心理学报 ›› 2023, Vol. 55 ›› Issue (7): 1063-1073.doi: 10.3724/SP.J.1041.2023.01063
王妹1,2, 程思2, 李宜伟1, 李红1, 张丹丹1,3()
收稿日期:
2022-11-23
发布日期:
2023-04-21
出版日期:
2023-07-25
通讯作者:
张丹丹, E-mail: zhangdd05@gmail.com
作者简介:
共同第一作者: 王妹、程思。
基金资助:
WANG Mei1,2, CHENG Si2, LI Yiwei1, LI Hong1, ZHANG Dandan1,3()
Received:
2022-11-23
Online:
2023-04-21
Published:
2023-07-25
摘要:
为考察安慰剂效应在情绪调节中的脑机制, 本研究以社会排斥图片为情绪诱发材料诱发社会疼痛, 采用经颅磁刺激技术(transcranial magnetic stimulation, TMS)激活背外侧前额叶(dorsolateral prefrontal cortex, DLPFC), 并使用事件相关电位观测TMS对安慰剂下调社会疼痛的影响。实验以“TMS组别” (DLPFC组、控制组)为被试间变量, “安慰剂条件” (安慰剂、非安慰剂)为被试内因素。结果发现, DLPFC组(n = 50)比控制组(n = 50)在安慰剂条件下报告的负性情绪更弱, 反映情绪体验强度的晚正成分的波幅也更低, 上述组间差异在非安慰剂条件不显著。结果还表明, DLPFC组比控制组更相信安慰剂的效果, 愿意花更多的钱来购买安慰剂。此外相关结果发现, 由DLPFC激活导致的安慰剂效应增强可有效降低社交焦虑倾向被试的负性社会情绪。本研究是结合脑调控和脑观测技术探讨安慰剂情绪调节脑机制的首次尝试, 研究发现不但揭示了DLPFC在安慰剂调节情绪过程中的重要因果作用, 还为临床治疗以情绪失调为主要症状的抑郁焦虑等精神障碍患者提供了脑调控干预的可行性脑靶点。
中图分类号:
王妹, 程思, 李宜伟, 李红, 张丹丹. (2023). 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究. 心理学报, 55(7), 1063-1073.
WANG Mei, CHENG Si, LI Yiwei, LI Hong, ZHANG Dandan. (2023). The role of dorsolateral prefrontal cortex on placebo effect of regulating social pain: A TMS study. Acta Psychologica Sinica, 55(7), 1063-1073.
变量 | 控制组 (n = 50) | DLPFC组 (n = 50) | 统计结果 |
---|---|---|---|
年龄(岁) | 19.42 ± 0.18 | 19.66 ± 0.25 | t = −0.78, p = 0.437 |
性别(男/女) | 22/28 | 24/26 | χ2 = 0.16, p = 0.688 |
抑郁(BDI-II) | 6.46 ± 0.99 | 7.36 ± 0.92 | t = −0.67, p = 0.507 |
社交焦虑(LSAS) | 51.54 ± 3.11 | 49.62 ± 3.15 | t = 0.43, p = 0.666 |
共情(IRI) | 47.10 ± 1.51 | 50.40 ± 1.54 | t = −1.53, p = 0.129 |
表1 本研究两组被试的人口学特征
变量 | 控制组 (n = 50) | DLPFC组 (n = 50) | 统计结果 |
---|---|---|---|
年龄(岁) | 19.42 ± 0.18 | 19.66 ± 0.25 | t = −0.78, p = 0.437 |
性别(男/女) | 22/28 | 24/26 | χ2 = 0.16, p = 0.688 |
抑郁(BDI-II) | 6.46 ± 0.99 | 7.36 ± 0.92 | t = −0.67, p = 0.507 |
社交焦虑(LSAS) | 51.54 ± 3.11 | 49.62 ± 3.15 | t = 0.43, p = 0.666 |
共情(IRI) | 47.10 ± 1.51 | 50.40 ± 1.54 | t = −1.53, p = 0.129 |
图2 主要结果。A. 被试的负性情绪强度评分。1~9点评分:1代表“一点也不难受”, 9代表“非常难受”。B. 脑电晚正成分(LPP)的幅度。图中的误差条(error bar)代表标准误。小圆圈表示单个被试的数据。*p < 0.05, **p < 0.01。C. LPP波形图。该波形为Pz、P3、P4、CP1和CP2的平均波幅。D. LPP的地形图。该地形图的呈现时间窗为图片出现后的1~6秒的均值。
[1] | Amanzio, M., Benedetti, F., Porro, C. A., Palermo, S., & Cauda, F. (2013). Activation likelihood estimation meta- analysis of brain correlates of placebo analgesia in human experimental pain. Human Brain Mapping, 34(3), 738-752. https://doi.org/10.1002/hbm.21471 |
[2] |
Ashar, Y. K., Chang, L. J., & Wager, T. D. (2017). Brain mechanisms of the placebo effect: an affective appraisal account. Annual Review of Clinical Psychology, 13, 73-89. https://doi.org/10.1146/annurev-clinpsy-021815-093015
doi: 10.1146/annurev-clinpsy-021815-093015 URL pmid: 28375723 |
[3] |
Atlas, L. Y., & Wager, T. D. (2014). A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Handbook of Experimental Pharmacology, 225, 37-69. https://doi.org/10.1007/978-3-662-44519-8
doi: 10.1007/978-3-662-44519-8_3 URL pmid: 25304525 |
