心理学报 ›› 2023, Vol. 55 ›› Issue (9): 1489-1500.doi: 10.3724/SP.J.1041.2023.01489
收稿日期:
2022-09-12
发布日期:
2023-06-09
出版日期:
2023-09-25
通讯作者:
甘怡群
E-mail:ygan@pku.edu.cn
基金资助:
HU Yueqin1, WANG Lizhong2, CHEN Gang2, GAN Yiqun3()
Received:
2022-09-12
Online:
2023-06-09
Published:
2023-09-25
Contact:
GAN Yiqun
E-mail:ygan@pku.edu.cn
摘要:
应激在饮食方面的反应因人而异; 有些人在应激下喜欢多吃甜食和其他高热量食物, 而另一些人则没有这样的倾向。这可能与两种类型的迷走神经系统功能优势性有关:向营养型或兴奋型。本研究以14675位中国成年人为样本, 结合健康行动过程模型和迷走神经支配性理论, 发现应激显著预测了健康饮食意向的减少, 以及随后健康饮食行为的减少。CSF3R基因rs4076431及其连锁位点rs4498771, rs10752589, rs9660229调节了应激与健康饮食意向之间的关系, 而行动控制调节了健康饮食意向与健康饮食行为之间的关系。以rs4076431为例, 应激与健康饮食意向之间的负向关系在AA基因型(向营养型)中比在G等位基因携带者(兴奋型)中更强。行动控制分数越高, 健康饮食行为越多, 而且该行为越少受到应激和健康饮食意向的影响。基于这些结果我们提出了应激影响健康行为的个体化模型, 应激下的健康管理应考虑生理、行为、情境等多个层面的影响因素。
中图分类号:
胡月琴, 王理中, 陈钢, 甘怡群. (2023). CSF3R和行动控制对应激与健康饮食关系的调节作用:应激影响健康行为的个体化模型的初步证据. 心理学报, 55(9), 1489-1500.
HU Yueqin, WANG Lizhong, CHEN Gang, GAN Yiqun. (2023). Moderating effects of CSF3R and action control between stress and healthy eating: Preliminary evidence for an individual health action against stress model. Acta Psychologica Sinica, 55(9), 1489-1500.
变量 | n | M | SD | 应激 | 健康意向 | 健康行为 | 行动控制 | 基因 |
---|---|---|---|---|---|---|---|---|
应激 | 14675 | 28.13 | 6.72 | 1 | ||||
健康意向 | 14675 | 6.30 | 1.80 | -0.14*** | 1 | |||
健康行为 | 14675 | 5.64 | 2.09 | -0.15*** | 0.78*** | 1 | ||
行动控制 | 14675 | 4.51 | 1.31 | -0.16*** | 0.43*** | 0.46*** | 1 | |
基因 | 14180 | - | - | -0.01 | 0.01 | 0.01 | 0.02 | 1 |
性别 | 14630 | - | - | 0.04*** | 0.14*** | 0.12*** | 0.08*** | 0.02* |
年龄 | 14668 | 28.17 | 7.08 | -0.20*** | 0.08*** | 0.09*** | 0.12*** | 0.00 |
教育程度 | 14675 | 4.02 | 0.78 | -0.11*** | 0.07*** | 0.08*** | 0.09*** | -0.01 |
表1 描述性统计和相关矩阵
变量 | n | M | SD | 应激 | 健康意向 | 健康行为 | 行动控制 | 基因 |
---|---|---|---|---|---|---|---|---|
应激 | 14675 | 28.13 | 6.72 | 1 | ||||
健康意向 | 14675 | 6.30 | 1.80 | -0.14*** | 1 | |||
健康行为 | 14675 | 5.64 | 2.09 | -0.15*** | 0.78*** | 1 | ||
行动控制 | 14675 | 4.51 | 1.31 | -0.16*** | 0.43*** | 0.46*** | 1 | |
基因 | 14180 | - | - | -0.01 | 0.01 | 0.01 | 0.02 | 1 |
性别 | 14630 | - | - | 0.04*** | 0.14*** | 0.12*** | 0.08*** | 0.02* |
年龄 | 14668 | 28.17 | 7.08 | -0.20*** | 0.08*** | 0.09*** | 0.12*** | 0.00 |
教育程度 | 14675 | 4.02 | 0.78 | -0.11*** | 0.07*** | 0.08*** | 0.09*** | -0.01 |
模型 | 因变量 | 自变量 | B | SE | β | p | 95% CI | |
---|---|---|---|---|---|---|---|---|
1 | 意向 | 应激 | -0.034*** | 0.002 | -0.128 | <0.001 | -0.038 | -0.030 |
2 | 行为 | 应激 | -0.008*** | 0.001 | -0.035 | <0.001 | -0.010 | -0.006 |
意向 | 0.645*** | 0.005 | 0.768 | <0.001 | 0.636 | 0.654 | ||
3 | 意向 | 应激 | -0.041*** | 0.003 | -0.131 | <0.001 | -0.047 | -0.035 |
