心理学报 ›› 2023, Vol. 55 ›› Issue (10): 1597-1607.doi: 10.3724/SP.J.1041.2023.01597
收稿日期:
2023-04-24
发布日期:
2023-07-26
出版日期:
2023-10-25
通讯作者:
刘志雅, E-mail: zhiyaliu@scnu.edu.cn
基金资助:
YUE Fang, CHEN Jianping, GAN Kexin, WANG Yuqing, LIU Zhiya()
Received:
2023-04-24
Online:
2023-07-26
Published:
2023-10-25
摘要:
本研究采用四类别交叉重叠结构, 探索了不同学习方式(集中、交错、随机和自主)对基于规则和信息整合类别学习的影响, 通过计算模型的数据分析方法对265名被试的学习策略进行了模型拟合。结果发现, 在基于规则和信息整合任务中, 自主学习者均能较多地使用最优策略, 自主学习的分类正确率均显著高于集中学习的分类正确率。并没有出现前人发现的规则学习的集中学习优势和信息整合学习的交错学习优势。结果表明, 自主学习存在学习效率上的优势而集中学习存在劣势, 可能是因为交叉重叠类别结构对自主学习的影响相对少于对集中学习的影响。
中图分类号:
岳芳, 陈剑平, 甘可鑫, 王宇情, 刘志雅. (2023). 交叉重叠类别结构的自主学习优势和集中学习劣势. 心理学报, 55(10), 1597-1607.
YUE Fang, CHEN Jianping, GAN Kexin, WANG Yuqing, LIU Zhiya. (2023). Self-regulated learning advantage and blocked learning disadvantage on overlapping category structure. Acta Psychologica Sinica, 55(10), 1597-1607.
基于规则的类别结构 | μo | μl | ơl | ơo | covlo |
---|---|---|---|---|---|
A | 100 | 200 | 30 | 30 | 0 |
B | 200 | 200 | 30 | 30 | 0 |
C | 200 | 100 | 30 | 30 | 0 |
D | 100 | 100 | 30 | 30 | 0 |
表1 基于规则的类别结构参数表
基于规则的类别结构 | μo | μl | ơl | ơo | covlo |
---|---|---|---|---|---|
A | 100 | 200 | 30 | 30 | 0 |
B | 200 | 200 | 30 | 30 | 0 |
C | 200 | 100 | 30 | 30 | 0 |
D | 100 | 100 | 30 | 30 | 0 |
信息整合的类别结构 | μo | μl | ơl | ơo | covlo |
---|---|---|---|---|---|
A | 150 | 220 | 30 | 30 | 0 |
B | 220 | 150 | 30 | 30 | 0 |
C | 150 | 80 | 30 | 30 | 0 |
D | 80 | 150 | 30 | 30 | 0 |
表2 信息整合的类别结构参数表
信息整合的类别结构 | μo | μl | ơl | ơo | covlo |
---|---|---|---|---|---|
A | 150 | 220 | 30 | 30 | 0 |
B | 220 | 150 | 30 | 30 | 0 |
C | 150 | 80 | 30 | 30 | 0 |
D | 80 | 150 | 30 | 30 | 0 |
类别结构 | 集中 | 交错 | 随机 | 自主 | 总平均正确率 |
---|---|---|---|---|---|
基于规则的类别结构 | 0.48 ± 0.14 | 0.60 ± 0.16 | 0.64 ± 0.14 | 0.63 ± 0.16 | 0.59 ± 0.16 |
信息整合的类别结构 | 0.59 ± 0.13 | 0.65 ± 0.09 | 0.66 ± 0.12 | 0.68 ± 0.11 | 0.64 ± 0.12 |
表3 两种类别结构下不同学习方式的平均分类正确率(M ± SD)
类别结构 | 集中 | 交错 | 随机 | 自主 | 总平均正确率 |
---|---|---|---|---|---|
基于规则的类别结构 | 0.48 ± 0.14 | 0.60 ± 0.16 | 0.64 ± 0.14 | 0.63 ± 0.16 | 0.59 ± 0.16 |
信息整合的类别结构 | 0.59 ± 0.13 | 0.65 ± 0.09 | 0.66 ± 0.12 | 0.68 ± 0.11 | 0.64 ± 0.12 |
类别结构 | 集中 | 交错 | 随机 | 自主 | 总平均反应时 |
---|---|---|---|---|---|
基于规则的类别结构 | 1.45 ± 0.40 | 1.36 ± 0.40 | 1.31 ± 0.36 | 1.33 ± 0.31 | 1.36 ± 0.37 |
信息整合的类别结构 | 1.26 ± 0.35 | 1.35 ± 0.38 | 1.29 ± 0.30 | 1.23 ± 0.24 | 1.28 ± 0.32 |
表4 两种类别结构下不同学习方式的平均反应时(M ± SD)
类别结构 | 集中 | 交错 | 随机 | 自主 | 总平均反应时 |
---|---|---|---|---|---|
基于规则的类别结构 | 1.45 ± 0.40 | 1.36 ± 0.40 | 1.31 ± 0.36 | 1.33 ± 0.31 | 1.36 ± 0.37 |
信息整合的类别结构 | 1.26 ± 0.35 | 1.35 ± 0.38 | 1.29 ± 0.30 | 1.23 ± 0.24 | 1.28 ± 0.32 |