[4] | Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory (2nd ed.). San Antonio, TX: The Psychological Corporation. |
[5] |
Benedetti, F. (2014). Placebo effects: from the neurobiological paradigm to translational implications. Neuron, 84(3), 623-637. https://doi.org/10.1016/j.neuron.2014.10.023
doi: 10.1016/j.neuron.2014.10.023 URL pmid: 25442940 |
[6] |
Blalock, D. V., Kashdan, T. B., & Farmer, A. S. (2016). Trait and daily emotion regulation in social anxiety disorder. Cognitive Therapy and Research, 40(3), 416-425. https:// doi.org/10.1007/s10608-015-9739-8
doi: 10.1007/s10608-015-9739-8 URL |
[7] |
Braunstein, L. M., Gross, J. J., & Ochsner, K. N. (2017). Explicit and implicit emotion regulation: a multi-level framework. Social Cognitive and Affective Neuroscience, 12(10), 1545-1557. https://doi.org/10.1093/scan/nsx096
doi: 10.1093/scan/nsx096 URL pmid: 28981910 |
[8] |
Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet, 395(10227), 912-920. https://doi.org/10.1016/S0140-6736(20)30460-8
doi: 10.1016/S0140-6736(20)30460-8 URL |
[9] |
Brühl, A. B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder-a meta-analytic review resulting in a new neurofunctional model. Neuroscience and Biobehavioral Reviews, 47, 260-280. https://doi.org/10.1016/j.neubiorev.2014.08.003
doi: 10.1016/j.neubiorev.2014.08.003 URL |
[10] |
Buhle, J. T., Stevens, B. L., Friedman, J. J., & Wager, T. D. (2012). Distraction and placebo: Two separate routes to pain control. Psychological Science, 23(3), 246-253. https://doi.org/10.1177/0956797611427919
doi: 10.1177/0956797611427919 URL pmid: 22261568 |
[11] |
Buhle, J. T., Silvers, J. A., Wage, T. D., Lopez, R., Onyemekwu, C., Kober, H., Webe, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981-2990. https://doi.org/10.1093/cercor/bht154
doi: 10.1093/cercor/bht154 URL |
[12] |
Colloca, L. (2019). The placebo effect in pain therapies. Annual Review of Pharmacology and Toxicology, 59, 191-211. https://doi.org/10.1146/annurev-pharmtox-010818-021542
doi: 10.1146/annurev-pharmtox-010818-021542 URL pmid: 30216744 |
[13] |
Colloca, L., & Barsky, A. J. (2020). Placebo and nocebo effects. New England Journal of Medicine, 382(6), 554-561. https://doi.org/10.1056/nejmra1907805
doi: 10.1056/NEJMra1907805 URL |
[14] | Davis, M. H., & Association, A. P. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85. http://www.uv.es/-friasnav/Davis_1980.pdf |
[15] |
Dryman, M. T., & Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clinical Psychology Review, 65, 17-42. https://doi.org/10.1016/j.cpr.2018.07.004
doi: S0272-7358(18)30071-0 URL pmid: 30064053 |
[16] |
Egorova, N., Yu, R., Kaur, N., Vangel, M., Gollub, R. L., Dougherty, D. D., Kong, J., & Camprodon, J. A. (2015). Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain, 156(7), 1342-1347. https://doi.org/10.1097/j.pain.0000000000000163
doi: 10.1097/j.pain.0000000000000163 URL pmid: 25806605 |
[17] |
