心理学报 ›› 2023, Vol. 55 ›› Issue (5): 671-684.doi: 10.3724/SP.J.1041.2023.00671
• 研究报告 • 下一篇
高玉林1, 唐晓雨2, 刘思宇3, 王爱君4(), 张明5,6()
收稿日期:
2022-02-18
发布日期:
2023-02-14
出版日期:
2023-05-25
通讯作者:
王爱君, E-mail: ajwang@suda.edu.cn;张明, E-mail: psyzm@suda.edu.cn
作者简介:
第一联系人:高玉林和唐晓雨同为第一作者
基金资助:
GAO Yulin1, TANG Xiaoyu2, LIU Siyu3, WANG Aijun4(), ZHANG Ming5,6()
Received:
2022-02-18
Online:
2023-02-14
Published:
2023-05-25
摘要:
视听觉整合是将视觉和听觉信息整合成为统一、连贯且稳定的知觉过程。研究采用内源性线索−靶子范式, 探讨了不同内源性空间线索有效性对老年人视听觉整合的影响, 以及不同线索有效性条件下老年人和青年人视听觉整合的差异。结果表明, (1)无论线索有效性的高低, 老年人的视听觉整合均弱于青年人; (2)低线索有效性(50%)条件下, 老年人和青年人在有效线索条件下视听觉整合效应均与无效线索条件下没有差异; (3)中线索有效性(70%)条件下, 老年人在有效线索条件下视听觉整合效应与无效线索条件下没有差异, 青年人在有效线索条件下视听觉整合效应显著高于无效线索条件; (4)高线索有效性(90%)条件下, 老年人和青年人在有效线索条件下视听觉整合效应均显著高于无效线索条件。研究结果支持了空间不确定性假说, 并且进一步揭示了内源性注意与视听觉整合的交互作用, 明确了不同线索有效性条件下内源性空间注意定向收益的不同是导致老年人与青年人视听觉整合差异的原因之一。
中图分类号:
高玉林, 唐晓雨, 刘思宇, 王爱君, 张明. (2023). 内源性空间线索有效性对老年人视听觉整合的影响. 心理学报, 55(5), 671-684.
GAO Yulin, TANG Xiaoyu, LIU Siyu, WANG Aijun, ZHANG Ming. (2023). Effects of endogenous spatial cue validity on audiovisual integration in older adults. Acta Psychologica Sinica, 55(5), 671-684.
图1 (a)为实验刺激示例图, 包括目标刺激呈现的大小及位置示意; (b)为实验流程图。 注:目标刺激(A/V /AV)分别表示为听觉刺激, 视觉刺激和视听觉刺激。ISI (inter-stimulus interval)为刺激间时间间隔。ITI (inter-trial interval)为试次间时间间隔。
实验 | 老年人 | 青年人 | ||
---|---|---|---|---|
有效线索 | 无效线索 | 有效线索 | 无效线索 | |
实验1 | 228 (240) | 228 (240) | 230 (240) | 227 (240) |
实验2 | 596 (630) | 253 (270) | 578 (630) | 253 (270) |
实验3 | 1015 (1080) | 109 (120) | 1059 (1080) | 118 (120) |
表1 各实验条件间平均有效试次数
实验 | 老年人 | 青年人 | ||
---|---|---|---|---|
有效线索 | 无效线索 | 有效线索 | 无效线索 | |
实验1 | 228 (240) | 228 (240) | 230 (240) | 227 (240) |
实验2 | 596 (630) | 253 (270) | 578 (630) | 253 (270) |
实验3 | 1015 (1080) | 109 (120) | 1059 (1080) | 118 (120) |
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.6 ± 2.8 | 440 ± 173 | 98.9 ± 1.3 | 338 ± 76 |
无效线索 | 98.4 ± 1.8 | 455 ± 174 | 97.7 ± 2.4 | 347 ± 75 | |
听觉 刺激 | 有效线索 | 98.0 ± 2.0 | 433 ± 149 | 96.1 ± 3.8 | 364 ± 97 |
无效线索 | 92.4 ± 4.3 | 448 ± 143 | 94.1 ± 5.0 | 396 ± 99 | |
视听觉 刺激 | 有效线索 | 97.7 ± 2.5 | 375 ± 161 | 98.8 ± 2.1 | 280 ± 61 |
无效线索 | 97.6 ± 2.5 | 392 ± 162 | 97.9 ± 2.7 | 300 ± 79 |
表2 实验1中不同条件下的正确率(ACC/%)、反应时(RT/ms) (M ± SD)
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.6 ± 2.8 | 440 ± 173 | 98.9 ± 1.3 | 338 ± 76 |
无效线索 | 98.4 ± 1.8 | 455 ± 174 | 97.7 ± 2.4 | 347 ± 75 | |
听觉 刺激 | 有效线索 | 98.0 ± 2.0 | 433 ± 149 | 96.1 ± 3.8 | 364 ± 97 |
无效线索 | 92.4 ± 4.3 | 448 ± 143 | 94.1 ± 5.0 | 396 ± 99 | |
视听觉 刺激 | 有效线索 | 97.7 ± 2.5 | 375 ± 161 | 98.8 ± 2.1 | 280 ± 61 |
无效线索 | 97.6 ± 2.5 | 392 ± 162 | 97.9 ± 2.7 | 300 ± 79 |
