心理学报 ›› 2023, Vol. 55 ›› Issue (10): 1653-1661.doi: 10.3724/SP.J.1041.2023.01653 cstr: 32110.14.2023.01653
收稿日期:
2021-09-24
发布日期:
2023-07-26
出版日期:
2023-10-25
基金资助:
MENG Haijiang1(), CHEN Lei1, WANG Gang1, ZHANG Jian2
Received:
2021-09-24
Online:
2023-07-26
Published:
2023-10-25
摘要:
尽管研究发现运动锻炼会导致大脑运动皮层可塑性改变, 但对不同形式运动锻炼老年人初级运动皮层突触可塑性变化的差异性却知之甚少。研究采用经颅磁刺激技术, 横向比较了乒乓球锻炼老年人、太极拳锻炼老年人和久坐老年人在配对联合刺激(PAS25)前、后动作诱发电位和短时程皮层内抑制的变化。结果发现, 经常参与乒乓球和太极拳运动锻炼老年人PAS25后的动作诱发电位振幅持续增强, 且乒乓球锻炼老年人增强的幅度显著高于太极拳锻炼老年人。三组老年人PAS25后各个时间点的短时程皮层内抑制均没有差异性。提示不同形式运动锻炼老年人初级运动皮层突触可塑性增强存在运动项目差异性。
中图分类号:
孟海江, 陈蕾, 王刚, 张剑. (2023). 不同形式运动锻炼老年人运动皮层突触可塑性的差异:来自TMS的研究证据. 心理学报, 55(10), 1653-1661.
MENG Haijiang, CHEN Lei, WANG Gang, ZHANG Jian. (2023). Differences in motor cortex synaptic plasticity associated with two forms of exercise in older adults: Evidence from TMS studies. Acta Psychologica Sinica, 55(10), 1653-1661.
入选标准 | 排除标准 |
---|---|
1. 60~70岁 | 1. 患有阿尔茨海默症或者其它神经退行性疾病 |
2. 自愿参与整个研究 | 2. 简易精神状态测试得分 ≤ 26分 |
3. 能够填写书面知情同意书 | 3. 由于神经肌肉或肌肉骨骼的限制而无法运动人群 |
4. 经常参与乒乓球或太极拳锻炼或经常久坐人群 | 4. 具有精神分裂症、情感性障碍或抑郁症等心理疾病 |
5. 具有睡眠障碍病史 | |
6. 近2年内有酗酒依赖史 | |
7. 近5年内有癌症病史或其它严重的系统性疾病 | |
8. 具有高血压、冠心病及其它器质性心脏病 | |
9. 具有内分泌代谢疾病、糖尿病病史 | |
10. 除乒乓球或太极拳运动外还经常参与其它形式运动 |
表1 本研究调查对象入选标准和排除标准一览表
入选标准 | 排除标准 |
---|---|
1. 60~70岁 | 1. 患有阿尔茨海默症或者其它神经退行性疾病 |
2. 自愿参与整个研究 | 2. 简易精神状态测试得分 ≤ 26分 |
3. 能够填写书面知情同意书 | 3. 由于神经肌肉或肌肉骨骼的限制而无法运动人群 |
4. 经常参与乒乓球或太极拳锻炼或经常久坐人群 | 4. 具有精神分裂症、情感性障碍或抑郁症等心理疾病 |
5. 具有睡眠障碍病史 | |
6. 近2年内有酗酒依赖史 | |
7. 近5年内有癌症病史或其它严重的系统性疾病 | |
8. 具有高血压、冠心病及其它器质性心脏病 | |
9. 具有内分泌代谢疾病、糖尿病病史 | |
10. 除乒乓球或太极拳运动外还经常参与其它形式运动 |
变量 | 乒乓球组 (18名) | 太极拳组 (18名) | 久坐组 (18名) |
---|---|---|---|
平均年龄(岁) | 66.11 ± 3.36 | 65.61 ± 3.40 | 64.89 ± 3.03 |
性别(n女) | 7 | 10 | 9 |
教育年限(年) | 11.83 ± 2.36 | 11.33 ± 3.34 | 12.39 ± 2.35 |
简易精神状态得分 | 27.83 ± 0.86 | 27.78 ± 1.06 | 27.61 ± 0.70 |
表2 三组调查对象基本情况一览表(M ± SD)
变量 | 乒乓球组 (18名) | 太极拳组 (18名) | 久坐组 (18名) |
---|---|---|---|
平均年龄(岁) | 66.11 ± 3.36 | 65.61 ± 3.40 | 64.89 ± 3.03 |
性别(n女) | 7 | 10 | 9 |
教育年限(年) | 11.83 ± 2.36 | 11.33 ± 3.34 | 12.39 ± 2.35 |
简易精神状态得分 | 27.83 ± 0.86 | 27.78 ± 1.06 | 27.61 ± 0.70 |
变量 | 乒乓球组 (18名) | 太极拳组 (18名) | 久坐组 (18名) |
---|---|---|---|
运动时间 (分钟/每次) | 128.33 ± 9.01 | 116.67 ± 7.23 | / |
运动强度 | 中等及以上 | 中等及以上 | / |
运动频率 (次/每周) | 5.78 ± 0.29 | 6.28 ± 0.24 | / |
久坐时间 (分钟/每天) | 281.67 ± 30.40 | 271.67 ± 22.29 | 596.67 ± 29.29** |
RMT (%) | 38.17 ± 1.28 | 39.67 ± 1.65 | 40.67 ± 1.38 |
1 mV刺激 强度(%) | 52.17 ± 1.55 | 54.44 ± 2.19 | 54.56 ± 1.47 |
感觉阈值 (mA) | 2.18 ± 0.06 | 2.18 ± 0.09 | 2.29 ± 0.07 |
表3 三组调查对象参与运动锻炼情况及刺激前基线特征
变量 | 乒乓球组 (18名) | 太极拳组 (18名) | 久坐组 (18名) |
---|---|---|---|
