心理学报 ›› 2023, Vol. 55 ›› Issue (10): 1587-1596.doi: 10.3724/SP.J.1041.2023.01587
• 研究报告 • 下一篇
收稿日期:
2022-09-06
发布日期:
2023-07-26
出版日期:
2023-10-25
通讯作者:
雷旭, E-mail: xlei@swu.edu.cn
基金资助:
QIN Huiyi1, DING Lihong1, DUAN Wei1,2, LEI Xu1()
Received:
2022-09-06
Online:
2023-07-26
Published:
2023-10-25
摘要:
基于脑电探讨心理过程的认知神经机制, 需要信号本身具有良好的重测信度。本研究多角度对比了睁眼、闭眼两种静息态脑电以及精神运动警觉任务、Oddball两种任务态事件相关电位的重测信度。发现静息态的重测信度普遍优于任务态, 其中闭眼静息态又比睁眼静息态的重测信度更高, alpha频段的重测信度在所有频段中最高。对于两种任务态, 在时域上均表现为刺激出现后200 ms左右较高的重测信度。在空间上, 5种状态的结果都表明中央区域比外周区域的重测信度更高, 这可能与外周区域更容易出现伪迹有关。本研究涉及多个静息态和任务态脑电实验, 在频域、时域、空域三个维度的特征上, 较为全面地对比了重测信度并分析了可能的原因, 为后续研究脑电信号重测信度选择合适的实验范式和指标提出了建议, 对于基础和临床领域的脑电应用都具有重要参考价值。
中图分类号:
覃慧怡, 丁丽洪, 段威, 雷旭. (2023). 脑电的重测信度:在多项静息态和任务态实验中的对比. 心理学报, 55(10), 1587-1596.
QIN Huiyi, DING Lihong, DUAN Wei, LEI Xu. (2023). Test-retest reliability of EEG: A comparison across multiple resting-state and task-state experiments. Acta Psychologica Sinica, 55(10), 1587-1596.
图1 两种静息态EEG和三种任务态ERP在3次实验(session)中的频谱图(A)和波形图(B)。电极位置均为Cz, 实线表示均值, 浅色阴影表示标准误。(A)静息态两种条件的频谱图, 横轴代表频率, 纵轴代表绝对功率值, 紫色线条代表睁眼静息态(EO), 绿色线条代表闭眼静息态(EC)。(B)任务态三种条件的波形图, 横轴代表时间, 纵轴代表幅值, 黑色线条代表PVT范式, 黄色线条代表Oddball范式中的偏差刺激(Oddball-D), 蓝色线条代表Oddball范式中的标准刺激(Oddball-S)。彩图见网络版。 注:EO: eyes-open; EC: eyes-close; PVT: psychomotor vigilance task; Oddball-D: deviant stimulus of oddball task; Oddball-S: Standard stimulus of oddball task.
图2 ICC值在5种条件的功率(A)和幅值(B)中的分布情况, 包括所有电极、频率点(rsEEG)和时间点(ERPs)。横轴代表条件, 纵轴代表ICC值。黑色参考线代表平均值, 红色参考线代表中值。(A)静息态两种条件下ICC值的分布情况。(B)任务态三种条件下ICC值的分布情况。彩图见网络版。 注:EO: eyes-open; EC:eyes-close; PVT: psychomotor vigilance task; Oddball-D: deviant stimulus of oddball task; Oddball-S: Standard stimulus of oddball task.
统计指标 | 实验条件 | ||||
---|---|---|---|---|---|
EO | EC | PVT | Oddball-D | Oddball-S | |
均值 ± 标准差 | 0.54 ± 0.16 | 0.55 ± 0.19 | 0.50 ± 0.13 | 0.33 ± 0.13 | 0.33 ± 0.16 |
最大值 | 0.91 | 0.94 | 0.82 | 0.68 | 0.80 |
中值 | 0.53 | 0.56 | 0.51 | 0.35 | 0.35 |
差异检验 | EC > EO, t = -2.71, p = 0.007 | PVT > Oddball-D / Oddball-S, F = 753.16, p < 0.001 |
表1 5种条件下ICC的整体分布情况
统计指标 | 实验条件 | ||||
---|---|---|---|---|---|
EO | EC | PVT | Oddball-D | Oddball-S | |
均值 ± 标准差 | 0.54 ± 0.16 | 0.55 ± 0.19 | 0.50 ± 0.13 | 0.33 ± 0.13 | 0.33 ± 0.16 |
最大值 | 0.91 | 0.94 | 0.82 | 0.68 | 0.80 |
中值 | 0.53 | 0.56 | 0.51 | 0.35 | 0.35 |
差异检验 | EC > EO, t = -2.71, p = 0.007 | PVT > Oddball-D / Oddball-S, F = 753.16, p < 0.001 |
图3 所有电极ICC值在5种条件中的变化情况。实线表示均值, 浅色阴影表示标准误。(A)静息态两种条件下ICC值的变化, 横轴代表频率, 纵轴代表ICC值, 紫色线条代表睁眼静息态(EO), 绿色线条代表闭眼静息态(EC)。(B)任务态三种条件下ICC值的变化, 横轴代表时间, 纵轴代表ICC值, 黑色线条代表PVT范式, 黄色线条代表Oddball范式中的偏差刺激(Oddball-D), 蓝色线条代表Oddball范式中的标准刺激(Oddball-S)。彩图见网络版。 注:EO: eyes-open; EC: eyes-close; PVT: psychomotor vigilance task; Oddball-D: deviant stimulus of oddball task; Oddball-S: Standard stimulus of oddball task.