Eisenberger, N. I. (2015). Social pain and the brain: controversies, questions, and where to go from here. Annual Review of Psychology, 66, 601-629. https://doi.org/10.1146/annurev-psych-010213-115146
doi: 10.1146/annurev-psych-010213-115146 URL pmid: 25251482 |
[18] | Ellingsen, D. M., Wessberg, J., Eikemo, M., Liljencrantz, J., Endestad, T., Olausson, H., & Leknes, S. (2013). Placebo improves pleasure and pain through opposite modulation of sensory processing. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17993-17998. https://doi.org/10.1073/pnas.1305050110 |
[19] |
Fu, J., Wu, S., Liu, C., Camilleri, J. A., Eickhoff, S. B., & Yu, R. (2021). Distinct neural networks subserve placebo analgesia and nocebo hyperalgesia. NeuroImage, 231, 117833. https://doi.org/10.1016/j.neuroimage.2021.117833
doi: 10.1016/j.neuroimage.2021.117833 URL |
[20] |
Geuter, S., Eippert, F., Hindi Attar, C., & Büchel, C. (2013). Cortical and subcortical responses to high and low effective placebo treatments. NeuroImage, 67, 227-236. https://doi.org/10.1016/j.neuroimage.2012.11.029
doi: 10.1016/j.neuroimage.2012.11.029 URL pmid: 23201367 |
[21] |
Goldin, P. R., Manber-Ball, T., Werner, K., Heimberg, R., & Gross, J. J. (2009). Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biological Psychiatry, 66(12), 1091-1099. https://doi.org/10.1016/j.biopsych.2009.07.014
doi: 10.1016/j.biopsych.2009.07.014 URL pmid: 19717138 |
[22] |
Gu, R., Ao, X., Mo, L., & Zhang, D. (2020). Neural correlates of negative expectancy and impaired social feedback processing in social anxiety. Social Cognitive and Affective Neuroscience, 15(3), 285-291. https://doi.org/10.1093/scan/nsaa038
doi: 10.1093/scan/nsaa038 URL pmid: 32232371 |
[23] |
Guevarra, D. A., Moser, J. S., Wager, T. D., & Kross, E. (2020). Placebos without deception reduce self-report and neural measures of emotional distress. Nature Communications, 11(1), 3785. https://doi.org/10.1038/s41467-020-17654-y
doi: 10.1038/s41467-020-17654-y URL pmid: 32728026 |
[24] |
Hajcak, G., Macnamara, A., & Olvet, D. M. (2010). Event- related potentials, emotion and emotion regulation : An integrative review. Developmental Neuropsychology, 35(2), 129-155. https://doi.org/10.1080/87565640903526504
doi: 10.1080/87565640903526504 URL pmid: 20390599 |
[25] |
He, Z., Lin, Y., Xia, L., Liu, Z., Zhang, D., & Elliott, R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357-366. https://doi.org/10.1093/scan/nsy026
doi: 10.1093/scan/nsy026 URL pmid: 29618116 |
[26] |
He, Z., Zhao, J., Shen, J., Muhlert, N., Elliott, R., & Zhang, D. (2020). The right VLPFC and downregulation of social pain: A TMS study. Human Brain Mapping, 41(5), 1362-1371. https://doi.org/10.1002/hbm.24881
doi: 10.1002/hbm.24881 URL pmid: 31789480 |
[27] |
Heeren, A., Dricot, L., Billieux, J., Philippot, P., Grynberg, D., de Timary, P., & Maurage, P. (2017). Correlates of social exclusion in social anxiety disorder: An fMRI study. Scientific Reports, 7(1), 260. https://doi.org/10.1038/s41598-017-00310-9