运动时间 (分钟/每次) | 128.33 ± 9.01 | 116.67 ± 7.23 | / |
运动强度 | 中等及以上 | 中等及以上 | / |
运动频率 (次/每周) | 5.78 ± 0.29 | 6.28 ± 0.24 | / |
久坐时间 (分钟/每天) | 281.67 ± 30.40 | 271.67 ± 22.29 | 596.67 ± 29.29** |
RMT (%) | 38.17 ± 1.28 | 39.67 ± 1.65 | 40.67 ± 1.38 |
1 mV刺激 强度(%) | 52.17 ± 1.55 | 54.44 ± 2.19 | 54.56 ± 1.47 |
感觉阈值 (mA) | 2.18 ± 0.06 | 2.18 ± 0.09 | 2.29 ± 0.07 |
[1] |
Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776-1782.
pmid: 16959909 |
[2] |
Bai, X. J., Shao, M. L., Liu, T., Yin, J. Z., & Jin, H. (2020). Altered structural plasticity in early adulthood after badminton training. Acta Psychologica Sinica, 52(2), 173-183.
doi: 10.3724/SP.J.1041.2020.00173 |
[白学军, 邵梦灵, 刘婷, 尹建忠, 金花. (2020). 羽毛球运动重塑成年早期的大脑灰质和白质结构. 心理学报, 52(2), 173-183.]
doi: 10.3724/SP.J.1041.2020.00173 |
|
[3] |
Chekroud, S. R., Gueorguieva, R., Zheutlin, A. B., Paulus, M., Krumholz, H. M., Krystal, J. H., & Chekroud, A. M. (2018). Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: A cross-sectional study. The Lancet Psychiatry, 5(9), 739-746.
doi: 10.1016/S2215-0366(18)30227-X URL |
[4] |
Cirillo, J., Lavender, A. P., Ridding, M. C., & Semmler, J. G. (2009). Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. The Journal of Physiology, 587(24), 5831-5842.
doi: 10.1113/jphysiol.2009.181834 URL |
[5] | Dai, W., Zhang, J., & Tan, X. Y. (2017). Comparison of brain plasticity between table tennis and badminton athletes. China Sport Science and Technology, 53(6), 127-132. |
[戴雯, 张剑, 谭晓缨. (2017). 乒乓球和羽毛球运动员大脑可塑性差异比较. 中国体育科技, 53(6), 127-132.] | |
[6] | Daoudal, G., & Debanne, D. (2003). Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. Learning & Memory, 10(6), 456-465. |
[7] |
Di Lazzaro, V., Oliviero, A., Saturno, E., Dileone., M., Pilato, F., Nardone, R.,... Tonali, P. (2005). Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. The Journal of Physiology, 564(2), 661-668.
doi: 10.1113/jphysiol.2004.061747 URL |
[8] |
Elahi, B., Gunraj, C., & Chen, R. (2012). Short-interval intracortical inhibition blocks long-term potentiation induced by paired associative stimulation. Journal of Neurophysiology, 107(7), 1935-1941.
doi: 10.1152/jn.00202.2011 pmid: 22236712 |
[9] |
Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British journal of sports medicine, 43(1), 22-24.
doi: 10.1136/bjsm.2008.052498 pmid: 18927158 |
[10] |
Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187-199.
doi: 10.1016/j.neuron.2007.06.026 pmid: 17640522 |
[11] |
Heidegger, T., Krakow, K., & Ziemann, U. (2010). Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex. European Journal of Neuroscience, 32(7), 1215-1222.