图3 (a)为老年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (b)为老年人在各线索类型条件下显著违反Race model的时间窗口; (c)为青年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (d)为青年人在各线索类型条件下显著违反Race model的时间窗口。 注:(b)和(d)中不同颜色表示不同的统计显著性值, *表示峰值。
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.6 ± 2.5 | 488 ± 179 | 98.7 ± 1.4 | 359 ± 123 |
无效线索 | 98.5 ± 1.8 | 535 ± 157 | 97.3 ± 3.1 | 378 ± 119 | |
听觉 刺激 | 有效线索 | 97.3 ± 2.7 | 451 ± 180 | 96.1 ± 3.3 | 378 ± 161 |
无效线索 | 95.1 ± 4.1 | 514 ± 146 | 90.0 ± 4.7 | 421 ± 143 | |
视听觉 刺激 | 有效线索 | 96.1 ± 3.1 | 403 ± 179 | 98.7 ± 1.4 | 287 ± 107 |
无效线索 | 96.6 ± 3.7 | 463 ± 156 | 97.3 ± 2.4 | 322 ± 92 |
表3 实验2中不同条件下的正确率(ACC/%)、反应时(RT/ms) (M ± SD)
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.6 ± 2.5 | 488 ± 179 | 98.7 ± 1.4 | 359 ± 123 |
无效线索 | 98.5 ± 1.8 | 535 ± 157 | 97.3 ± 3.1 | 378 ± 119 | |
听觉 刺激 | 有效线索 | 97.3 ± 2.7 | 451 ± 180 | 96.1 ± 3.3 | 378 ± 161 |
无效线索 | 95.1 ± 4.1 | 514 ± 146 | 90.0 ± 4.7 | 421 ± 143 | |
视听觉 刺激 | 有效线索 | 96.1 ± 3.1 | 403 ± 179 | 98.7 ± 1.4 | 287 ± 107 |
无效线索 | 96.6 ± 3.7 | 463 ± 156 | 97.3 ± 2.4 | 322 ± 92 |
图4 (a)为老年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (b)为老年人在各线索类型条件下显著违反Race model的时间窗口; (c)为青年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (d)为青年人在各线索类型条件下显著违反Race model的时间窗口。 注:(b)和(d)中不同颜色表示不同的统计显著性值, *表示峰值。
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.9 ± 2.5 | 446 ± 110 | 99.8 ± 0.4 | 302 ± 74 |
无效线索 | 98.6 ± 4.4 | 546 ± 112 | 99.8 ± 0.3 | 372 ± 97 | |
听觉 刺激 | 有效线索 | 95.4 ± 4.4 | 404 ± 95 | 96.6 ± 2.6 | 298 ± 88 |
无效线索 | 90.6 ± 7.7 | 530 ± 103 | 90.0 ± 8.3 | 429 ± 114 | |
视听觉 刺激 | 有效线索 | 97.9 ± 2.1 | 359 ± 94 | 99.4 ± 0.6 | 237 ± 71 |
无效线索 | 96.1 ± 4.4 | 478 ± 104 | 99.2 ± 1.4 | 322 ± 92 |
表4 实验3中不同条件下的正确率(ACC/%)、反应时(RT/ms) (M ± SD)
目标 刺激 | 线索类型 | 老年人 | 青年人 | ||
---|---|---|---|---|---|
ACC | RT | ACC | RT | ||
视觉 刺激 | 有效线索 | 97.9 ± 2.5 | 446 ± 110 | 99.8 ± 0.4 | 302 ± 74 |
无效线索 | 98.6 ± 4.4 | 546 ± 112 | 99.8 ± 0.3 | 372 ± 97 | |
听觉 刺激 | 有效线索 | 95.4 ± 4.4 | 404 ± 95 | 96.6 ± 2.6 | 298 ± 88 |
无效线索 | 90.6 ± 7.7 | 530 ± 103 | 90.0 ± 8.3 | 429 ± 114 | |
视听觉 刺激 | 有效线索 | 97.9 ± 2.1 | 359 ± 94 | 99.4 ± 0.6 | 237 ± 71 |
无效线索 | 96.1 ± 4.4 | 478 ± 104 | 99.2 ± 1.4 | 322 ± 92 |
图5 (a)为老年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (b)为老年人在各线索类型条件下显著违反Race model的时间窗口; (c)为青年人在各线索类型条件下违反Race model结果, 横轴表示违反Race model的时间窗, 纵轴表示累积概率差异; (d)为青年人在各线索类型条件下显著违反Race model的时间窗口。 注:(b)和(d)中不同颜色表示不同的统计显著性值, *表示峰值。
[1] |
Anderson, R. S., & McDowell, D. R. (1997). Peripheral resolution using stationary and flickering gratings: The effects of age. Current Eye Research, 16(12), 1209-1214.