doi: 10.1038/s41598-017-00310-9 URL pmid: 28325901 |
[28] |
Holt-Lunstad, J. (2021). A pandemic of social isolation? World Psychiatry, 20(1), 55-56. https://doi.org/10.1002/wps.20839
doi: 10.1002/wps.v20.1 URL |
[29] |
Kennedy, H., & Montreuil, T. C. (2021). The late positive potential as a reliable neural marker of cognitive reappraisal in children and youth: A brief review of the research literature. Frontiers in Psychology, 11, 608522. https://doi.org/10.3389/fpsyg.2020.608522
doi: 10.3389/fpsyg.2020.608522 URL |
[30] |
Kivity, Y., & Huppert, J. D. (2019). Emotion regulation in social anxiety: A systematic investigation and meta- analysis using self-report, subjective, and event-related potentials measures. Cognition and Emotion, 33(2), 213-230. https://doi.org/10.1080/02699931.2018.1446414
doi: 10.1080/02699931.2018.1446414 URL pmid: 29514588 |
[31] |
Koban, L., Kross, E., Woo, C. W., Ruzic, L., & Wager, T. D. (2017). Frontal-brainstem pathways mediating placebo effects on social rejection. Journal of Neuroscience, 37(13), 3621-3631. https://doi.org/10.1523/JNEUROSCI.2658-16.2017
doi: 10.1523/JNEUROSCI.2658-16.2017 URL pmid: 28264983 |
[32] |
Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation -- An ALE meta-analysis and MACM analysis. NeuroImage, 87, 345-355. https://doi.org/10.1016/j.neuroimage.2013.11.001
doi: 10.1016/j.neuroimage.2013.11.001 URL pmid: 24220041 |
[33] |
Kong, J., Jensen, K., Loiotile, R., Cheetham, A., Wey, H. Y., Tan, Y., … Gollub, R. L. (2013). Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain, 154(3), 459-467. https://doi.org/10.1016/j.pain.2012.12.004
doi: 10.1016/j.pain.2012.12.004 URL pmid: 23352757 |
[34] |
Kong, J., Kaptchuk, T. J., Polich, G., Kirsch, I., & Gollub, R. L. (2007). Placebo analgesia: Findings from brain imaging studies and emerging hypotheses. Reviews in the Neurosciences, 18(3-4), 173-190. https://doi.org/10.1515/REVNEURO.2007.18.3-4.173
URL pmid: 18019605 |
[35] |
Krummenacher, P., Candia, V., Folkers, G., Schedlowski, M., & Schönbächler, G. (2010). Prefrontal cortex modulates placebo analgesia. Pain, 148(3), 368-374. https://doi.org/10.1016/j.pain.2009.09.033
doi: 10.1016/j.pain.2009.09.033 URL pmid: 19875233 |
[36] | Lau, J. Y. F., & Waters, A. M. (2017). Annual research review: An expanded account of information-processing mechanisms in risk for child and adolescent anxiety and depression. Journal of Child Psychology and Psychiatry and Allied Disciplines, 58(4), 387-407. https://doi.org/10.1111/jcpp.12653 |
[37] |
Li, S., Xie, H., Zheng, Z., Chen, W., Xu, F., Hu, X., & Zhang, D. (2022). The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. Human Brain Mapping, 43(9), 2898-2910. https://doi.org/10.1002/hbm.25824
doi: 10.1002/hbm.25824 URL pmid: 35261115 |
[38] |
Liebowitz, M (1987) Social phobia. Modern Problems of Pharmacopsychiatry, 22, 141-173.
