心理学报 ›› 2023, Vol. 55 ›› Issue (5): 696-710.doi: 10.3724/SP.J.1041.2023.00696
收稿日期:
2022-06-08
发布日期:
2023-02-14
出版日期:
2023-05-25
通讯作者:
赵鑫, E-mail: psyzhaoxin@nwnu.edu.cn
基金资助:
ZHU Xiaoliang1,2, ZHAO Xin1,2()
Received:
2022-06-08
Online:
2023-02-14
Published:
2023-05-25
摘要:
选取812名三~六年级的儿童, 采用相关分析和结构方程模型等方法考察了各执行功能成分在不同年级儿童三种数学能力中的作用。结果显示, 在低年级阶段, 工作记忆广度是数学运算能力、空间想象能力和逻辑思维能力最重要的预测因素; 在高年级阶段, 工作记忆广度对三种数学能力的预测作用下降, 而工作记忆刷新和认知灵活性对数学能力的预测作用提升。这表明, 各执行功能成分对不同数学能力的预测作用存在差异, 并将随儿童年级的增长而发生变化。
中图分类号:
祝孝亮, 赵鑫. (2023). 执行功能在不同年级儿童数学能力中的作用. 心理学报, 55(5), 696-710.
ZHU Xiaoliang, ZHAO Xin. (2023). Role of executive function in mathematical ability of children in different grades. Acta Psychologica Sinica, 55(5), 696-710.
年级 | 总计 | 男 | 女 | 年龄(M ± SD, 岁) |
---|---|---|---|---|
三年级 | 183 | 82 | 101 | 8.90 ± 0.50 |
四年级 | 202 | 92 | 110 | 9.84 ± 0.41 |
五年级 | 210 | 104 | 106 | 10.90 ± 0.40 |
六年级 | 217 | 112 | 105 | 11.94 ± 0.50 |
总计 | 812 | 390 | 422 | 10.46 ± 1.22 |
表1 被试人口学变量
年级 | 总计 | 男 | 女 | 年龄(M ± SD, 岁) |
---|---|---|---|---|
三年级 | 183 | 82 | 101 | 8.90 ± 0.50 |
四年级 | 202 | 92 | 110 | 9.84 ± 0.41 |
五年级 | 210 | 104 | 106 | 10.90 ± 0.40 |
六年级 | 217 | 112 | 105 | 11.94 ± 0.50 |
总计 | 812 | 390 | 422 | 10.46 ± 1.22 |
测验 | 三年级 (n = 183) | 四年级 (n = 202) | 五年级 (n = 210) | 六年级 (n = 217) | F(3, 808) | ηp2 | 事后比较 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | ||||
运算 | |||||||||||
加法 | 18.51 | 3.61 | 19.37 | 3.72 | 21.34 | 3.80 | 22.97 | 3.98 | 56.67*** | 0.17 | 六>五>四>三 |
减法 | 17.25 | 3.92 | 17.53 | 4.43 | 19.55 | 4.57 | 20.95 | 4.55 | 32.47*** | 0.11 | 六>五>四=三 |
逻辑思维 | |||||||||||
续写数字 | 11.20 | 3.31 | 11.35 | 3.35 | 12.28 | 2.91 | 12.47 | 3.28 | 7.92*** | 0.03 | 六=五>四=三 |
目测长度 | 7.21 | 4.50 | 9.67 | 5.69 | 12.03 | 5.22 | 13.65 | 6.91 | 54.09*** | 0.15 | 六>五>四>三 |
空间想象 | |||||||||||
方块计数 | 14.13 | 3.65 | 15.52 | 4.31 | 17.11 | 4.62 | 19.23 | 4.81 | 52.72*** | 0.16 | 六>五>四>三 |
干扰抑制 | |||||||||||
Stroop干扰效应(ms) | −0.82 | 73.73 | 19.37 | 69.70 | 10.47 | 69.44 | 7.84 | 63.95 | 2.79* | 0.01 | 四>三 |
反应抑制 | |||||||||||
NOGO正确率 | 0.76 | 0.13 | 0.79 | 0.12 | 0.81 | 0.10 | 0.79 | 0.15 | 5.55** | 0.02 | 六=五=四>三 |
工作记忆刷新 | |||||||||||
简单刷新正确率 | 0.57 | 0.24 | 0.64 | 0.18 | 0.71 | 0.18 | 0.74 | 0.17 | 26.54*** | 0.10 | 六=五>四>三 |
困难刷新正确率 | 0.61 | 0.24 | 0.69 | 0.19 | 0.74 | 0.18 | 0.77 | 0.17 | 22.00*** | 0.09 | 六=五>四>三 |
工作记忆广度 | |||||||||||
正背广度 | 5.74 | 1.35 | 6.22 | 1.31 | 6.79 | 1.24 | 6.72 | 1.71 | 25.15*** | 0.08 | 六=五>四>三 |
倒背广度 | 4.16 | 0.89 | 4.74 | 1.18 | 5.09 | 1.36 | 5.46 | 1.40 | 49.52*** | 0.13 | 六>五>四>三 |
认知灵活性 | |||||||||||