类别结构 | 切换率 | 集中学习的最长长度 | 集中学习的平均长度 | 交错学习的最长长度 | 交错学习的平均长度 |
---|---|---|---|---|---|
基于规则的类别结构 | 0.49 ± 0.30 | 11.52 ± 7.88 | 6.24 ± 5.58 | 23.05 ± 25.65 | 8.50 ± 16.30 |
信息整合的类别结构 | 0.44 ± 0.28 | 10.76 ± 7.13 | 6.24 ± 5.86 | 18.67 ± 20.85 | 8.03 ± 17.11 |
表5 衡量学习者集中和交错学习倾向程度的相关指标(M ± SD)
类别结构 | 切换率 | 集中学习的最长长度 | 集中学习的平均长度 | 交错学习的最长长度 | 交错学习的平均长度 |
---|---|---|---|---|---|
基于规则的类别结构 | 0.49 ± 0.30 | 11.52 ± 7.88 | 6.24 ± 5.58 | 23.05 ± 25.65 | 8.50 ± 16.30 |
信息整合的类别结构 | 0.44 ± 0.28 | 10.76 ± 7.13 | 6.24 ± 5.86 | 18.67 ± 20.85 | 8.03 ± 17.11 |
学习策略 | 基于规则的类别结构 | 信息整合的类别结构 | |||||||
---|---|---|---|---|---|---|---|---|---|
集中 | 交错 | 随机 | 自主 | 集中 | 交错 | 随机 | 自主 | ||
一维长度 | 11 (34.4%) | 0 (0.0%) | 1 (2.8%) | 4 (10.5%) | 5 (16.7%) | 1 (3.3%) | 1 (2.9%) | 5 (15.2%) | |
一维角度 | 4 (12.5%) | 5 (16.7%) | 7 (19.4%) | 2 (5.3%) | 2 (6.7%) | 4 (13.3%) | 5 (14.7%) | 2 (6.1%) | |
联合规则 | 12 (37.5%) | 22 (73.3%) | 26 (72.2%) | 28 (73.7%) | 2 (6.7%) | 2 (6.7%) | 0 (0.0%) | 0 (0.0%) | |
信息整合 | 0 (0.0%) | 0 (0.0%) | 1 (2.8%) | 2 (5.3%) | 20 (66.7%) | 23 (76.7%) | 26 (76.5%) | 25 (75.8%) | |
随机响应 | 5 (15.6%) | 3 (10.0%) | 1 (2.8%) | 2 (5.3%) | 1 (3.3%) | 0 (0.0%) | 2 (5.9%) | 1 (3.0%) |
表6 基于规则和信息整合类别结构下学习策略拟合的人数与占比
学习策略 | 基于规则的类别结构 | 信息整合的类别结构 | |||||||
---|---|---|---|---|---|---|---|---|---|
集中 | 交错 | 随机 | 自主 | 集中 | 交错 | 随机 | 自主 | ||
一维长度 | 11 (34.4%) | 0 (0.0%) | 1 (2.8%) | 4 (10.5%) | 5 (16.7%) | 1 (3.3%) | 1 (2.9%) | 5 (15.2%) | |
一维角度 | 4 (12.5%) | 5 (16.7%) | 7 (19.4%) | 2 (5.3%) | 2 (6.7%) | 4 (13.3%) | 5 (14.7%) | 2 (6.1%) | |
联合规则 | 12 (37.5%) | 22 (73.3%) | 26 (72.2%) | 28 (73.7%) | 2 (6.7%) | 2 (6.7%) | 0 (0.0%) | 0 (0.0%) | |
信息整合 | 0 (0.0%) | 0 (0.0%) | 1 (2.8%) | 2 (5.3%) | 20 (66.7%) | 23 (76.7%) | 26 (76.5%) | 25 (75.8%) | |
随机响应 | 5 (15.6%) | 3 (10.0%) | 1 (2.8%) | 2 (5.3%) | 1 (3.3%) | 0 (0.0%) | 2 (5.9%) | 1 (3.0%) |
[1] |
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3), 442-481. https://doi.org/10.1037/0033-295X.105.3.442
URL pmid: 9697427 |
[2] |
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 33-53. https://doi.org/10.1037/0278-7393.14.1.33
doi: 10.1037/0278-7393.14.1.33 URL |
[3] |
Ashby, F. G., & Maddox, W. T. (1992). Complex decision rules in categorization: Contrasting novice and experienced performance. Journal of Experimental Psychology: Human Perception and Performance, 18(1), 50-71. https://doi.org/10.1037/0096-1523.18.1.50
doi: 10.1037/0096-1523.18.1.50 URL |
[4] | Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224(1), 147-161. https://doi.org/10.1111/j.1749-6632.2010.05874.x |
[5] |
Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of unidimensional rules in unsupervised categorization. Perception & Psychophysics, 61(6), 1178-1199. https://doi.org/10.3758/BF03207622
doi: 10.3758/BF03207622 URL |
[6] |
Ashby, F. G., Smith, J. D., & Rosedahl, L. A. (2020). Dissociations between rule-based and information-integration categorization are not caused by differences in task difficulty. Memory & Cognition, 48(4), 541-552. https://doi.org/10.3758/s13421-019-00988-4
doi: 10.3758/s13421-019-00988-4 URL |
[7] | Ashby, F. G., & Valentin, V. V. (2017). Multiple systems of perceptual category learning:Theory and cognitive tests. In H. Cohen & C. Lefebvre (Eds.), Handbook of Categorization in Cognitive Science (2nd ed., pp. 157-188). Elsevier. https://doi.org/10.1016/B978-0-08-101107-2.00007-5 |
[8] |
Carvalho, P. F., & Goldstone, R. L. (2014). Putting category learning in order: Category structure and temporal arrangement affect the benefit of interleaved over blocked study. Memory & Cognition, 42(3), 481-495. https://doi.org/10.3758/s13421-013-0371-0
doi: 10.3758/s13421-013-0371-0 URL |
[9] |
Ell, S. W., & Ashby, F. G. (2006). The effects of category overlap on information-integration and rule-based category learning. Perception and Psychophysics, 68(6), 1013-1026. https://doi.org/10.3758/bf03193362
URL pmid: 17153195 |
[10] |
Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127(2), 107-140. https://doi.org/10.1037/0096-3445.127.2.107
doi: 10.1037/0096-3445.127.2.107 URL |
[11] |
Gureckis, T. M., & Markant, D. B. (2012). Self-directed learning: A cognitive and computational perspective. Perspectives on Psychological Science, 7(5), 464-481. https://doi.org/10.1177/1745691612454304
doi: 10.1177/1745691612454304 URL pmid: 26168504 |
[12] |
Kang, S. H. K., & Pashler, H. (2012). Learning painting styles: Spacing is advantageous when it promotes discriminative contrast. Applied Cognitive Psychology, 26(1), 97-103. https://doi.org/10.1002/acp.1801
doi: 10.1002/acp.v26.1 URL |
[13] |
Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the “enemy of induction”? Psychological Science, 19(6), 585-592. https://doi.org/10.1111/j.1467-9280.2008.02127.x
doi: 10.1111/j.1467-9280.2008.02127.x URL pmid: 18578849 |
[14] |
Leotti, L. A., Iyengar, S. S., & Ochsner, K. N. (2010). Born to choose: The origins and value of the need for control. Trends in Cognitive Sciences, 14(10), 457-463. https://doi.org/10.1016/j.tics.2010.08.001
doi: 10.1016/j.tics.2010.08.001 URL pmid: 20817592 |
[15] |
