心理学报 ›› 2023, Vol. 55 ›› Issue (11): 1762-1779.doi: 10.3724/SP.J.1041.2023.01762
张航2, 王婷3, 冯晓慧2, 韦义平1(), 张积家1()
收稿日期:
2022-11-10
发布日期:
2023-08-30
出版日期:
2023-11-25
通讯作者:
张积家, E-mail: Zhangjj1955@163.com; 韦义平, E-mail: Wypjky@126.com
作者简介:
王婷为本文共同第一作者
ZHANG Hang2, WANG Ting3, FENG Xiaohui2, WEI Yiping1(), ZHANG Jijia1()
Received:
2022-11-10
Online:
2023-08-30
Published:
2023-11-25
摘要:
节奏是声音序列在时间维度上的变化特征, 对产生和理解音乐旋律和言语韵律具有重要作用。通过2个实验考察壮族铜鼓音乐的“变奏”训练形式对壮族鼓手的音乐知觉和执行功能的影响。结果发现, 铜鼓训练组对节奏变化的感知能力显著优于控制组, 但两组被试对音高变化的感知能力无显著差异, 说明长期铜鼓训练使壮族鼓手的节奏分辨能力得到了特异性的塑造与强化。铜鼓训练组在抑制控制和工作记忆能力上具有显著优势, 但在转换能力上与控制组没有显著差异, 反映了铜鼓音乐训练对执行功能的各子成分的促进作用存在选择性。壮族铜鼓的音乐经验作为认知与文化交互作用的产物具有超越审美价值的功能属性, 体现为长期铜鼓音乐训练可以优化鼓手的节奏感知能力和执行功能。
中图分类号:
张航, 王婷, 冯晓慧, 韦义平, 张积家. (2023). 铜鼓经验对壮族鼓手的节奏知觉和执行功能的影响. 心理学报, 55(11), 1762-1779.
ZHANG Hang, WANG Ting, FENG Xiaohui, WEI Yiping, ZHANG Jijia. (2023). Effect of bronze drum training on rhythm perception and executive function of Zhuang drummers. Acta Psychologica Sinica, 55(11), 1762-1779.
图1 中国首批非物质文化遗产——壮族铜鼓习俗 注:图1a标注了“世界铜鼓之乡”——河池市东兰县的地理位置, 该县位于桂西北, 红水河中游, 是壮族人民聚居区, 村寨几乎都有铜鼓, 是壮族铜鼓文化的典型代表; 图1b展示壮族铜鼓的精湛工艺, 上面饰有青蛙雕像, 是一种图腾文化崇拜, 寓意风调雨顺, 五谷丰登; 图1c展示东兰音乐铜鼓的演奏场景, 四名鼓手敲击的鼓声, 对错成韵, 此起彼伏, 节奏变化形式丰富; 图1d是红水河第一湾的“U”字型大峡谷, 奇异的形态与铜鼓形状非常契合, 东兰人认为铜鼓是吉祥物, 反映民族心理与地理环境的关联; 图1e是联合国世界文化遗产名录——广西左江花山岩画(局部), 生动描绘了3000多年前壮族祖先敲打铜鼓的场面。
类别 | 铜鼓组 | 非铜鼓组 |
---|---|---|
人数 | 26人 | 26人 |
性别 | 25男, 1女 | 25男, 1女 |
年龄 | 49.88 ± 15.98 | 47.77 ± 12.62 |
民族 | 壮族 | 壮族 |
鼓龄 | 3~4年13人 5~10年7人 大于10年6人 | 未受过训练和表演 |
学历 | 初中及以下20人 高中及以上6人 | 初中及以下20人 高中及以上6人 |
月收入 | 小于1000元6人 1000~3000元9人 3000~5000元5人 大于5000元6人 | 小于1000元9人 1000~3000元9人 3000~5000元2人 大于5000元6人 |
MoCA分 | 26.23 ± 3.19 | 26.85 ± 2.05 |
表1 被试的基本信息
类别 | 铜鼓组 | 非铜鼓组 |
---|---|---|
人数 | 26人 | 26人 |
性别 | 25男, 1女 | 25男, 1女 |
年龄 | 49.88 ± 15.98 | 47.77 ± 12.62 |
民族 | 壮族 | 壮族 |
鼓龄 | 3~4年13人 5~10年7人 大于10年6人 | 未受过训练和表演 |