转换代价(ms) | 145.33 | 195.95 | 235.31 | 216.08 | 235.61 | 222.96 | 312.45 | 247.51 | 19.36*** | 0.07 | 六>五=四>三 |
表2 不同年级执行功能、数学能力各任务的平均值和标准差及方差分析结果
测验 | 三年级 (n = 183) | 四年级 (n = 202) | 五年级 (n = 210) | 六年级 (n = 217) | F(3, 808) | ηp2 | 事后比较 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | ||||
运算 | |||||||||||
加法 | 18.51 | 3.61 | 19.37 | 3.72 | 21.34 | 3.80 | 22.97 | 3.98 | 56.67*** | 0.17 | 六>五>四>三 |
减法 | 17.25 | 3.92 | 17.53 | 4.43 | 19.55 | 4.57 | 20.95 | 4.55 | 32.47*** | 0.11 | 六>五>四=三 |
逻辑思维 | |||||||||||
续写数字 | 11.20 | 3.31 | 11.35 | 3.35 | 12.28 | 2.91 | 12.47 | 3.28 | 7.92*** | 0.03 | 六=五>四=三 |
目测长度 | 7.21 | 4.50 | 9.67 | 5.69 | 12.03 | 5.22 | 13.65 | 6.91 | 54.09*** | 0.15 | 六>五>四>三 |
空间想象 | |||||||||||
方块计数 | 14.13 | 3.65 | 15.52 | 4.31 | 17.11 | 4.62 | 19.23 | 4.81 | 52.72*** | 0.16 | 六>五>四>三 |
干扰抑制 | |||||||||||
Stroop干扰效应(ms) | −0.82 | 73.73 | 19.37 | 69.70 | 10.47 | 69.44 | 7.84 | 63.95 | 2.79* | 0.01 | 四>三 |
反应抑制 | |||||||||||
NOGO正确率 | 0.76 | 0.13 | 0.79 | 0.12 | 0.81 | 0.10 | 0.79 | 0.15 | 5.55** | 0.02 | 六=五=四>三 |
工作记忆刷新 | |||||||||||
简单刷新正确率 | 0.57 | 0.24 | 0.64 | 0.18 | 0.71 | 0.18 | 0.74 | 0.17 | 26.54*** | 0.10 | 六=五>四>三 |
困难刷新正确率 | 0.61 | 0.24 | 0.69 | 0.19 | 0.74 | 0.18 | 0.77 | 0.17 | 22.00*** | 0.09 | 六=五>四>三 |
工作记忆广度 | |||||||||||
正背广度 | 5.74 | 1.35 | 6.22 | 1.31 | 6.79 | 1.24 | 6.72 | 1.71 | 25.15*** | 0.08 | 六=五>四>三 |
倒背广度 | 4.16 | 0.89 | 4.74 | 1.18 | 5.09 | 1.36 | 5.46 | 1.40 | 49.52*** | 0.13 | 六>五>四>三 |
认知灵活性 | |||||||||||
转换代价(ms) | 145.33 | 195.95 | 235.31 | 216.08 | 235.61 | 222.96 | 312.45 | 247.51 | 19.36*** | 0.07 | 六>五=四>三 |
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.08* | 1 | ||||||||
3. 运算成绩 | 0.08* | 0.32** | 1 | |||||||
4. 逻辑思维成绩 | 0.05 | 0.32** | 0.52** | 1 | ||||||
5. 空间想象成绩 | 0.15** | 0.32** | 0.43** | 0.49** | 1 | |||||
6. 干扰抑制 | −0.06 | 0.02 | 0.03 | 0.09** | 0.04 | 1 | ||||
7. 反应抑制 | −0.23** | 0.07* | 0.05 | 0.05 | 0.05 | 0.12** | 1 | |||
8. 工作记忆刷新 | −0.07* | 0.26** | 0.36** | 0.36** | 0.32** | 0.10** | 0.14** | 1 | ||
9. 工作记忆广度 | 0.02 | 0.35** | 0.39** | 0.36** | 0.34** | 0.09** | 0.11** | 0.46** | 1 | |
10. 认知灵活性 | −0.02 | 0.20** | 0.18** | 0.20** | 0.20** | 0.04 | 0.06 | 0.23** | 0.16** | 1 |
表3 三至六年级被试各执行功能成分与不同数学能力之间的相关分析(N = 812)
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.08* | 1 | ||||||||
3. 运算成绩 | 0.08* | 0.32** | 1 | |||||||
4. 逻辑思维成绩 | 0.05 | 0.32** | 0.52** | 1 | ||||||
5. 空间想象成绩 | 0.15** | 0.32** | 0.43** | 0.49** | 1 | |||||
6. 干扰抑制 | −0.06 | 0.02 | 0.03 | 0.09** | 0.04 | 1 | ||||
7. 反应抑制 | −0.23** | 0.07* | 0.05 | 0.05 | 0.05 | 0.12** | 1 | |||