Lu, X., Penney, T. B., & Kang, S. H. K. (2021). Category similarity affects study choices in self-regulated learning. Memory & Cognition, 49(1), 67-82. https://doi.org/10.3758/s13421-020-01074-w
doi: 10.3758/s13421-020-01074-w URL |
[16] |
Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioural Processes, 66(3), 309-332. https://doi.org/10.1016/S0376-6357(04)00060-9
URL pmid: 15157979 |
[17] |
Maddox, W. T., Filoteo, J. V., Hejl, K. D., & Ing, A. D. (2004). Category number impacts rule-based but not information- integration category learning: Further evidence for dissociable category-learning systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 227-245. https://doi.org/10.1037/0278-7393.30.1.227
doi: 10.1037/0278-7393.30.1.227 URL |
[18] | Markant, D., & Gureckis, T. (2010). Category learning through active sampling. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the annual meeting of the cognitive science society (Vol. 32, pp. 248-253). Cognitive Science Society. |
[19] |
Minda, J. P., & Smith, J. D. (2001). Prototypes in category learning: The effects of category size, category structure, and stimulus complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 775-799. https://doi.org/10.1037/0278-7393.27.3.775
doi: 10.1037/0278-7393.27.3.775 URL |
[20] |
Murphy, G. L., & Ross, B. H. (1999). Induction with cross- classified categories. Memory & Cognition, 27(6), 1024-1041. https://doi.org/10.3758/bf03201232
doi: 10.3758/BF03201232 URL |
[21] |
Noh, S. M., Yan, V. X., Bjork, R. A., & Maddox, W. T. (2016). Optimal sequencing during category learning: Testing a dual-learning systems perspective. Cognition, 155, 23-29. https://doi.org/10.1016/j.cognition.2016.06.007
doi: S0010-0277(16)30154-8 URL pmid: 27343480 |
[22] |
Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, D. R., Parrish, T. B.,... Reber, P. J. (2007). Neural correlates of rule-based and information-integration visual category learning. Cerebral Cortex, 17(1), 37-43. https://doi.org/10.1093/cercor/bhj122
URL pmid: 16436685 |
[23] | Rau, M. A., Aleven, V., & Rummel, N. (2010). Blocked versus interleaved practice with multiple representations in an intelligent tutoring system for fractions. In V. Aleven, J. Kay, & J. Mostow (Eds.), Intelligent tutoring systems (pp. 413-422). Springer. https://doi.org/10.1007/978-3-642-13388-6_45 |
[24] |
Rawson, K. A., Thomas, R. C., & Jacoby, L. L. (2015). The power of examples: Illustrative examples enhance conceptual learning of declarative concepts. Educational Psychology Review, 27(3), 483-504, https://doi.org/10.1007/s10648-014-9273-3
doi: 10.1007/s10648-014-9273-3 URL |
[25] |