doi: 10.1111/j.1460-9568.2010.07375.x pmid: 20726885 |
[12] |
Iino, Y., & Kojima, T. (2011). Kinetics of the upper limb during table tennis topspin forehands in advanced and intermediate players. Sports Biomechanics, 10(4), 361-377.
pmid: 22303787 |
[13] |
Jones, E. G. (2000). Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annual Review of Neuroscience, 23, 1-37.
pmid: 10845057 |
[14] |
Kujirai, T., Caramia, M. D., Rothwell, J. C., Day, B. L., Thompson, P. D., Ferbert, A.,... Marsden, C. D. (1993). Corticocortical inhibition in human motor cortex. The Journal of Physiology, 471, 501-519.
doi: 10.1113/jphysiol.1993.sp019912 URL |
[15] |
Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5-21.
doi: 10.1016/j.neuron.2004.09.012 pmid: 15450156 |
[16] | Maruyama, A., Takahashi, K., Eto, S., Kawahira, K., & Rothwell, J. C. (2008). Sensory-motor intracortical excitability and imagery of grip touch in racket players. Brain Stimulation, 1(3), 245. |
[17] |
Milkman, K. L., Gromet, D., Ho, H., Kay, J. S., Lee, T. W., Pandiloski, P.,... Duckworth, A. L. (2021). Megastudies improve the impact of applied behavioural science. Nature, 600(7889), 478-483.
doi: 10.1038/s41586-021-04128-4 |
[18] |
Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E., & Chen, R. (2006). Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain, 129(4), 1059-1069.
doi: 10.1093/brain/awl031 URL |
[19] |
Morishita, T., Ninomiya, M., Uehara, K., & Funase, K. (2011). Increased excitability and reduced intracortical inhibition in the ipsilateral primary motor cortex during a fine-motor manipulation task. Brain Research, 1371, 65-73.
doi: 10.1016/j.brainres.2010.11.049 pmid: 21093420 |
[20] |
Muellbacher, W., Facchini, S., Boroojerdi, B., & Hallett, M. (2000). Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clinical Neurophysiology, 111(2), 344-349.
pmid: 10680571 |
[21] |
Ni, Z., Gunraj, C., Kailey, P., Cash, R. F. H., & Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21), 7314-7321.
doi: 10.1523/JNEUROSCI.4714-13.2014 pmid: 24849363 |
[22] |
Ni, Z., Isayama, R., Castillo, G., Gunraj, C., Saha, U., & Chen, R. (2015). Reduced dorsal premotor cortex and primary motor cortex connectivity in older adults. Neurobiology of Aging, 36(1), 301-303.
doi: 10.1016/j.neurobiolaging.2014.08.017 pmid: 25216584 |
[23] |
Ni, Z., Müller-Dahlhaus, F., Chen, R., & Ziemann, U. (2011). Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimulation, 4(4), 281-293.
doi: 10.1016/j.brs.2011.01.002 pmid: 22032744 |
[24] |
Okano, A. H., Fontes, E. B., Montenegro, R. A., Farinatti, P. T. V., Cyrino, E. S., Li, L. M., Bikson, M., & Noakes, T. D. (2015). Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. British Journal of Sports Medicine, 49(18), 1213-1218.
doi: 10.1136/bjsports-2012-091658 pmid: 23446641 |
[25] |
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377-401.
pmid: 16022601 |
[26] |
Patterson, R., McNamara, E., Tainio, M., Hérick de Sá, T., Smith, A. D., Sharp, S. J., Edwards, P., Woodcock, J., Brage, S., & Wijndaele, K. (2018). Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. European Journal of Epidemiology, 33(9), 811-829.
doi: 10.1007/s10654-018-0380-1 pmid: 29589226 |
[27] |
Pearce, A. J., Thickbroom, G. W., Byrnes, M. L., & Mastaglia, F. L. (2000). Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Experimental Brain Research, 130(2), 238-243.
doi: 10.1007/s002219900236 pmid: 10672477 |
[28] |
Rogge, A. K., Röder, B., Zech, A., & Hötting, K. (2018). Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage, 179, 471-479.
doi: 10.1016/j.neuroimage.2018.06.065 URL |
[29] |
Rosenkranz, K., Williamon, A., & Rothwell, J. C. (2007). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. Journal of Neuroscience, 27(19), 5200-5206.
doi: 10.1523/JNEUROSCI.0836-07.2007 pmid: 17494706 |
[30] |
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R., & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123(3), 572-584.
doi: 10.1093/brain/123.3.572 URL |
[31] |
Stefan, K., Wycislo, M., Gentner, R., Schramm, A., Naumann, M., Reiners, K., & Classen, J. (2006). Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cerebral Cortex, 16(3), 376-385.