学历 | 初中及以下20人 高中及以上6人 | 初中及以下20人 高中及以上6人 |
月收入 | 小于1000元6人 1000~3000元9人 3000~5000元5人 大于5000元6人 | 小于1000元9人 1000~3000元9人 3000~5000元2人 大于5000元6人 |
MoCA分 | 26.23 ± 3.19 | 26.85 ± 2.05 |
图2 研究1流程图和结果 注:图2a为节奏变化探测任务流程图; 图2b为节奏变化探测任务结果, 左侧图以击中率为指标, 右侧图以辨别力指数d'为指标; 图2c为音高变化奏探测任务流程图; 图2d为音高变化探测任务结果图, 左侧图以反应时为指标, 中间图以击中率为指标, 右侧图以辨别力指数d'为指标; 图2e为音高—节奏联合探测任务流程图; 图2f为联合任务结果图, 左侧图以音高变化任务的击中率为指标, 中间图以节奏变化的击中率为指标, 右侧以节奏变化的辨别力指数d'为指标。柱状图误差线代表该条件下均值的标准差。* p < 0.05, ** p < 0.01。
图3 研究2流程图和结果 注:图3a为抑制控制(音高−语义Stroop)任务的流程图; 图3b为抑制控制任务的结果, 左侧图以反应时率为指标, 中间图以反应时的效应量为指标, 右侧图以正确率为指标; 图3c为工作记忆任务流程图; 图3d为工作记忆任务的结果; 图3e为转换任务流程图; 图3f为转换任务的结果, 左侧1图以反应时为指标, 左侧2图是反应时的转换代价, 右侧2图以正确率为指标, 右侧2图是正确率的转换代价。柱状图误差线代表了该条件下均值的标准差。* p < 0.05, ** p < 0.01, *** p < 0.001。
图4 执行功能与音高知觉任务成绩和节奏知觉任务成绩的相关性 注:图4a为中等负荷更新任务成绩与在中等知觉负荷任务的节奏知觉成绩的相关性检验结果图; 图4b为抑制控制效应量与节奏变化的总击中率的相关性检验结果图; 图4c为铜鼓训练组的执行功能三项任务成绩与节奏知觉任务各项成绩的相关系数热力图, 方格颜色代表相关程度, 方格中数字是相关系数; 图4d为非铜鼓训练组的执行功能三项任务成绩与节奏知觉任务各项成绩的相关系数热力图。* p < 0.05, ** p < 0.01, *** p < 0.001。
[1] | Akshoomoff N. A., Courchesne E., & Townsend J. (1997). Attention coordination and anticipatory control. International Review of Neurobiology, 41, 575−598. |
[2] | Albouy P., Benjamin L., Morillon B., & Zatorre R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science, 367(6481), 1043−1047. |
[3] | Alcock K.J., Wade D., Anslow P., & Passingham R.E. (2000). Pitch and timing abilities in adult left-hemisphere-dysphasic and right-hemisphere-damaged subjects. Brain and Language, 75(1), 47−65. |
[4] | Allen G., Buxton R. B., Wong E. C., & Courchesne E. (1997). Attentional activation of the cerebellum independent of motor involvement. Science, 275(5308), 1940−1943. |
[5] |
Amer T., Kalender B., Hasher L., Trehub S.E., & Wong Y. (2013). Do older professional musicians have cognitive advantages?. PLoS ONE, 8(8), e71630.