pmid: 9426953 |
[2] |
Arjona, A., Escudero, M., & Gómez, C. M. (2016). Cue validity probability influences neural processing of targets. Biological Psychology, 119, 171-183.
doi: 10.1016/j.biopsycho.2016.07.001 pmid: 27430935 |
[3] |
Decarli, C., Massaro, J., Harvey, D., Hald, J., Tullberg, M., Au, R., Beiser, A., D’Agostino, R., & Wolf, P. A. (2005). Measures of brain morphology and infarction in the framingham heart study: Establishing what is normal. Neurobiology of Aging, 26(4), 491-510.
doi: 10.1016/j.neurobiolaging.2004.05.004 pmid: 15653178 |
[4] |
Diederich, A., Colonius, H., & Schomburg, A. (2008). Assessing age-related multisensory enhancement with the time window-of-integration model. Neuropsychologia, 46(10), 2556-2562.
doi: 10.1016/j.neuropsychologia.2008.03.026 pmid: 18490033 |
[5] |
Donohue, S. E., Green, J. J., & Woldorff, M. G. (2015). The effects of attention on the temporal integration of multisensory stimuli. Frontiers in Integrative Neuroscience, 9, 32.
doi: 10.3389/fnint.2015.00032 pmid: 25954167 |
[6] |
Erel, H., & Levy, D. A. (2016). Orienting of visual attention in aging. Neuroscience and Biobehavioral Reviews, 69, 357-380.
doi: 10.1016/j.neubiorev.2016.08.010 pmid: 27531234 |
[7] | Fleming, J. T., Noyce, A. L., & Shinn-Cunningham, B. G. (2020). Audio-visual spatial alignment improves integration in the presence of a competing audio-visual stimulus. Neuropsychologia, 146, 1-39. |
[8] |
Folk, C. L., & Hoyer, W. J. (1992). Aging and shifts of visual spatial attention. Psychology and Aging, 7(3), 453-465.
pmid: 1388867 |
[9] |
Gao, Y. L., Li, Q., Yang, W. P., Yang, J., Tang, X. Y., & Wu, J. L. (2014). Effects of ipsilateral and bilateral auditory stimuli on audiovisual integration: A behavioral and event- related potential study. NeuroReport, 25(9), 668-675.
doi: 10.1097/WNR.0000000000000155 URL |
[10] |
Hugenschmidt, C. E., Mozolic, J. L., & Laurienti, P. J. (2009). Suppression of multisensory integration by modality- specific attention in aging. Neuroreport, 20(4), 349-353.
doi: 10.1097/WNR.0b013e328323ab07 pmid: 19218871 |
[11] |
Jones, S. A., & Noppeney, U. (2021). Ageing and multisensory integration: A review of the evidence, and a computational perspective. Cortex, 138, 1-23.
doi: 10.1016/j.cortex.2021.02.001 pmid: 33676086 |
[12] |
Juola, J. F., Koshino, H., Warner, C. B., Mcmickell, M., & Peterson, M. (2000). Automatic and voluntary control of attention in young and older adults. American Journal of Psychology, 113(2), 159-178.
pmid: 10862340 |
[13] |
Laurienti, P. J., Burdette, J. H., Maldjian, J. A., & Wallace, M. T. (2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27(8), 1155-1163.
doi: 10.1016/j.neurobiolaging.2005.05.024 pmid: 16039016 |
[14] |
Li, Q., Wu, J., & Touge, T. (2010). Audiovisual interaction enhances auditory detection in late stage: An event-related potential study. NeuroReport, 21(3), 173-178.