图4 rsEEG的alpha频段和ERP的P2成分对应的ICC值在头表的分布 注:EO: eyes-open; EC: eyes-close; PVT: psychomotor vigilance task; Oddball-D: deviant stimulus of oddball task; Oddball-S: Standard stimulus of oddball task. 彩图见网络版。
统计指标 | EO | EC | PVT | Oddball-D | Oddball-S | |||||
---|---|---|---|---|---|---|---|---|---|---|
中央 | 外周 | 中央 | 外周 | 中央 | 外周 | 中央 | 外周 | 中央 | 外周 | |
ICC平均值 | 0.81 | 0.76 | 0.82 | 0.79 | 0.69 | 0.59 | 0.46 | 0.38 | 0.52 | 0.50 |
ICC方差 | 0.0007 | 0.0021 | 0.0010 | 0.0017 | 0.0026 | 0.0222 | 0.0072 | 0.0100 | 0.0106 | 0.0127 |
t | 5.42 | 3.10 | 3.52 | 3.26 | 0.44 | |||||
p | <0.001 | 0.003 | 0.001 | 0.002 | 0.661 |
表2 5种条件下2个感兴趣区的ICC值及其独立样本t检验结果
统计指标 | EO | EC | PVT | Oddball-D | Oddball-S | |||||
---|---|---|---|---|---|---|---|---|---|---|
中央 | 外周 | 中央 | 外周 | 中央 | 外周 | 中央 | 外周 | 中央 | 外周 | |
ICC平均值 | 0.81 | 0.76 | 0.82 | 0.79 | 0.69 | 0.59 | 0.46 | 0.38 | 0.52 | 0.50 |
ICC方差 | 0.0007 | 0.0021 | 0.0010 | 0.0017 | 0.0026 | 0.0222 | 0.0072 | 0.0100 | 0.0106 | 0.0127 |
t | 5.42 | 3.10 | 3.52 | 3.26 | 0.44 | |||||
p | <0.001 | 0.003 | 0.001 | 0.002 | 0.661 |
[1] | Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from functional magnetic resonance imaging? Annals of the New York Academy of Sciences, 1191(1), 133-155. |
[2] |
Bonanni, L., Thomas, A., Tiraboschi, P., Perfetti, B., Varanese, S., & Onofrj, M. (2008). EEG comparisons in early Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease with dementia patients with a 2-year follow-up. Brain, 131(3), 690-705.
doi: 10.1093/brain/awm322 URL |
[3] |
Burgess, A., & Gruzelier, J. (1993). Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalography and Clinical Neurophysiology, 86(4), 219-223.
pmid: 7682923 |
[4] |
Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., Phillips, S. M., Scruggs, A. M., & Riehl, T. C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience Letters, 518(1), 27-31.
doi: 10.1016/j.neulet.2012.04.035 pmid: 22575610 |
[5] |
Cassidy, S. M., Robertson, I. H., & O'Connell, R. G. (2012). Retest reliability of event-related potentials: Evidence from a variety of paradigms. Psychophysiology, 49(5), 659-664.
doi: 10.1111/j.1469-8986.2011.01349.x pmid: 22335452 |
[6] |
Cohen, M. X. (2017). Rigor and replication in time-frequency analyses of cognitive electrophysiology data. International Journal of Psychophysiology, 111, 80-87.
doi: S0167-8760(16)30009-5 pmid: 26876335 |
[7] |
Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., & Ramos-Loyo, J. (2007). Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clinical Neurophysiology, 118(1), 9-21.
doi: 10.1016/j.clinph.2006.08.013 pmid: 17055781 |
[8] |
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 43-56.
doi: 10.1038/nrn2961 pmid: 21170073 |
[9] |
Ding, L., Duan, W., Wang, Y., & Lei, X. (2022). Test-retest reproducibility comparison in resting and the mental task states: A sensor and source-level EEG spectral analysis. International Journal of Psychophysiology, 173, 20-28.