doi: 10.1371/journal.pone.0071630 URL |
[6] | Baddeley A. (2000). The episodic buffer: A new component of working memory. Trends in Cognitive Sciences, 4(11), 417−423. |
[7] | Bailey J. A., & Penhune V. B. (2010). Rhythm synchronization performance and auditory working memory in early-and late-trained musicians. Experimental Brain Research, 204, 91−101. |
[8] | Bengtsson S. L., Nagy Z., Skare S., Forsman L., Forssberg H., & Ullén F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148−1150. |
[9] | Bengtsson S. L., & Ullén F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. Neuroimage, 30(1), 272−284. |
[10] | Bialystok E., & DePape A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565−574. |
[11] |
Buschman T. J., & Miller E. K. (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130471.
doi: 10.1098/rstb.2013.0471 URL |
[12] |
Cameron D. J., & Grahn J. A. (2014). Enhanced timing abilities in percussionists generalize to rhythms without a musical beat. Frontiers in Human Neuroscience, 8, 1003.
doi: 10.3389/fnhum.2014.01003 pmid: 25540617 |
[13] | Carlson S. M., Zelazo P. D., & Faja S. (2013). Executive function. In P. D. Zelazo (Ed.), The Oxford handbook of developmental psychology (Vol. 1): Body and mind (pp. 706−743). Oxford University Press. |
[14] | Chang A., Bosnyak D. J., & Trainor L. J. (2019). Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations. NeuroImage, 198, 31−43. |
[15] | Chen J. J., Zhou Y., & Chen J. (2020). The relationship between musical training and inhibitory control: An ERPs study. Acta Psychologica Sinica, 52(12), 1365−1376. |
[陈洁佳, 周翊, 陈杰. (2020). 音乐训练与抑制控制的关系: 来自ERPs的证据. 心理学报, 52(12), 1365−1376.] | |
[16] | Chen J., Liu L., Wang R., & Shen H. Z. (2017). The effect of musical training on executive functions. Advances in Psychological Science, 25(11), 1854−1864. |
[陈杰, 刘雷, 王蓉, 沈海洲. (2017). 音乐训练对执行功能的影响. 心理科学进展, 25(11), 1854−1864.] | |
[17] | Clayton M., Sager R., & Will U. (2004). In time with the music: The concept of entrainment and its significance for ethnomusicology. Esem Counterpoint, 1, 1−84. |
[18] | Cohen J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum Associates. |
[19] | Darwin C. (1871). The descent of man. New York: D. Appleton. |
[20] | Degé F., Kubicek C., & Schwarzer G. (2011). Music lessons and intelligence: A relation mediated by executive functions. Music Perception, 29(2), 195−201. |
[21] | Diamond A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135−168. |
[22] | D’Souza, A. A., Moradzadeh, L., & Wiseheart, M. (2018). Musical training, bilingualism, and executive function: Working memory and inhibitory control. Cognitive Research: Principles and Implications, 3(1), 1−18. |
[23] | Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175−191. |
[24] | Fei X. T. (2004). Reflections on the historical and social characteristics of culture. Thinking, (2), 1−6. |
[费孝通. (2004). 对文化的历史性和社会性的思考. 思想战线, (2), 1−6.] | |
[25] | Feng X., & Feng C. Z. (2022). The effect of cognitive flexibility on probabilistic category learning. Acta Psychologica Sinica, 54(11), 1340−1353. |
[冯霞, 冯成志. (2022). 认知灵活性对概率类别学习的影响. 心理学报, 54(11), 1340−1353.] | |
[26] | Fitch. W. T. (2012). The biology and evolution of rhythm: Unravelling a paradox. In P. Rebuschat, M. Rohrmeier, J. A. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems. Oxford University Press. |
[27] | Foxton J. M., Nandy R. K., & Griffiths T. D. (2006). Rhythm deficits in ‘tone deafness’. Brain and Cognition, 62(1), 24−29. |
[28] | Friedman N. P., & Miyake A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186−204. |
[29] |
Fujii S., & Wan C. Y. (2014). The role of rhythm in speech and language rehabilitation: The SEP hypothesis. Frontiers in Human Neuroscience, 8, 777.