doi: 10.1097/WNR.0b013e3283345f08 pmid: 20065887 |
[15] |
Li, Q., Yang, H., Sun, F., & Wu, J. (2015). Spatiotemporal relationships among audiovisual stimuli modulate auditory facilitation of visual target discrimination. Perception, 44(3), 232-242.
doi: 10.1068/p7846 pmid: 26562250 |
[16] |
Lockhart, S. N., & DeCarli, C. (2014). Structural imaging measures of brain aging. Neuropsychology Review, 24(3), 271-289.
doi: 10.1007/s11065-014-9268-3 pmid: 25146995 |
[17] |
Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279.
doi: 10.1016/0010-0285(82)90010-x pmid: 7083803 |
[18] |
Nardini, M., Bales, J., & D, Mareschal. (2016). Integration of audio-visual information for spatial decisions in children and adults. Developmental Science, 19(5), 803-816.
doi: 10.1111/desc.12327 pmid: 26190579 |
[19] |
Olk, B., & Kingstone, A. (2009). A new look at aging and performance in the antisaccade task: The impact of response selection. European Journal of Cognitive Psychology, 21(2-3), 406-427.
doi: 10.1080/09541440802333190 URL |
[20] |
Parada, H., Laughlin, G. A., Yang, M., Nedjat-Haiem, F. R., & McEvoy, L. K. (2021). Dual impairments in visual and hearing acuity and age-related cognitive decline in older adults from the Rancho Bernardo study of healthy aging. Age and Ageing, 50(4), 1268-1276.
doi: 10.1093/ageing/afaa285 pmid: 33454764 |
[21] |
Peiffer, A. M., Mozolic, J. L., Hugenschmidt, C. E., & Laurienti, P. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection task. Neuroreport, 18(10), 1077-1081.
doi: 10.1097/WNR.0b013e3281e72ae7 pmid: 17558300 |
[22] |
Peng, X., Chang, R. S., Li, Q., Wang, A. J., & Tang, X. Y. (2019). Visually induced inhibition of return affects the audiovisual integration under different SOA conditions. Acta Psychologica Sinica, 51(7), 759-771.
doi: 10.3724/SP.J.1041.2019.00759 |
[彭姓, 常若松, 李奇, 王爱君, 唐晓雨. (2019). 不同 SOA 下视觉返回抑制对视听觉整合的调节作用. 心理学报, 51(7), 759-771.]
doi: 10.3724/SP.J.1041.2019.00759 |
|
[23] |
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25.
doi: 10.1080/00335558008248231 URL |
[24] | Ren, Y., Hou, Y., Huang, J., Li, F., Wang, T., Ren, Y., & Yang, W. (2021). Sustained auditory attentional load decreases audiovisual integration in older and younger adults. Neural Plasticity, 2021(8), 1-10. |
[25] |
Ren, Y., Yang, W., Tang, X., Wu, F., Wu, Q., & Wu, J. (2018). Comparison for younger and older adults: Stimulus temporal asynchrony modulates audiovisual integration. International Journal of Psychophysiology, 124, 1-11.
doi: S0167-8760(17)30167-8 pmid: 29248668 |
[26] | Slessor, G., Venturini, C., Bonny, E. J., Insch, P. M., Rokaszewicz, A., & Finnerty, A. N. (2016). Specificity of age-related differences in eye-gaze following: Evidence from social and nonsocial stimuli. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71(1), 11-22. |
[27] |
Stephen, J. M., Knoefel, J. E., Adair, J., Hart, B., & Aine, C. J. (2010). Aging-related changes in auditory and visual integration measured with MEG. Neuroscience Letters, 484(1), 76-80.
doi: 10.1016/j.neulet.2010.08.023 pmid: 20713130 |
[28] |
Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17(7), 1098-1114.
pmid: 16102239 |
[29] |
Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400-410.
doi: 10.1016/j.tics.2010.06.008 pmid: 20675182 |
[30] |
Tang, X. Y., Wu, J. L., & Shen, Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience and Biobehavioral Reviews, 61, 208-224.
doi: 10.1016/j.neubiorev.2015.11.002 pmid: 26546734 |
[31] |
Tang, X. Y., Wu, Y. N., Peng, X., Wang, A. J., & Li, Q. (2020). The influence of endogenous spatial cue validity on audiovisual integration. Acta Psychologica Sinica, 52(7), 835-846.
doi: 10.3724/SP.J.1041.2020.00835 |
[唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. (2020). 内源性空间线索有效性对视听觉整合的影响. 心理学报, 52(7), 835-846.]
doi: 10.3724/SP.J.1041.2020.00835 |
|
[32] | Tremblay, P., Basirat, A., Pinto, S., & Sato, M. (2021). Visual prediction cues can facilitate behavioural and neural speech processing in young and older adults. Neuropsychologia, 159, 1-17. |
[33] |
van der Stoep, N., van der Stigchel, S., & Nijboer, T. C. W. (2015). Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77(2), 464-482.