doi: 10.1016/j.ijpsycho.2022.01.003 pmid: 35017028 |
[10] |
Duan, W., Chen, X., Wang, Y.-J., Zhao, W., Yuan, H., & Lei, X. (2021). Reproducibility of power spectrum, functional connectivity and network construction in resting-state EEG. Journal of Neuroscience Methods, 348, 108985.
doi: 10.1016/j.jneumeth.2020.108985 URL |
[11] | Elliott, M., Knodt, A., Ireland, D., Morris, M., Poulton, R., Ramrakha, S.,... Hariri, A. (2020). What is the test-retest reliability of common task-fMRI measures? New empirical evidence and a meta-analysis. Biological Psychiatry, 31(7), 792-806. |
[12] | Feyissa, A. M., & Tatum, W. O. (2019). Adult EEG. Handbook of Clinical Neurology, 160, 103-124. |
[13] |
Hoedlmoser, K., Griessenberger, H., Fellinger, R., Freunberger, R., Klimesch, W., Gruber, W., & Schabus, M. (2011). Event-related activity and phase locking during a psychomotor vigilance task over the course of sleep deprivation. Journal of Sleep Research, 20(3), 377-385.
doi: 10.1111/j.1365-2869.2010.00892.x pmid: 20977513 |
[14] |
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
doi: 10.1016/j.brainresrev.2006.06.003 pmid: 16887192 |
[15] |
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163.
doi: 10.1016/j.jcm.2016.02.012 pmid: 27330520 |
[16] |
Lew, B. J., Fitzgerald, E. E., Ott, L. R., Penhale, S. H., & Wilson, T. W. (2021). Three-year reliability of MEG resting-state oscillatory power. Neuroimage, 243, 118516.
doi: 10.1016/j.neuroimage.2021.118516 URL |
[17] |
Lugo, Z. R., Pokorny, C., Pellas, F., Noirhomme, Q., Laureys, S., Müller-Putz, G., & Kübler, A. (2020). Mental imagery for brain-computer interface control and communication in non-responsive individuals. Annals of Physical and Rehabilitation Medicine, 63(1), 21-27.
doi: S1877-0657(19)30035-1 pmid: 30978530 |
[18] |
Martín-Buro, M. C., Garcés, P., & Maestú, F. (2016). Test- retest reliability of resting-state magnetoencephalography power in sensor and source space. Human Brain Mapping, 37(1), 179-190.
doi: 10.1002/hbm.23027 pmid: 26467848 |
[19] |
McEvoy, L. K., Smith, M. E., & Gevins, A. (2000). Test-retest reliability of cognitive EEG. Clinical Neurophysiology, 111(3), 457-463.
pmid: 10699407 |
[20] |
Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12, 521.
doi: 10.3389/fnhum.2018.00521 URL |
[21] |
Rotondi, F., Franceschetti, S., Avanzini, G., & Panzica, F. (2016). Altered EEG resting-state effective connectivity in drug-naïve childhood absence epilepsy. Clinical Neurophysiology, 127(2), 1130-1137.
doi: S1388-2457(15)00801-9 pmid: 26437574 |
[22] |
Salinsky, M. C., Oken, B. S., & Morehead, L. (1991). Test-retest reliability in EEG frequency analysis. Electroencephalography and Clinical Neurophysiology, 79(5), 382-392.
pmid: 1718711 |
[23] |
Shirk, S. D., McLaren, D. G., Bloomfield, J. S., Powers, A., Duffy, A., Mitchell, M. B.,... Atri, A. (2017). Inter-rater reliability of preprocessing EEG data: Impact of subjective artifact removal on associative memory task ERP results. Frontiers in Neuroscience, 11, 322.
doi: 10.3389/fnins.2017.00322 pmid: 28670264 |
[24] |
Siebenhühner, F., Weiss, S. A., Coppola, R., Weinberger, D. R., & Bassett, D. S. (2013). Intra-and inter-frequency brain network structure in health and schizophrenia. Plos One, 8(8), e72351.
doi: 10.1371/journal.pone.0072351 URL |
[25] |
Suarez-Revelo, J., Ochoa-Gomez, J., & Duque-Grajales, J. (2016). Improving test-retest reliability of quantitative electroencephalography using different preprocessing approaches. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2016, 961-964.
doi: 10.1109/EMBC.2016.7590861 pmid: 28268483 |
[26] | Tatum, W. O., Olga, S., Ochoa, J. G., Munger Clary, H., Cheek, J., Drislane, F., & Tsuchida, T. N. (2016). American Clinical Neurophysiology Society guideline 7: Guidelines for EEG reporting. Journal of Clinical Neurophysiology, 56(4), 285-293. |
[27] |
Uusberg, A., Uibo, H., Kreegipuu, K., & Allik, J. (2013). EEG alpha and cortical inhibition in affective attention. International Journal of Psychophysiology, 89(1), 26-36.