doi: 10.3389/fnhum.2014.00777 pmid: 25352796 |
[30] | Furneaux S., & Land M. F. (1999). The effects of skill on the eye-hand span during musical sight-reading. Proceedings of the Royal Society B, 266, 2435−2440. |
[31] | Gade M., & Schlemmer K. (2021). Music modulates cognitive flexibility? An investigation of the benefits of musical training on markers of cognitive flexibility. Brain Sciences, 11(4), 451−451. |
[32] | Grahn J. A. (2012). Neural mechanisms of rhythm perception: Current findings and future perspectives. Topics in Cognitive Science, 4(4), 585−606. |
[33] | Graybiel A. M. (1997). The basal ganglia and cognitive pattern generators. Schizophrenia Bulletin, 23(3), 459−469. |
[34] |
Greenberg S., Carvey H., Hitchcock L., & Chang S. (2003). Temporal properties of spontaneous speech—A syllable- centric perspective. Journal of Phonetics, 31(3-4), 465− 485.
doi: 10.1016/S0095-4470(02)00062-1 URL |
[35] | Hanna-Pladdy B., & MacKay A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25(3), 378−386. |
[36] | Hamilton A. (2011). II—Rhythm and stasis:A major and almost entirely neglected philosophical problem. In: W. Blackwel (Ed.), Proceedings of the Aristotelian Society (Hardback) (111(1), pp.25−42). Oxford, UK: Blackwell Publishing Ltd. |
[37] | Harnishfeger K. K. (1995). The development of cognitive inhibition: Theories, definitions, and research evidence.In: F. N. Dempster (Ed.), Interference and inhibition in cognition (pp. 175−204). Academic Press. |
[38] | He H. (1994). Theory of bronze drum music. National Art, (4), 136−152. |
[何洪. (1994). 铜鼓乐论. 民族艺术, (4), 136−152.] | |
[39] | He L., Zhuang K., Chen Q., Wei D., Chen X., Fan J., & Qiu J. (2021). Unity and diversity of neural representation in executive functions. Journal of Experimental Psychology: General, 150(11), 2193−2207. |
[40] | Honing H., Ladinig O., H´aden G. P., & Winkler I. (2009). Is beat induction innate or learned? Probing emergent meter perception in adults and newborns using event-related brain potentials. Annals of the New York Academy of Sciences, 1169, 93−6. |
[41] | Hyde K. L., Lerch J., Norton A., Forgeard M., Winner E., Evans A. C., & Schlaug G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29(10), 3019−3025. |
[42] | Iversen J. R. (2016). In the beginning was the beat:Evolutionary origins of musical rhythm in humans. In: R. Hartenberger (Ed.), The Cambridge companion to percussion (pp.281−295). Cambridge University Press. |
[43] | Lagrois M. É., & Peretz I. (2019). The co-occurrence of pitch and rhythm disorders in congenital amusia. Cortex, 113, 229−238. |
[44] | Jacoby N., & McDermott J. H. (2017). Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Current Biology, 27(3), 359−370. |
[45] | Jiang T. Y. (2000). A century of bronze drum research. Ethnic Studies, (1), 7−37. |
[蒋廷瑜. (2000). 铜鼓研究一世纪. 民族研究, (1), 7−37.] | |
[46] | Jones M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323−355. |
[47] | Jones M. R., Moynihan H., MacKenzie N., & Puente J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313−319. |
[48] | Jones M. R., & Boltz M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459−491. |
[49] | Jones M. R., Johnston H. M., & Puente J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychology, 53(1), 59−96. |
[50] | Kang J. M. (2003). Human circadian rhythm and musical rhythm. Music of China, (3), 104−105. |
[康健民. (2003). 人体生理节律与音乐节律. 中国音乐, (3), 104−105.] | |
[51] | Kirschner S., & Ilari B. (2014). Joint drumming in Brazilian and German preschool children: Cultural differences in rhythmic entrainment, but no prosocial effects. Journal of Cross-Cultural Psychology, 45(1), 137−166. |
[52] | Kotz S. A., Ravignani A., & Fitch W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896−910. |
[53] | Kotz S. A., Schwartze M., & Schmidt-Kassow M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982−990. |
[54] | Krumhansl C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126(1), 159−179. |
[55] |
Lappe C., Trainor L. J., Herholz S. C., & Pantev C. (2011). Cortical plasticity induced by short-term multimodal musical rhythm training. PloS One, 6(6), e21493.