Roark, C. L., Smayda, K. E., & Chandrasekaran, B. (2022). Auditory and visual category learning in musicians and nonmusicians. Journal of Experimental Psychology: General, 151(3), 739-748. https://doi.org/10.1037/xge0001088
doi: 10.1037/xge0001088 URL |
[26] |
Rohrer, D. (2012). Interleaving helps students distinguish among similar concepts. Educational Psychology Review, 24(3), 355-367. https://doi.org/10.1007/s10648-012-9201-3
doi: 10.1007/s10648-012-9201-3 URL |
[27] |
Rohrer, D., Dedrick, R. F., Hartwig, M. K., & Cheung, C. N. (2020). A randomized controlled trial of interleaved mathematics practice. Journal of Educational Psychology, 112(1), 40-52. https://doi.org/10.1037/edu0000367
doi: 10.1037/edu0000367 URL |
[28] |
Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33(1), 203-219. https://doi.org/10.1146/annurev.neuro.051508.135546
doi: 10.1146/neuro.2010.33.issue-1 URL |
[29] |
Sorensen, L. J., & Woltz, D. J. (2016). Blocking as a friend of induction in verbal category learning. Memory & Cognition, 44(7), 1000-1013. https://doi.org/10.3758/s13421-016-0615-x
doi: 10.3758/s13421-016-0615-x URL |
[30] |
Wang, J., Liu, Z., Xing, Q., & Seger, C. A. (2020). The benefit of interleaved presentation in category learning is independent of working memory. Memory, 28(2), 285-292. https://doi.org/10.1080/09658211.2019.1705490
doi: 10.1080/09658211.2019.1705490 URL pmid: 31900048 |
[31] |
Zulkiply, N., & Burt, J. S. (2013). The exemplar interleaving effect in inductive learning: Moderation by the difficulty of category discriminations. Memory & Cognition, 41(1), 16-27. https://doi.org/10.3758/s13421-012-0238-9
doi: 10.3758/s13421-012-0238-9 URL |
[1] | 马书采, 李孟春, 乔宇, 何欢, 罗曼玲. 回合式教学法的有效学习:来自自闭症儿童职前教师的证据[J]. 心理学报, 2023, 55(2): 237-256. |
[2] | 王瑞明;林哲婷;刘志雅. 部分呈现条件下类别分类学习中的信息表征机制[J]. 心理学报, 2014, 46(8): 1052-1061. |
[3] | 汝涛涛;莫雷;张婷;焦鸿浩;黄玉兰. 基于规则的类别学习中言语标签和动作标签的建构[J]. 心理学报, 2013, 45(12): 1334-1344. |
[4] | 刘志雅,黄艳利,Carol A. Seger. 知道与不知道要学多少:类别学习中样例量的预期作用[J]. 心理学报, 2012, 44(6): 754-765. |
[5] | 刘志雅,宋晓红,Carol A. Seger. 6岁儿童的类别学习能力:类别表征、注意和分类策略[J]. 心理学报, 2012, 44(5): 634-646. |
[6] | 徐贵平,温红博,魏晓玛,莫雷. 线索呈现位置对概率类别学习的影响[J]. 心理学报, 2011, 43(03): 264-273. |
[7] | 刘志雅,莫雷. 不同学习方式下归类不确定时的特征推理[J]. 心理学报, 2011, 43(01): 92-100. |
[8] | 王静琼,张卫,朱祖德,甄霜菊,麦玉娇,李董平. 大学生自主学习影响因素的中介效应模型[J]. 心理学报, 2010, 42(02): 262-270. |
[9] | 刘志雅,莫雷. 两种学习模式下类别学习的结果:原型和样例[J]. 心理学报, 2009, 41(01): 44-52. |
[10] | 刘志雅,莫雷. 类别学习中两种学习模式的比较研究:分类学习与推理学习[J]. 心理学报, 2006, 38(06): 824-832. |
[11] | 莫雷,郭璐. 类别成员跨维度特征关系对类别学习的影响[J]. 心理学报, 2004, 36(03): 281-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||