8. 工作记忆刷新 | −0.07* | 0.26** | 0.36** | 0.36** | 0.32** | 0.10** | 0.14** | 1 | ||
9. 工作记忆广度 | 0.02 | 0.35** | 0.39** | 0.36** | 0.34** | 0.09** | 0.11** | 0.46** | 1 | |
10. 认知灵活性 | −0.02 | 0.20** | 0.18** | 0.20** | 0.20** | 0.04 | 0.06 | 0.23** | 0.16** | 1 |
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.06 | 1 | ||||||||
3. 运算成绩 | 0.10* | −0.03 | 1 | |||||||
4. 逻辑思维成绩 | 0.03 | 0.10 | 0.52** | 1 | ||||||
5. 空间想象成绩 | 0.24** | 0.04 | 0.36** | 0.46** | 1 | |||||
6. 干扰抑制 | −0.02 | 0.11* | 0.06 | 0.14** | 0.06 | 1 | ||||
7. 反应抑制 | −0.23** | 0.09 | 0.00 | 0.05 | 0.00 | 0.12* | 1 | |||
8. 工作记忆刷新 | −0.07 | 0.07 | 0.29** | 0.27** | 0.22** | 0.14** | 0.13* | 1 | ||
9. 工作记忆广度 | 0.08 | 0.27** | 0.32** | 0.31** | 0.27** | 0.17** | 0.09 | 0.42** | 1 | |
10. 认知灵活性 | 0.01 | 0.15** | 0.10 | 0.16** | 0.16** | 0.06 | 0.06 | 0.23** | 0.10* | 1 |
表4 三、四年级被试各执行功能成分与不同数学能力之间的相关分析(n = 385)
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.06 | 1 | ||||||||
3. 运算成绩 | 0.10* | −0.03 | 1 | |||||||
4. 逻辑思维成绩 | 0.03 | 0.10 | 0.52** | 1 | ||||||
5. 空间想象成绩 | 0.24** | 0.04 | 0.36** | 0.46** | 1 | |||||
6. 干扰抑制 | −0.02 | 0.11* | 0.06 | 0.14** | 0.06 | 1 | ||||
7. 反应抑制 | −0.23** | 0.09 | 0.00 | 0.05 | 0.00 | 0.12* | 1 | |||
8. 工作记忆刷新 | −0.07 | 0.07 | 0.29** | 0.27** | 0.22** | 0.14** | 0.13* | 1 | ||
9. 工作记忆广度 | 0.08 | 0.27** | 0.32** | 0.31** | 0.27** | 0.17** | 0.09 | 0.42** | 1 | |
10. 认知灵活性 | 0.01 | 0.15** | 0.10 | 0.16** | 0.16** | 0.06 | 0.06 | 0.23** | 0.10* | 1 |
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.08 | 1 | ||||||||
3. 运算成绩 | 0.03 | 0.08 | 1 | |||||||
4. 逻辑思维成绩 | 0.03 | 0.02 | 0.40** | 1 | ||||||
5. 空间想象成绩 | 0.06 | 0.08 | 0.33** | 0.40** | 1 | |||||
6. 干扰抑制 | −0.09 | −0.03 | 0.00 | 0.07 | 0.03 | 1 | ||||
7. 反应抑制 | −0.23** | −0.09 | 0.03 | −0.01 | 0.03 | 0.12* | 1 | |||
8. 工作记忆刷新 | −0.12* | −0.04 | 0.28** | 0.33** | 0.27** | 0.05 | 0.10* | 1 | ||
9. 工作记忆广度 | −0.05 | 0.02 | 0.29** | 0.24** | 0.24** | 0.05 | 0.07 | 0.40** | 1 | |
10. 认知灵活性 | −0.07 | 0.05 | 0.15** | 0.15** | 0.15** | 0.03 | 0.03 | 0.16** | 0.11* | 1 |
表5 五、六年级被试各执行功能成分与不同数学能力之间的相关分析(n = 427)
变量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. 性别 | 1 | |||||||||
2. 年龄 | 0.08 | 1 | ||||||||
3. 运算成绩 | 0.03 | 0.08 | 1 | |||||||
4. 逻辑思维成绩 | 0.03 | 0.02 | 0.40** | 1 | ||||||
5. 空间想象成绩 | 0.06 | 0.08 | 0.33** | 0.40** | 1 | |||||
6. 干扰抑制 | −0.09 | −0.03 | 0.00 | 0.07 | 0.03 | 1 | ||||
7. 反应抑制 | −0.23** | −0.09 | 0.03 | −0.01 | 0.03 | 0.12* | 1 | |||
8. 工作记忆刷新 | −0.12* | −0.04 | 0.28** | 0.33** | 0.27** | 0.05 | 0.10* | 1 | ||
9. 工作记忆广度 | −0.05 | 0.02 | 0.29** | 0.24** | 0.24** | 0.05 | 0.07 | 0.40** | 1 | |