doi: 10.1016/j.ijpsycho.2013.04.020 pmid: 23643563 |
[28] |
Vanhaudenhuyse, A., Laureys, S., & Perrin, F. (2008). Cognitive event-related potentials in comatose and post- comatose states. Neurocritical Care, 8(2), 262-270.
doi: 10.1007/s12028-007-9016-0 pmid: 17990124 |
[29] |
Wang, Y., Duan, W., Dong, D., Ding, L., & Lei, X. (2022). A test-retest resting, and cognitive state EEG dataset during multiple subject-driven states. Scientific Data, 9(1), 566.
doi: 10.1038/s41597-022-01607-9 pmid: 36100589 |
[30] | Zhao, W. R., Li, C. Y., Chen, J. J., & Lei, X. (2020). Insomnia disorder and hyperarousal: Evidence from resting-state and sleeping EEG. Scientia Sinica (Vitae), 50(3), 270-286. |
[赵文瑞, 李陈渝, 陈军君, 雷旭. (2020). 失眠障碍与过度觉醒:来自静息态脑电和睡眠脑电的证据. 中国科学:生命科学, 50(3), 270-286.] | |
[31] |
Zhao, W., van Someren, E. J. W., Li, C., Chen, X., Gui, W., Tian, Y.,... Lei, X. (2021). EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. Sleep Medicine Reviews, 59, 101457.
doi: 10.1016/j.smrv.2021.101457 URL |
[32] |
Zuo, X. N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuroscience research. Nature Human Behaviour, 3(8), 768-771.
doi: 10.1038/s41562-019-0655-x |
[1] | 张文芸, 卓诗维, 郑倩倩, 关颖琳, 彭微微. 自闭特质对疼痛共情的影响:疼痛负性情绪和认知的中介作用[J]. 心理学报, 2023, 55(9): 1501-1517. |
[2] | 谢慧, 林轩怡, 胡婉柔, 胡晓晴. 情绪调节促进负性社会反馈的遗忘:来自行为和脑电的证据[J]. 心理学报, 2023, 55(6): 905-919. |
[3] | 崔芳, 廖心明, 杨嘉望, 刘洁. 数学焦虑影响数学概念知识加工的脑机制:静息态功能磁共振研究[J]. 心理学报, 2023, 55(6): 968-977. |
[4] | 李彧, 位东涛, 邱江. 抑郁症的人格类型及其脑功能连接基础[J]. 心理学报, 2023, 55(5): 740-751. |
[5] | 李为, 边子茗, 陈曦梅, 王俊杰, 罗一君, 刘永, 宋诗情, 高笑, 陈红. 9~12岁儿童应激与额颞区的关联: 来自多模态脑影像的证据[J]. 心理学报, 2023, 55(4): 572-587. |
[6] | 钟毅平, 牛娜娜, 范伟, 任梦梦, 李梅. 动作自主性与社会距离对主动控制感的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(12): 1932-1948. |
[7] | 李梅, 李琎, 张冠斐, 钟毅平, 李红. 承诺水平与社会距离对信任投资的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(11): 1859-1871. |
[8] | 孙芳, 宋巍, 温晓通, 李欢欢, 欧阳李晟, 魏诗洁. 痛苦逃避和自我参照惩罚条件下脑电特征对自杀意念的分类效能[J]. 心理学报, 2022, 54(9): 1031-1047. |
[9] | 占友龙, 肖啸, 谭千保, 李琎, 钟毅平. 声誉关注与社会距离对伤害困境中道德决策的影响:来自行为与ERPs的证据[J]. 心理学报, 2022, 54(6): 613-627. |
[10] | 范伟, 任梦梦, 张文洁, 钟毅平. 反馈对自我欺骗的影响:来自ERP的证据[J]. 心理学报, 2022, 54(5): 481-496. |
[11] | 李建花, 解佳佳, 庄锦英. 生理周期对情景记忆的影响[J]. 心理学报, 2022, 54(5): 466-480. |
[12] | 罗文波, 齐正阳. 词汇具体性对情绪名词效价加工影响的ERP研究[J]. 心理学报, 2022, 54(2): 111-121. |
[13] | 杨集梅, 柴洁余, 邱天龙, 全小山, 郑茂平. 共情与中国民族音乐情绪识别的关系:来自ERP的证据[J]. 心理学报, 2022, 54(10): 1181-1192. |
[14] | 蔡惠燕, 苗心, 王鹏飞, 林志为, 王孟成, 杨文登, 麻彦坤, 曾红. 长期戒断海洛因成瘾者冲动性相关脑区的结构及功能特征[J]. 心理学报, 2021, 53(8): 861-874. |
[15] | 陈杰, 伍可, 史宇鹏, 艾小青. 特质性自我构念与内外群体疼痛共情的关系: 来自事件相关电位的证据[J]. 心理学报, 2021, 53(6): 629-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||