pmid: 2885745 |
[39] |
Linnman, C., Catana, C., Petkov, M. P., Chonde, D. B., Becerra, L., Hooker, J., & Borsook, D. (2018). Molecular and functional PET-fMRI measures of placebo analgesia in episodic migraine: preliminary findings. NeuroImage. Clinical, 17, 680-690. https://doi.org/10.1016/j.nicl.2017. 11.011
doi: 10.1016/j.nicl.2017.11.011 URL |
[40] |
Lui, F., Colloca, L., Duzzi, D., Anchisi, D., Benedetti, F., & Porro, C. A. (2010). Neural bases of conditioned placebo analgesia. Pain, 151(3), 816-824. https://doi.org/10.1016/j.pain.2010.09.021
doi: 10.1016/j.pain.2010.09.021 URL pmid: 20943318 |
[41] |
Mayberg, H. S., Silva, J. A., Brannan, S. K., Tekell, J. L., Mahurin, R. K., McGinnis, S., & Jerabek, P. A. (2002). The functional neuroanatomy of the placebo effect. American Journal of Psychiatry, 159(5), 728-737. https://doi.org/10.1176/appi.ajp.159.5.728
doi: 10.1176/appi.ajp.159.5.728 URL pmid: 11986125 |
[42] |
Meyer, B., Yuen, K. S. L., Ertl, M., Polomac, N., Mulert, C., Büchel, C., & Kalisch, R. (2015). Neural mechanisms of placebo anxiolysis. Journal of Neuroscience, 35(19), 7365-7373. https://doi.org/10.1523/JNEUROSCI.4793-14.2015
doi: 10.1523/JNEUROSCI.4793-14.2015 URL pmid: 25972166 |
[43] |
Meyer, B., Yuen, K. S. L., Saase, V., & Kalisch, R. (2018). The functional role of large-scale brain network coordination in placebo-induced anxiolysis. Cerebral Cortex, 29(8), 3201-3210. https://doi.org/10.1093/cercor/bhy188
doi: 10.1093/cercor/bhy188 URL |
[44] |
Peciña, M., Bohnert, A. S. B., Sikora, M., Avery, E. T., Langenecker, S. A., Mickey, B. J., & Zubieta, J. K. (2015). Association between placebo-activated neural systems and antidepressant responses: neurochemistry of placebo effects in major depression. JAMA Psychiatry, 72(11), 1087-1094. https://doi.org/10.1001/jamapsychiatry.2015.1335
doi: 10.1001/jamapsychiatry.2015.1335 URL pmid: 26421634 |
[45] |
Petrovic, P., Dietrich, T., Fransson, P., Andersson, J., Carlsson, K., & Ingvar, M. (2005). Placebo in emotional processing- induced expectations of anxiety relief activate a generalized modulatory network. Neuron, 46(6), 957-969. https://doi.org/10.1016/j.neuron.2005.05.023
doi: 10.1016/j.neuron.2005.05.023 URL pmid: 15953423 |
[46] |
Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59(1), 565-590. https://doi.org/10.1146/annurev.psych.59.113006.095941
doi: 10.1146/psych.2008.59.issue-1 URL |
[47] |
Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A., & Phelps, E. A. (2013). Cognitive emotion regulation fails the stress test. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15139-15144. https://doi.org/10.1073/pnas.1305706110
doi: 10.1073/pnas.1305706110 URL pmid: 23980142 |
[48] |
Robinson, H., Sheen, E., Sliwinski, R., Mu, J., & Compton, R. J. (2021). Find the silver lining or ignore the cloud? Cognitive reappraisal versus visual attention training. Emotion, 21(6), 1204-1212. https://doi.org/10.1037/emo0000983