10. 认知灵活性 | −0.07 | 0.05 | 0.15** | 0.15** | 0.15** | 0.03 | 0.03 | 0.16** | 0.11* | 1 |
[1] |
Ahmed, S. F., Tang, S., Waters, N. E., & Davis-Kean, P. (2019). Executive function and academic achievement: Longitudinal relations from early childhood to adolescence. Journal of Educational Psychology, 111(3), 446-458.
doi: 10.1037/edu0000296 URL |
[2] | Archambeau, K., & Gevers, W. (2018). (How) are executive functions actually related to arithmetic abilities?. Heterogeneity of Function in Numerical Cognition, 337-357. |
[3] |
Bailey, D. H., Littlefield, A., & Geary, D. C. (2012). The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. Journal of Experimental Child Psychology, 113(1), 78-92.
doi: 10.1016/j.jecp.2012.04.014 pmid: 22704036 |
[4] |
Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental Review, 29(3), 180-200.
doi: 10.1016/j.dr.2009.05.002 pmid: 20161467 |
[5] |
Blakey, E., Matthews, D., Cragg, L., Buck, J., Cameron, D., Higgins, B., ... Carroll, D. J. (2020). The role of executive functions in socioeconomic attainment gaps: Results from a randomized controlled trial. Child Development, 91(5), 1594-1614.
doi: 10.1111/cdev.v91.5 URL |
[6] |
Bryce, D., Whitebread, D., & Szűcs, D. (2015). The relationships among executive functions, metacognitive skills and educational achievement in 5 and 7 year-old children. Metacognition and Learning, 10(2), 181-198.
doi: 10.1007/s11409-014-9120-4 URL |
[7] |
Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36-41.
doi: 10.1111/cdep.12059 URL |
[8] |
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273-293.
doi: 10.1207/S15326942DN1903_3 pmid: 11758669 |
[9] |
Camerota, M., Willoughby, M. T., & Blair, C. B. (2020). Measurement models for studying child executive functioning: Questioning the status quo. Developmental Psychology, 56(12), 2236-2245.
doi: 10.1037/dev0001127 pmid: 33104374 |
[10] |
Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of Experimental Child Psychology, 146, 66-78.
doi: 10.1016/j.jecp.2016.01.014 pmid: 26914106 |
[11] |
Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217-2229.
doi: 10.1162/jocn.2008.21159 pmid: 19016605 |
[12] | Chen, E. H., & Bailey, D. H. (2021). Dual-task studies of working memory and arithmetic performance: A meta-analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47( 2), 220-233. |
[13] |
Cirino, P. T., Ahmed, Y., Miciak, J., Taylor, W. P., Gerst, E. H., & Barnes, M. A. (2018). A framework for executive function in the late elementary years. Neuropsychology, 32(2), 176-189.