doi: 10.1371/journal.pone.0021493 URL |
[56] | Large E. W., & Jones M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119−159. |
[57] |
Lee H., & Noppeney U. (2014). Music expertise shapes audiovisual temporal integration windows for speech, sinewave speech, and music. Frontiers in Psychology, 5, 868.
doi: 10.3389/fpsyg.2014.00868 pmid: 25147539 |
[58] | Li K. S., Huang D. R. (1990). On Wanjiba type bronze drum. Archaeology, (5), 459−466. |
[李昆声, 黄德荣. (1990). 论万家坝型铜鼓. 考古, (5), 459−466.] | |
[59] |
Matthews T. E., Thibodeau J. N., Gunther B. P., & Penhune V. B. (2016). The impact of instrument-specific musical training on rhythm perception and production. Frontiers in Psychology, 7, 69.
doi: 10.3389/fpsyg.2016.00069 pmid: 26869969 |
[60] | Meng L., Zhang J. J., & Li J. Y. (2022). The advantages of Uygur’s music perception and music emotional processing: Enrichment of music exposure and music cultural experience. Chinese Journal of Clinical Psychology, 30(2), 241−249. |
[孟乐, 张积家, 李金亚. (2022). 维吾尔族大学生的音乐感知和音乐情绪加工优势: 音乐曝光和音乐文化经验的濡化作用. 中国临床心理学杂志, 30(2), 241−249.] | |
[61] | Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49−100 |
[62] | Miendlarzewska E. A., & Trost W. J. (2014). How musical training affects cognitive development: Rhythm, reward and other modulating variables. Frontiers in Neuroscience, 7, 279. |
[63] | Miller J. E., Carlson L. A., & McAuley J. D. (2013). When what you hear influences when you see: Listening to an auditory rhythm influences the temporal allocation of visual attention. Psychological Science, 24(1), 11−18. |
[64] | Moreno S., Bialystok E., Barac R., Schellenberg E. G., Cepeda N. J., & Chau T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425−1433. |
[65] | Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., ... Chertkow H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695−699. |
[66] |
Nutley S. B., Darki F., & Klingberg T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Human Neuroscience, 7, 926.
doi: 10.3389/fnhum.2013.00926 pmid: 24431997 |
[67] | Okada B. M., & Slevc L. R. (2018). Individual differences in musical training and executive functions: A latent variable approach. Memory & Cognition, 46(7), 1076−1092. |
[68] | Ouyang Y., & Dai Z. Q. (2010). A review on cognitive research of music meter. Advances in Psychological Science, 18(11), 1692−1699. |
[欧阳玥, 戴志强. (2010). 音乐节拍认知的研究评述. 心理科学进展, 18(11), 1692−1699.] | |
[69] |
Pallesen K. J., Brattico E., Bailey C. J., Korvenoja A., Koivisto J., Gjedde A., & Carlson S. (2010). Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE, 5(6), e11120.
doi: 10.1371/journal.pone.0011120 URL |
[70] |
Peelle J. E., & Davis M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320.
doi: 10.3389/fpsyg.2012.00320 pmid: 22973251 |
[71] | Phillips-Silver J., Toiviainen P., Gosselin N., Piché O., Nozaradan S., Palmer C., & Peretz I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961−969. |
[72] | Pinho A. L., de Manzano Ö., Fransson P., Eriksson H., & Ullén F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34(18), 6156−6163. |
[73] |
Prince J. B. (2014). Pitch structure, but not selective attention, affects accent weightings in metrical grouping. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2073.