doi: 10.1037/emo0000983 URL pmid: 34351197 |
[49] |
Schaefer, M., Denke, C., Harke, R., Olk, N., Erkovan, M., & Enge, S. (2019). Open-label placebos reduce test anxiety and improve self-management skills: A randomized- controlled trial. Scientific Reports, 9(1), 13317. https://doi.org/10.1038/s41598-019-49466-6
doi: 10.1038/s41598-019-49466-6 URL pmid: 31527670 |
[50] |
Schienle, A., Gremsl, A., Übel, S., & Körner, C. (2016). Testing the effects of a disgust placebo with eye tracking. International Journal of Psychophysiology, 101, 69-75. https://doi.org/10.1016/j.ijpsycho.2016.01.001
doi: 10.1016/j.ijpsycho.2016.01.001 URL pmid: 26773671 |
[51] |
Schienle, A., Übel, S., Schöngaßner, F., Ille, R., & Scharmüller, W. (2014). Disgust regulation via placebo: An fMRI study. Social Cognitive and Affective Neuroscience, 9(7), 985-990. https://doi.org/10.1093/scan/nst072
doi: 10.1093/scan/nst072 URL pmid: 23868896 |
[52] |
Schienle, A., Übel, S., & Wabnegger, A. (2017). When opposites lead to the same: a direct comparison of explicit and implicit disgust regulation via fMRI. Social Cognitive and Affective Neuroscience, 12(3), 445-451. https://doi.org/10.1093/scan/nsw144
doi: 10.1093/scan/nsw144 URL pmid: 27665000 |
[53] |
Schienle, A., Unger, I., & Schwab, D. (2022). Changes in neural processing and evaluation of negative facial expressions after administration of an open-label placebo. Scientific Reports, 12(1), 6577. https://doi.org/10.1038/s41598-022-10567-4
doi: 10.1038/s41598-022-10567-4 URL pmid: 35449194 |
[54] | Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Annual International Conference of the IEEE Engineering in Medicine and Biology Society(pp. 222-225). Milan, Italy. https://doi.org/10.1109/EMBC.2015.7318340 |
[55] | Tu, Y., Wilson, G., Camprodon, J., Dougherty, D. D., Vangel, M., & Benedetti, F. (2021). Manipulating placebo analgesia and nocebo hyperalgesia by changing brain excitability. Proceedings of the National Academy of Sciences of the United States of America, 118(19), e2101273118. https://doi.org/10.1073/pnas.2101273118 |
[56] |
Valero-Cabré, A., Amengual, J. L., Stengel, C., Pascual-Leone, A., & Coubard, O. A. (2017). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience and Biobehavioral Reviews, 83(October),381-404. https://doi.org/10.1016/j.neubiorev.2017.10.006
doi: S0149-7634(17)30484-0 URL pmid: 29032089 |
[57] |
Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: Connecting context, learning and health. Nature Reviews Neuroscience, 16(7), 403-418. https://doi.org/10.1038/nrn3976
doi: 10.1038/nrn3976 URL pmid: 26087681 |
[58] |
Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., … Cohen, J. D. (2004). Placebo-induced Changes in fMRI in the anticipation and experience of pain. Science, 303(5661), 1162-1167. https://doi.org/10.1126/science.1093065