doi: 10.1037/neu0000427 pmid: 29528682 |
[14] |
Clements, D. H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79-90.
doi: 10.1016/j.ecresq.2015.12.009 URL |
[15] |
Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68.
doi: 10.1016/j.tine.2013.12.001 URL |
[16] |
Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12-26.
doi: S0010-0277(17)30023-9 pmid: 28189034 |
[17] |
Cueli, M., Areces, D., García, T., Alves, R. A., & González- Castro, P. (2020). Attention, inhibitory control and early mathematical skills in preschool students. Psicothema, 32(2), 237-244.
doi: 10.7334/psicothema2019.225 pmid: 32249750 |
[18] |
Dekker, M. C., Ziermans, T. B., Spruijt, A. M., & Swaab, H. (2017). Cognitive, parent and teacher rating measures of executive functioning: Shared and unique influences on school achievement. Frontiers in Psychology, 8, 48.
doi: 10.3389/fpsyg.2017.00048 pmid: 28194121 |
[19] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
doi: 10.1146/annurev-psych-113011-143750 pmid: 23020641 |
[20] |
Dick, A. S. (2014). The development of cognitive flexibility beyond the preschool period: An investigation using a modified Flexible Item Selection Task. Journal of Experimental Child Psychology, 125, 13-34.
doi: 10.1016/j.jecp.2014.01.021 pmid: 24814204 |
[21] | Du, W. P. (2013). The evolution of the connotation of mathematical competence in elementary school mathematics syllabus or curriculum standards. Mathematics for Primary and Secondary Schools (Primary Edition), 12, 43-45. |
[杜文平. (2013). 小学数学教学大纲或课程标准中数学能力内涵的演变. 中小学数学(小学版), 12, 43-45.] | |
[22] |
Duncan, R. J., McClelland, M. M., & Acock, A. C. (2017). Relations between executive function, behavioral regulation, and achievement: Moderation by family income. Journal of Applied Developmental Psychology, 49, 21-30.
doi: 10.1016/j.appdev.2017.01.004 URL |
[23] |
Ellefson, M. R., Zachariou, A., Ng, F. F-Y., Wang, Q., & Hughes, C. (2020). Do executive functions mediate the link between socioeconomic status and numeracy skills? A cross-site comparison of Hong Kong and the United Kingdom. Journal of Experimental Child Psychology, 194, 104734.
doi: 10.1016/j.jecp.2019.104734 URL |
[24] |
Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-486.
doi: 10.1207/s15326942dn2601_6 pmid: 15276905 |
[25] |
Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874-890.
pmid: 15742539 |
[26] |
Friso-den Bos, I., der Ven, S. H., Kroesbergen, E. H., & Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44.
doi: 10.1016/j.edurev.2013.05.003 URL |
[27] | Fung, W. K., Chung, K. K. H., & Lam, C. B. (2020). Mathematics, executive functioning, and visual-spatial skills in Chinese kindergarten children: Examining the bidirectionality. Journal of Experimental Child Psychology, 199, 1-10. |
[28] |
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15.
pmid: 15493463 |
[29] |
Georgiou, G. K., Wei, W., Inoue, T., Das, J. P., & Deng, C. (2020). Cultural influences on the relation between executive functions and academic achievement. Reading and Writing, 33(4), 991-1013.
doi: 10.1007/s11145-019-09961-8 |
[30] |
Gilmore, C., Keeble, S., Richardson, S., & Cragg, L. (2015). The role of cognitive inhibition in different components of arithmetic. ZDM Mathematics Education, 47, 771-782.
doi: 10.1007/s11858-014-0659-y URL |
[31] |
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.
doi: 10.1038/nature07246 |
[32] |
Harvey, H. A., & Miller, G. E. (2017). Executive function skills, early mathematics, and vocabulary in head start preschool children. Early Education and Development, 28(3), 290-307.
doi: 10.1080/10409289.2016.1218728 URL |
[33] |
Hilbert, S., Bruckmaier, G., Binder, K., Krauss, S., & Bühner, M. (2019). Prediction of elementary mathematics grades by cognitive abilities. European Journal of Psychology of Education, 34(3), 665-683.
doi: 10.1007/s10212-018-0394-9 |
[34] | Himi, S. A., Bühner, M., & Hilbert, S. (2021). Advancing the understanding of the factor structure of executive functioning. Journal of Intelligence, 9(1), 16. |
[35] | Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9-F15. |
[36] |
Holmes, J., Guy, J., Kievit, R. A., Bryant, A., Mareva, S., & Gathercole, S. E. (2021). Cognitive dimensions of learning in children with problems in attention, learning, and memory. Journal of Educational Psychology, 113(7), 1454-1480.