doi: 10.3758/s13414-014-0785-1 URL |
[34] |
Vossel, S., Thiel, C. M., & Fink, G. R. (2006). Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage, 32(3), 1257-1264.
doi: 10.1016/j.neuroimage.2006.05.019 pmid: 16846742 |
[35] |
Wu, J. L., Yang, W. P., Gao, Y. L., & Kimura, T. (2012). Age-related multisensory integration elicited by peripherally presented audiovisual stimuli. NeuroReport, 23(10), 616-620.
doi: 10.1097/WNR.0b013e3283552b0f pmid: 22643234 |
[36] |
Yang, W., & Ren, Y. (2018). Attenuated audiovisual integration in middle-aged adults in a discrimination task. Cognitive Processing, 19(1), 41-45.
doi: 10.1007/s10339-017-0838-1 pmid: 28905181 |
[37] |
Yang, W. P., Li, Z., Guo, A., Li, S. N., Yang, X. F., & Ren, Y. N. (2021). Effects of stimulus intensity on audiovisual integration in aging across the temporal dynamics of processing. International Journal of Psychophysiology, 162, 95-103.
doi: 10.1016/j.ijpsycho.2021.01.017 pmid: 33529642 |
[38] | Zivony, A., Erel, H., & Levy, D. A. (2019). Multifactorial effects of aging on the orienting of visual attention. Experimental Gerontology, 128, 1-10. |
[1] | 孟海江, 陈蕾, 王刚, 张剑. 不同形式运动锻炼老年人运动皮层突触可塑性的差异:来自TMS的研究证据[J]. 心理学报, 2023, 55(10): 1653-1661. |
[2] | 温芳芳, 柯文琳, 何赛飞, 佐斌, 李兰心, 马书瀚, 王晶. 群体身份变换性对老年人印象更新的影响:共同内群体认同的中介作用[J]. 心理学报, 2022, 54(9): 1059-1075. |
[3] | 张宝山, 金豆, 马梦佳, 徐冉. 消极刻板印象对老年人医疗决策的影响及归因偏差的作用[J]. 心理学报, 2022, 54(8): 951-963. |
[4] | 张明, 王婷婷, 吴晓刚, 张月娥, 王爱君. 面孔表情和声音情绪信息整合对返回抑制的影响[J]. 心理学报, 2022, 54(4): 331-342. |
[5] | 唐晓雨, 佟佳庚, 于宏, 王爱君. 内外源性空间注意对多感觉整合的影响[J]. 心理学报, 2021, 53(11): 1173-1188. |
[6] | 唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. 内源性空间线索有效性对视听觉整合的影响[J]. 心理学报, 2020, 52(7): 835-846. |
[7] | 王堂生, 杨春亮, 钟年. 记忆的前向测试效应对老年人学习新事物的作用[J]. 心理学报, 2020, 52(11): 1266-1277. |
[8] | 彭姓, 常若松, 李奇, 王爱君, 唐晓雨. 不同SOA下视觉返回抑制对视听觉整合的调节作用[J]. 心理学报, 2019, 51(7): 759-771. |
[9] | 吴国婷, 张敏强, 倪雨菡, 杨亚威, 漆成明, 吴健星. 老年人孤独感及其影响因素的潜在转变分析 *[J]. 心理学报, 2018, 50(9): 1061-1070. |
[10] | 彭华茂, 毛晓飞. 抑制对老年人舌尖现象的影响[J]. 心理学报, 2018, 50(10): 1142-1150. |
[11] | 姚若松, 郭梦诗, 叶浩生. 社会支持对老年人社会幸福感的影响机制:希望与孤独感的中介作用[J]. 心理学报, 2018, 50(10): 1151-1158. |
[12] | 张奇林;周艺梦. 中国城镇低龄退休老年人工作与幸福感的关系[J]. 心理学报, 2017, 49(4): 472-481. |
[13] | 周爱保;刘沛汝;张彦驰;尹玉龙. 老年人的朋友参照效应[J]. 心理学报, 2015, 47(9): 1143-1151. |
[14] | 王大华;杨小洋;王岩;Richard B. Miller. 老年人夫妻依恋的测量及与一般依恋的关系[J]. 心理学报, 2015, 47(9): 1133-1142. |
[15] | 陈栩茜;张积家;朱云霞. 言语产生老化中的抑制损伤:来自不同任务的证据[J]. 心理学报, 2015, 47(3): 329-343. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||