doi: 10.1126/science.1093065 URL pmid: 14976306 |
[59] | Wang, Y., Guo, L., Fan, J., Mao, Z., Wang, Y., Guo, L., Fan, J., & Mao, Z. (2022). Expectations come true: the placebo effect of exercise on affective responses. Research Quarterly for Exercise and Sport, https://doi.org/10.1080/02701367.2022.2121372 |
[60] |
Xiang, Y. T., Yang, Y., Li, W., Zhang, L., Zhang, Q., Cheung, T., & Ng, C. H. (2020). Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry, 7(3), 228-229. https://doi.org/10.1016/S2215-0366(20)30046-8
doi: 10.1016/S2215-0366(20)30046-8 URL |
[61] | Yuan, J., Zhang, Y., Zhao, Y., Gao, K., Tan, S., & Zhang, D. (2022). The emotion-regulation benefits of implicit reappraisal in clinical depression: behavioral and electrophysiological evidence. Neuroscience Bulletin. https://doi.org/10.1007/s12264-022-00973-z |
[62] |
Zhao, J., Mo, L., Bi, R., He, Z., Chen, Y., Xu, F., Xie, H., & Zhang, D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. Journal of Neuroscience, 41(6), 1331-1339. https://doi.org/10.1523/JNEUROSCI.1906-20.2020
doi: 10.1523/JNEUROSCI.1906-20.2020 URL pmid: 33443069 |
[63] | Zheng, Z., Li, S., Mo, L., Chen, W., & Zhang, D. (2021). ISIEA: an image database of social inclusion and exclusion in young Asian adults. Behavior Research Methods, 54(5), 2409-2421. https://doi.org/10.3758/s13428-021-01736-w |
[64] |
Zunhammer, M., Spisák, T., Wager, T. D., Bingel, U., & Placebo, Imaging Consortium. (2021). Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nature Communications, 12(1), 1391. https://doi.org/10.1038/s41467-021-21179-3
doi: 10.1038/s41467-021-21179-3 URL pmid: 33654105 |
[1] | 谢慧, 林轩怡, 胡婉柔, 胡晓晴. 情绪调节促进负性社会反馈的遗忘:来自行为和脑电的证据[J]. 心理学报, 2023, 55(6): 905-919. |
[2] | 王小琴, 谈雅菲, 蒙杰, 刘源, 位东涛, 杨文静, 邱江. 情绪调节灵活性对负性情绪的影响:来自经验取样的证据[J]. 心理学报, 2023, 55(2): 192-209. |
[3] | 高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. 腹内侧前额叶在内隐认知重评中的因果作用[J]. 心理学报, 2023, 55(2): 210-223. |
[4] | 靳娟娟, 邵蕾, 黄潇潇, 张亚利, 俞国良. 社会排斥与攻击的关系:一项元分析[J]. 心理学报, 2023, 55(12): 1979-1996. |
[5] | 孟海江, 陈蕾, 王刚, 张剑. 不同形式运动锻炼老年人运动皮层突触可塑性的差异:来自TMS的研究证据[J]. 心理学报, 2023, 55(10): 1653-1661. |
[6] | 刘宇平, 周冰涛, 杨波. 情绪如何引发暴力犯的攻击?基于情绪调节理论的解释[J]. 心理学报, 2022, 54(3): 270-280. |
[7] | 程瑞, 卢克龙, 郝宁. 愤怒情绪对恶意创造力的影响及调节策略[J]. 心理学报, 2021, 53(8): 847-860. |
[8] | 袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455. |
[9] | 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504. |
[10] | 陈玉明, 李思瑾, 郭田友, 谢慧, 徐锋, 张丹丹. 背外侧前额叶对主动遗忘负性社会反馈的作用:针对抑郁症的TMS研究[J]. 心理学报, 2021, 53(10): 1094-1104. |
[11] | 华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056. |
[12] | 曹娜, 孟海江, 王艳秋, 邱方晖, 谭晓缨, 吴殷, 张剑. 左侧背外侧前额叶在程序性运动学习中的作用[J]. 心理学报, 2020, 52(5): 597-608. |
[13] | 张丹丹, 王驹, 赵君, 陈淑美, 黄琰淋, 高秋凤. 抑郁倾向对合作的影响:双人同步近红外脑成像研究[J]. 心理学报, 2020, 52(5): 609-622. |
[14] | 孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406. |
[15] | 孙岩, 薄思雨, 吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||