基因 | -0.354** | 0.127 | 0.001 | 0.005 | -0.603 | -0.105 | ||
应激×基因 | 0.013** | 0.004 | 0.024 | 0.004 | 0.004 | 0.021 | ||
4 | 行为 | 应激 | -0.042*** | 0.006 | -0.137 | <0.001 | -0.054 | -0.031 |
基因 | -0.215* | 0.107 | 0.002 | 0.045 | -0.424 | -0.005 | ||
应激×基因 | 0.008* | 0.004 | 0.017 | 0.034 | 0.001 | 0.015 | ||
5 | 行为 | 应激 | -0.008* | 0.004 | -0.036 | 0.043 | -0.036 | -0.0002 |
基因 | 0.014 | 0.068 | 0.000 | 0.840 | 0.001 | 0.148 | ||
意向 | 0.646*** | 0.005 | 0.768 | <0.001 | 0.768 | 0.654 | ||
应激×基因 | -0.0004 | 0.002 | -0.001 | 0.867 | -0.001 | 0.004 | ||
6 | 行为 | 应激 | -0.005*** | 0.002 | -0.023 | <0.001 | -0.008 | -0.003 |
意向 | 0.869*** | 0.014 | 0.676 | <0.001 | 0.842 | 0.897 | ||
控制 | 0.595*** | 0.022 | 0.151 | <0.001 | 0.552 | 0.637 | ||
意向×控制 | -0.067*** | 0.003 | -0.104 | <0.001 | -0.073 | -0.060 |
表2 回归分析验证假设的中介和调节作用
模型 | 因变量 | 自变量 | B | SE | β | p | 95% CI | |
---|---|---|---|---|---|---|---|---|
1 | 意向 | 应激 | -0.034*** | 0.002 | -0.128 | <0.001 | -0.038 | -0.030 |
2 | 行为 | 应激 | -0.008*** | 0.001 | -0.035 | <0.001 | -0.010 | -0.006 |
意向 | 0.645*** | 0.005 | 0.768 | <0.001 | 0.636 | 0.654 | ||
3 | 意向 | 应激 | -0.041*** | 0.003 | -0.131 | <0.001 | -0.047 | -0.035 |
基因 | -0.354** | 0.127 | 0.001 | 0.005 | -0.603 | -0.105 | ||
应激×基因 | 0.013** | 0.004 | 0.024 | 0.004 | 0.004 | 0.021 | ||
4 | 行为 | 应激 | -0.042*** | 0.006 | -0.137 | <0.001 | -0.054 | -0.031 |
基因 | -0.215* | 0.107 | 0.002 | 0.045 | -0.424 | -0.005 | ||
应激×基因 | 0.008* | 0.004 | 0.017 | 0.034 | 0.001 | 0.015 | ||
5 | 行为 | 应激 | -0.008* | 0.004 | -0.036 | 0.043 | -0.036 | -0.0002 |
基因 | 0.014 | 0.068 | 0.000 | 0.840 | 0.001 | 0.148 | ||
意向 | 0.646*** | 0.005 | 0.768 | <0.001 | 0.768 | 0.654 | ||
应激×基因 | -0.0004 | 0.002 | -0.001 | 0.867 | -0.001 | 0.004 | ||
6 | 行为 | 应激 | -0.005*** | 0.002 | -0.023 | <0.001 | -0.008 | -0.003 |
意向 | 0.869*** | 0.014 | 0.676 | <0.001 | 0.842 | 0.897 | ||
控制 | 0.595*** | 0.022 | 0.151 | <0.001 | 0.552 | 0.637 | ||
意向×控制 | -0.067*** | 0.003 | -0.104 | <0.001 | -0.073 | -0.060 |
[1] | Adriaanse M. A., de Ridder D. T. D., & de Wit, J. B. F. (2009). Finding the critical cue: Implementation intentions to change one's diet work best when tailored to personally relevant reasons for unhealthy eating. Personality and Social Psychology Bulletin, 35, 60-71. |
[2] | Araiza A. M., & Lobel M. (2018). Stress and eating: Definitions, findings, explanations, and implications. Social and Personality Psychology Compass, 12(4), e12378. |
[3] |
Armitage C. J., & Conner M. (2001). Efficacy of the theory of planned behaviour: A meta-analytic review. British Journal of Social Psychology, 40(4), 471-499.