pmid: 15930370 |
[32] |
Stinear, C. M., Walker, K. S., & Byblow, W. D. (2001). Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles. Experimental Brain Research, 139(1), 101-105.
doi: 10.1007/s002210100758 pmid: 11482835 |
[33] | Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation & Neural Repair, 19(4), 283-295. |
[34] |
Ward, N. S. (2006). Compensatory mechanisms in the aging motor system. Ageing Research Reviews, 5(3), 239-254.
doi: 10.1016/j.arr.2006.04.003 pmid: 16905372 |
[35] |
Wu, Y., Zeng, Y., Zhang, L., Wang, S., Wang, D., Tan, X., Zhu, X., Zhang, J., & Zhang, J. (2013). The role of visual perception in action anticipation in basketball athletes. Neuroscience, 237, 29-41.
doi: 10.1016/j.neuroscience.2013.01.048 pmid: 23384606 |
[36] | Wu, Y., Zhang, J., Zeng, Y., & Shen, C. (2015). Structural brain plasticity change in athletes associated with different sports. China Sport Science, 35(4), 52-57. |
[吴殷, 张剑, 曾雨雯, 沈城. (2015). 不同类型运动项目对运动员大脑结构可塑性变化研究. 体育科学, 35(4), 52-57.] | |
[37] |
Ziemann, U., Iliać, T. V., Pauli, C., Meintzschel, F., & Ruge, D. (2004). Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. Journal of Neuroscience, 24(7), 1666-1672.
doi: 10.1523/JNEUROSCI.5016-03.2004 pmid: 14973238 |
[1] | 袁航, 罗思阳. 研究社会文化变迁的新视角——表征相似性分析:以老年人心理健康为例[J]. 心理学报, 2024, 56(7): 938-953. |
[2] | 邱义, 常香玉, 涂毅恒. 双靶点经颅直流电刺激调控短时和持续性疼痛:一项双盲、随机对照研究[J]. 心理学报, 2024, 56(10): 1313-1327. |
[3] | 王妹, 程思, 李宜伟, 李红, 张丹丹. 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究[J]. 心理学报, 2023, 55(7): 1063-1073. |
[4] | 高玉林, 唐晓雨, 刘思宇, 王爱君, 张明. 内源性空间线索有效性对老年人视听觉整合的影响[J]. 心理学报, 2023, 55(5): 671-684. |
[5] | 温芳芳, 柯文琳, 何赛飞, 佐斌, 李兰心, 马书瀚, 王晶. 群体身份变换性对老年人印象更新的影响:共同内群体认同的中介作用[J]. 心理学报, 2022, 54(9): 1059-1075. |
[6] | 张宝山, 金豆, 马梦佳, 徐冉. 消极刻板印象对老年人医疗决策的影响及归因偏差的作用[J]. 心理学报, 2022, 54(8): 951-963. |
[7] | 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504. |
[8] | 陈玉明, 李思瑾, 郭田友, 谢慧, 徐锋, 张丹丹. 背外侧前额叶对主动遗忘负性社会反馈的作用:针对抑郁症的TMS研究[J]. 心理学报, 2021, 53(10): 1094-1104. |
[9] | 曹娜, 孟海江, 王艳秋, 邱方晖, 谭晓缨, 吴殷, 张剑. 左侧背外侧前额叶在程序性运动学习中的作用[J]. 心理学报, 2020, 52(5): 597-608. |
[10] | 王堂生, 杨春亮, 钟年. 记忆的前向测试效应对老年人学习新事物的作用[J]. 心理学报, 2020, 52(11): 1266-1277. |
[11] | 吴国婷, 张敏强, 倪雨菡, 杨亚威, 漆成明, 吴健星. 老年人孤独感及其影响因素的潜在转变分析 *[J]. 心理学报, 2018, 50(9): 1061-1070. |
[12] | 姚若松, 郭梦诗, 叶浩生. 社会支持对老年人社会幸福感的影响机制:希望与孤独感的中介作用[J]. 心理学报, 2018, 50(10): 1151-1158. |
[13] | 彭华茂, 毛晓飞. 抑制对老年人舌尖现象的影响[J]. 心理学报, 2018, 50(10): 1142-1150. |
[14] | 张奇林;周艺梦. 中国城镇低龄退休老年人工作与幸福感的关系[J]. 心理学报, 2017, 49(4): 472-481. |
[15] | 白学军;张琪涵;章鹏;周菘;刘颖;宋星;彭国慧. 基于fNIRS的运动执行与运动想象脑激活模式比较[J]. 心理学报, 2016, 48(5): 495-508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||