doi: 10.1037/a0037730 URL |
[74] | Prior A., & MacWhinney B. (2010). A bilingual advantage in task switching. Bilingualism: Language and Cognition, 13, 253−262. |
[75] | Repp B. H. (2010). Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Human Movement Science, 29(2), 200−213. |
[76] | Repp B. H., & Doggett R. (2007). Tapping to a very slow beat: A comparison of musicians and nonmusicians. Music Perception, 24(4), 367−376. |
[77] | Rogers R. D., & Monsell S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207−231. |
[78] | Rüber T., Lindenberg R., & Schlaug G. (2015). Differential adaptation of descending motor tracts in musicians. Cerebral cortex, 25(6), 1490−1498. |
[79] | Savage P. E., Brown S., Sakai E., & Currie T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112(29), 8987−8992. |
[80] | Schellenberg E. G. (2011). Examining the association between music lessons and intelligence. British Journal of Psychology, 102(3), 283−302. |
[81] | Schneider P., Sluming V., Roberts N., Scherg M., Goebel R., Specht H. J., ... Rupp A. (2005). Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nature Neuroscience, 8(9), 1241−1247. |
[82] | Seinfeld S., Figueroa H., Ortiz-Gil J., & Sanchez-Vives M. V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Frontiers in Psychology, (4), 810. |
[83] | Slater J., Ashley R., Tierney A., & Kraus N. (2018). Got rhythm? Better inhibitory control is linked with more consistent drumming and enhanced neural tracking of the musical beat in adult percussionists and nonpercussionists. Journal of Cognitive Neuroscience, 30(1), 14−24. |
[84] | Slevc L. R., Davey N. S., Buschkuehl M., & Jaeggi S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199−211. |
[85] | Smith J. (1983). Reproduction and representation of musical rhythms: The effects of musical skill. In: J. A. Sloboda (Ed.), The acquisition of symbolic skills (pp. 273−282). Springer. |
[86] | Tomporowski P. D., Lambourne K., and Okumura,M. S. (2011). Physical activity interventions and children's mental function: An introduction and overview. Preventive Medicine, 52(Suppl. 1), S3-S9. doi: 10.1016/j.ypmed.2011. 01.028 |
[87] | Travis F., Harung H. S., & Lagrosen Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a Unified Theory of Performance. Consciousness and Cognition, 20(4), 1256− 1264. |
[88] | Thaut M. H., Trimarchi P. D., & Parsons L. M. (2014). Human brain basis of musical rhythm perception: Common and distinct neural substrates for meter, tempo, and pattern. Brain Sciences, 4(2), 428−452. |
[89] | Vygotsky, L. S. (1978). Mind in society: The development of higher mental processes. Harvard University Press, Cambridge. |
[90] | Wan F. B. Wei D. F. (2018). Bronze drum research in Southeast Asia. Beijing: Science and Technology Press of China. |
[万辅彬, 韦丹芳. (2018). 东南亚铜鼓研究. 北京: 中国科学技术出版社.] | |
[91] | Wang N. S. (1978). On ancient Chinese Bronze drum. Acta Archaeologica Sinica, (2), 159−192. |
[汪宁生. (1978). 试论中国古代铜鼓. 考古学报, (2), 159−192.] | |
[92] | Wang T. Y., & Feng S. Z. (2017). Current situations and challenges of evolutionary musicology. Advances in Psychological Science, 25(11), 1831−1843. |
[王天燕, 冯圣中. (2017). 进化音乐学的现状及挑战. 心理科学进展, 25(11), 1831−1843.] | |
[93] | Wang T., Zhi F. Y., Lu Y. T., & Zhang J. J. (2019). Effect of Dong Chorus on the executive function of Dong high school students. Acta Psychologica Sinica, 51(9), 1040−1056. |
[王婷, 植凤英, 陆禹同, 张积家. (2019). 侗歌经验对侗族中学生执行功能的影响. 心理学报, 51(9), 1040−1056.] | |
[94] | Wang T., Wang D., Zhang J. J., & Cui J. A. (2017). Effects of “each speaks their own dialect” phenomenon on the executive function of Jingpo students. Acta Psychologica Sinica, 49(11), 1392−1403. |
[王婷, 王丹, 张积家, 崔健爱. (2017). “各说各话”的语言经验对景颇族大学生执行功能的影响. 心理学报, 49(11), 1392−1403.] | |
[95] | Xiao M. (2016). Systematic research on Chinese traditional music "music language". Music of China, (3), 80−92. |
[萧梅. (2016). 中国传统音乐“乐语”系统研究. 中国音乐, (3), 80−92.] | |
[96] | Xing L. (2010). Research on Zhuang bronze drum music: Taking Donglan bronze drum music as an example. Gehai, (5), 31−33. |
[邢磊. (2010). 壮族铜鼓音乐研究——以东兰铜鼓音乐为例. 歌海, (5), 31−33.] | |
[97] | Yan C. Q., & Tong Z. L. (2006). The course of basic music theory (2nd ed.). Beijing: People's Music Publishing House. |
[晏成佺, 童忠良. (2006). 基本乐理教程 (第2版). 北京: 人民音乐出版社.] | |
[98] | Zatorre R. J., Belin P., & Penhune V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 37−46. |
[99] | Zentner M., & Eerola T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences, 107(13), 5768−5773. |
[100] |
Zhang J., Che X., & Yang Y. (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118.