doi: 10.1037/edu0000644 pmid: 35855686 |
[37] |
Jenks, K. M., van Lieshout, E. C., & de Moor, J. M. (2012). Cognitive correlates of mathematical achievement in children with cerebral palsy and typically developing children. British Journal of Educational Psychology, 82(1), 120-135.
doi: 10.1111/bjep.2012.82.issue-1 URL |
[38] |
Jiang, R., Li, X., Xu, P., & Chen, Y. (2019). Inhibiting intuitive rules in a geometry comparison task: Do age level and math achievement matter?. Journal of Experimental Child Psychology, 186, 1-16.
doi: S0022-0965(18)30587-3 pmid: 31176912 |
[39] |
Kahl, T., Grob, A., Segerer, R., & Möhring, W. (2021). Executive functions and visual-spatial skills predict mathematical achievement: Asymmetrical associations across age. Psychological Research, 85(1), 36-46.
doi: 10.1007/s00426-019-01249-4 |
[40] |
Lan, X., Legare, C. H., Ponitz, C. C., Li, S., & Morrison, F. J. (2011). Investigating the links between the subcomponents of executive function and academic achievement: A cross- cultural analysis of Chinese and American preschoolers. Journal of Experimental Child Psychology, 108(3), 677-692.
doi: 10.1016/j.jecp.2010.11.001 URL |
[41] |
Lee, K., Ng, S. F., & Bull, R. (2018). Learning and solving algebra word problems: The roles of relational skills, arithmetic, and executive functioning. Developmental Psychology, 54(9), 1758-1772.
doi: 10.1037/dev0000561 pmid: 30148402 |
[42] |
Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59-80.
doi: 10.1348/026151003321164627 URL |
[43] | Lin, C. D. (2011). Intellectual development and mathematical learning (4th ed.). Beijing: China Light Industry Press. |
[林崇德. (2011). 智力发展与数学学习 (第4版). 北京: 中国轻工业出版社.] | |
[44] |
Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive functions predict literacy and mathematics achievements: The unique contribution of cognitive flexibility in grades 2, 4, and 6. Child Neuropsychology, 26(7), 934-952.
doi: 10.1080/09297049.2020.1740188 pmid: 32200681 |
[45] |
McKenna, R., Rushe, T., & Woodcock, K. A. (2017). Informing the structure of executive function in children: meta-analysis of functional neuroimaging data. Frontiers in Human Neuroscience, 11, 154.
doi: 10.3389/fnhum.2017.00154 pmid: 28439231 |
[46] |
Miller-Cotto, D., & Byrnes, J. P. (2020). What’s the best way to characterize the relationship between working memory and achievement?: An initial examination of competing theories. Journal of Educational Psychology, 112(5), 1074-1084.
doi: 10.1037/edu0000395 URL |
[47] |
Monette, S., Bigras, M., & Guay, M-C. . (2011). The role of the executive functions in school achievement at the end of Grade 1. Journal of Experimental Child Psychology, 109(2), 158-173.
doi: 10.1016/j.jecp.2011.01.008 pmid: 21349537 |
[48] |
Nguyen, T., & Duncan, G. J. (2019). Kindergarten components of executive function and third grade achievement: A national study. Early Childhood Research Quarterly, 46, 49-61.
doi: 10.1016/j.ecresq.2018.05.006 URL |
[49] |
Passolunghi, M. C., Mammarella, I. C., & Altoè, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33(3), 229-250.
doi: 10.1080/87565640801982320 pmid: 18473198 |
[50] |
Peng, P., Congying, S., Beilei, L., & Sha, T. (2012). Phonological storage and executive function deficits in children with mathematics difficulties. Journal of Experimental Child Psychology, 112(4), 452-466.
doi: 10.1016/j.jecp.2012.04.004 pmid: 22633135 |
[51] |
Peng, P., Wang, C., & Namkung, J.(2018). Understanding the cognition related to mathematics difficulties: A meta-analysis on the cognitive deficit profiles and the bottleneck theory. Review of Educational Research, 88(3), 434-476.
doi: 10.3102/0034654317753350 URL |
[52] |
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110-122.
