执行与运动想象脑激活模式比较[J]. 心理学报, 2016, 48(5): 495-508. |
[3] | 杨亚平;徐强;张林;邓培状;梁宁建. 场景的不同空间频率信息对面部表情加工的影响:来自ERP的证据[J]. 心理学报, 2015, 47(12): 1433-1444. |
[4] | 汪亚珉,王志贤,黄雅梅,蒋静,丁锦红. 空间频率信息对面孔身份与表情识别的影响[J]. 心理学报, 2011, 43(04): 373-383. |
[5] | 杨剑峰,舒华. 汉字阅读的联结主义模型[J]. 心理学报, 2008, 40(05): 516-522. |
[6] | 孟祥芝,周晓林,曾飚,孔瑞芬,庄捷. 动态视觉加工与儿童汉字阅读[J]. 心理学报, 2002, 34(01): 17-23. |
[7] | 蔡厚德. 阿拉伯数字与汉字大写数字认知的大脑功能一侧化实验研究[J]. 心理学报, 1996, 28(2): 209-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||