doi: 10.1016/j.neuropsychologia.2019.107118 URL |
[1] | 祝孝亮, 赵鑫. 执行功能在不同年级儿童数学能力中的作用[J]. 心理学报, 2023, 55(5): 696-710. |
[2] | 张青, 王争艳. 母亲敏感性与婴儿气质、注意对学步儿执行功能影响的交互作用:一项两年的追踪研究[J]. 心理学报, 2022, 54(2): 141-153. |
[3] | 盖笑松, 许洁, 闫艳, 王元, 谢笑春. 体感游戏促进儿童的执行功能:运动强度和认知参与的作用[J]. 心理学报, 2021, 53(5): 505-514. |
[4] | 赵鑫, 李红利, 金戈, 李世峰, 周爱保, 梁文佳, 郭红霞, 蔡亚亚. 语音记忆和中央执行功能在不同年级儿童解码和语言理解中的作用[J]. 心理学报, 2020, 52(4): 469-484. |
[5] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[6] | 王婷, 植凤英, 陆禹同, 张积家. 侗歌经验对侗族中学生执行功能的影响[J]. 心理学报, 2019, 51(9): 1040-1056. |
[7] | 李泉, 宋亚男, 廉彬, 冯廷勇. 正念训练提升3~4岁幼儿注意力和执行功能[J]. 心理学报, 2019, 51(3): 324-336. |
[8] | 邢淑芬, 李倩倩, 高鑫, 马园园, 傅锐. 不同睡眠时间参数对学前儿童执行功能的差异化影响[J]. 心理学报, 2018, 50(11): 1269-1281. |
[9] | 邢强, 孙海龙, 占丹玲, 胡婧, 刘凯. 执行功能对言语顿悟问题解决的影响: 基于行为与ERPs的研究[J]. 心理学报, 2017, 49(7): 909-919. |
[10] | 杨海波;赵欣;汪洋;张磊;王瑞萌; 张毅;王力. PTSD青少年执行功能缺陷的情绪特异性[J]. 心理学报, 2017, 49(5): 643-652. |
[11] | 王婷, 王丹, 张积家, 崔健爱. “各说各话”的语言经验 对景颇族大学生执行功能的影响[J]. 心理学报, 2017, 49(11): 1392-1403. |
[12] | 陈爱国,殷恒婵,颜军,杨钰. 不同强度短时有氧运动对执行功能的影响[J]. 心理学报, 2011, 43(09): 1055-1062. |
[13] | 吴文婕, 张莉,冯廷勇,李红. 热执行功能对儿童标准窗口任务测试的影响 [J]. 心理学报, 2008, 40(03): 319-326. |
[14] | 李一员,吴睿明,胡兴旺,李红,P ,D ,Zelaz. 聋童执行功能发展:聋童与正常儿童的比较 [J]. 心理学报, 2006, 38(03): 356-364. |
[15] | 廖渝,吴睿明,Philip ,David ,Zelazo,李红,张婷,张莉,高山,李小晶. 意外地点任务中不同测试问题及意图理解与执行功能的关系[J]. 心理学报, 2006, 38(02): 207-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||