doi: 10.1016/j.lindif.2009.10.005 URL |
[53] |
Rutherford, T., Buschkuehl, M., Jaeggi, S. M., & Farkas, G. (2018). Links between achievement, executive functions, and self‐regulated learning. Applied Cognitive Psychology, 32(6), 763-774.
doi: 10.1002/acp.v32.6 URL |
[54] |
Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations between executive functions and academic outcomes in elementary school children: A meta-analysis. Psychological Bulletin, 147(4), 329-351.
doi: 10.1037/bul0000322 pmid: 34166004 |
[55] |
St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745-759.
doi: 10.1080/17470210500162854 URL |
[56] |
Stipek, D., & Valentino, R. A. (2015). Early childhood memory and attention as predictors of academic growth trajectories. Journal of Educational Psychology, 107(3), 771-788.
doi: 10.1037/edu0000004 URL |
[57] |
Sulik, M. J., & Obradović, J. (2018). Teachers’ rankings of children’s executive functions: Validating a methodology for school-based data collection. Journal of Experimental Child Psychology, 173, 136-154.
doi: 10.1016/j.jecp.2018.01.016 URL |
[58] |
Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4), 821-837.
doi: 10.1037/a0025114 URL |
[59] |
Toll, S. W., van der Ven, S. H., Kroesbergen, E. H., & Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521-532.
doi: 10.1177/0022219410387302 pmid: 21177978 |
[60] |
der Ven, S. H., Kroesbergen, E. H., Boom, J., & Leseman, P. P. (2012). The development of executive functions and early mathematics: A dynamic relationship. British Journal of Educational Psychology, 82(1), 100-119.
doi: 10.1111/bjep.2012.82.issue-1 URL |
[61] |
Viterbori, P., Traverso, L., & Usai, M. C. (2017). The role of executive function in arithmetic problem-solving processes: A study of third graders. Journal of Cognition and Development, 18(5), 595-616.
doi: 10.1080/15248372.2017.1392307 URL |
[62] |
Wang, C., Jaeggi, S. M., Yang, L., Zhang, T., He, X., Buschkuehl, M., & Zhang, Q. (2019). Narrowing the achievement gap in low-achieving children by targeted executive function training. Journal of Applied Developmental Psychology, 63, 87-95.
doi: 10.1016/j.appdev.2019.06.002 URL |
[63] | Wang, X. F., Liu, X. N., Zhao., X., & Zhou, R. L. (2011). The developmental research on the updating ability of primary school children with mathematics learning disabilities. Chinese Journal of Special Education, 128(2), 47-57. |
[王晓芳, 刘潇楠, 赵鑫, 周仁来. (2011). 小学数学学习障碍儿童刷新能力的发展性研究. 中国特殊教育, 128(2), 47-57.] | |
[64] |
Wang, Y., & Zhou, X. (2019). Longitudinal relations between executive function and internalizing problems in grade school: The role of peer difficulty and academic performance. Developmental Psychology, 55(10), 2147-2158.
doi: 10.1037/dev0000790 pmid: 31368763 |
[65] | Wen., P., Zhang., L.,Li. H., Liu. L. X-J., & Zhang. X-Y. (2007). Model of executive functioning as predictor of children’s mathematical ability. Psychological Development and Education, 23(3), 13-18. |
[文萍, 张莉, 李红, 刘莉湘君, 张雪怡. (2007). 儿童执行功能对数学能力的预测模型. 心理发展与教育, 23(3), 13-18.] | |
[66] | Wu, H. R., & Li.L. (2005). Development of chinese rating scale of pupil’s mathematic abilities and study on its reliability and validity. Chinese Journal of Public Health, 21(4), 473-475. |
[吴汉荣, 李丽. (2005). 小学生数学能力测试量表的编制及信效度检验. 中国公共卫生, 21(4), 473-475.] | |
[67] |
Yang, X., Chung, K. K. H., & McBride, C. (2019). Longitudinal contributions of executive functioning and visual-spatial skills to mathematics learning in young Chinese children. Educational Psychology, 39(5), 678-704.
doi: 10.1080/01443410.2018.1546831 URL |
[68] |
Yeniad, N., Malda, M., Mesman, J., IJzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1-9.
doi: 10.1016/j.lindif.2012.10.004 URL |
[69] | Yu, P., & Zuo, M. L. (1996). The development of mathematical ability and cognitive structure of elementary school students in grades 3 to 6. Psychological Development and Education, 12, 30-36. |
[于萍, 左梦兰. (1996). 三-六年级小学生数学能力及认知结构的发展. 心理发展与教育, 12, 30-36.] | |
[70] |
Zhang, J., Cheung, S. K., Wu, C., & Meng, Y. (2018). Cognitive and affective correlates of Chinese children’s mathematical word problem solving. Frontiers in Psychology, 9, 2357.
doi: 10.3389/fpsyg.2018.02357 pmid: 30618901 |
[71] | Zhao, X., Chen, L., & Maes, J. H. (2018). Training and transfer effects of response inhibition training in children and adults. Developmental Science, 21(1), e12511. |
[72] |
Zhao, X., Jia, L. N., & Zan, X. Y. (2016). Interference control training: Effect and mechanism. Advances in Psychological Science, 24(6), 900-908.
doi: 10.3724/SP.J.1042.2016.00900 URL |
[赵鑫, 贾丽娜, 昝香怡. (2016). 干扰控制的训练: 内容、效果与机制. 心理科学进展, 24(6), 900-908.]
doi: 1042.2016.00900 |
[1] | 张航, 王婷, 冯晓慧, 韦义平, 张积家. 铜鼓经验对壮族鼓手的节奏知觉和执行功能的影响[J]. 心理学报, 2023, 55(11): 1762-1779. |
[2] | 司继伟, 郭凯玥, 赵晓萌, 张明亮, 李红霞, 黄碧娟, 徐艳丽. 小学儿童数学焦虑的潜在类别转变及其父母教育卷入效应:3年纵向考察[J]. 心理学报, 2022, 54(4): 355-370. |
[3] | 谢敏, 李峰, 罗玉晗, 柯李, 王侠, 王耘. 小学教师职业倦怠维度发展顺序探究——来自结构方程模型和交叉滞后网络分析模型的证据[J]. 心理学报, 2022, 54(4): 371-384. |
[4] | 张青, 王争艳. 母亲敏感性与婴儿气质、注意对学步儿执行功能影响的交互作用:一项两年的追踪研究[J]. 心理学报, 2022, 54(2): 141-153. |
[5] | 盖笑松, 许洁, 闫艳, 王元, 谢笑春. 体感游戏促进儿童的执行功能:运动强度和认知参与的作用[J]. 心理学报, 2021, 53(5): 505-514. |
[6] | 孙启武, 吴才智, 于丽霞, 王巍欣, 沈国成. 阅读进度反馈信息对工作同盟和咨询效果的影响[J]. 心理学报, 2021, 53(4): 349-361. |
[7] | 赵鑫, 李红利, 金戈, 李世峰, 周爱保, 梁文佳, 郭红霞, 蔡亚亚. 语音记忆和中央执行功能在不同年级儿童解码和语言理解中的作用[J]. 心理学报, 2020, 52(4): 469-484. |
[8] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[9] | 王婷, 植凤英, 陆禹同, 张积家. 侗歌经验对侗族中学生执行功能的影响[J]. 心理学报, 2019, 51(9): 1040-1056. |
[10] | 陈红君, 赵英, 伍新春, 孙鹏, 谢瑞波, 冯杰. 小学儿童词汇知识与阅读理解的关系:交叉滞后研究[J]. 心理学报, 2019, 51(8): 924-934. |
[11] | 任志洪, 赵春晓, 卞诚, 朱文臻, 江光荣, 祝卓宏. 接纳承诺疗法的作用机制——基于元分析结构方程模型[J]. 心理学报, 2019, 51(6): 662-676. |
[12] | 李泉, 宋亚男, 廉彬, 冯廷勇. 正念训练提升3~4岁幼儿注意力和执行功能[J]. 心理学报, 2019, 51(3): 324-336. |
[13] | 张明亮, 司继伟, 杨伟星, 邢淑芬, 李红霞, 张佳佳. BDNF基因rs6265多态性与父母教育卷入对小学儿童基本数学能力的交互作用 *[J]. 心理学报, 2018, 50(9): 1007-1017. |
[14] | 邢淑芬, 李倩倩, 高鑫, 马园园, 傅锐. 不同睡眠时间参数对学前儿童执行功能的差异化影响[J]. 心理学报, 2018, 50(11): 1269-1281. |
[15] | 邢强, 孙海龙, 占丹玲, 胡婧, 刘凯. 执行功能对言语顿悟问题解决的影响: 基于行为与ERPs的研究[J]. 心理学报, 2017, 49(7): 909-919. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||