doi: 10.1348/014466601164939 URL |
[4] |
Baumeister R. F., Tice D. M., & Vohs K. D. (2018). The strength model of self-regulation: Conclusions from the second decade of willpower research. Perspectives on Psychological Science, 13(2), 141-145.
doi: 10.1177/1745691617716946 pmid: 29592652 |
[5] |
Bycroft C., Freeman C., Petkova D., Band G., Elliott L. T., Sharp K.,... Marchini J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203-209.
doi: 10.1038/s41586-018-0579-z |
[6] |
Chabris C. F., Lee J. J., Cesarini D., Benjamin D. J., & Laibson D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24(4), 304-312.
doi: 10.1177/0963721415580430 pmid: 26556960 |
[7] | Chang H. A., Fang W. H., Chang T. C., Huang S. Y., & Chang C. C. (2016). Association of neuropeptide Y promoter polymorphism (rs16147) with perceived stress and cardiac vagal outflow in humans. Scientific Report, 6, 31683. |
[8] |
Chesnokova V., & Melmed S. (2002). Minireview: Neuro- immuno-endocrine modulation of the hypothalamic- pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology, 143(5), 1571-1574.
pmid: 11956136 |
[9] |
Cohen S., Kamarck T., & Mermelstein R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385-396.
pmid: 6668417 |
[10] | de Ridder D., Kroese F., Evers C., Adriaanse M., & Gillebaart M. (2017). Healthy diet: Health impact, prevalence, correlates, and interventions. Psychology & Health, 32(8), 907-941. |
[11] | Diop M., Epstein D., & Ruiz-Adame M. (2021). Personality traits associated with healthy diet and obesity: A systematic review. European Journal of Public Health, 31(Suppl. 3), ckab164.446. |
[12] |
Dunton G. F. (2018). Sustaining health-protective behaviors such as physical activity and healthy eating. JAMA, 320(7), 639-640.
doi: 10.1001/jama.2018.6621 pmid: 29852046 |
[13] | Everly G. S., & Lating J. M. (2019). The anatomy and physiology of the human stress response. In A clinical guide to the treatment of the human stress response (pp. 19-56). Springer, New York, NY. |
[14] |
Feder A., Nestler E. J., & Charney D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews: Neuroscience, 10(6), 446-457.
doi: 10.1038/nrn2649 |
[15] | Feng D. & Shi L. (2004). Introduction of ecological momentary assessment and other methods for measuring coping ways. Advances in Psychological Sciences, 12(3), 6-12. |
[封丹珺, 石林. (2004). 应对方式的生态瞬时评估法及其他测量方法简介. 心理科学进展, 12(3), 6-12.] | |
[16] |
Fodor D. P., Antoni C. H., Wiedemann A. U., & Burkert S. (2014). Healthy eating at different risk levels for job stress: Testing a moderated mediation. Journal of Occupational Health Psychology, 19(2), 259-267.
doi: 10.1037/a0036267 pmid: 24730429 |
[17] | Food and Agricultural Organization. (2015). Overview of dietary guidelines. Retrieved from htpp://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/ |
[18] |
Garmezy N. (2016). Resiliency and vulnerability to adverse developmental outcomes associated with Poverty. The American Behavioral Scientist, 34(4), 416-430.
doi: 10.1177/0002764291034004003 URL |
[19] | Gellhorn E. (1967). Autonomic-somatic integrations: Physiological basis and psychological and clinical implications. University of Minnesota Press. |
[20] |
Glaser R., & Kiecolt-Glaser J. K. (2005). Stress-induced immune dysfunction: Implications for health. Nature Reviews Immunology, 5(3), 243-251.
doi: 10.1038/nri1571 pmid: 15738954 |
[21] |
Groesz L. M., McCoy S., Carl J., Saslow L., Stewart J., Adler N.,... Epel E. (2012). What is eating you? Stress and the drive to eat. Appetite, 58(2), 717-721.
doi: 10.1016/j.appet.2011.11.028 pmid: 22166677 |
[22] | Heuse S., Gekeler B., & Fodor D.. (2021). The role of physical exercise as a personal resource against job stress. International Journal of Occupational Safety and Ergonomics, 27(4), 1251-1260. |
[23] | Hill D., Conner M., Clancy F., Moss R., Wilding S., Bristow M., & O'Connor, D. B. (2021). Stress and eating behaviours in healthy adults: A systematic review and meta-analysis. Health Psychology Review, 25, 280-304. |
[24] |
Kang K., Sun X., Wang L., Yao X., Tang S., Deng J.,... Chen G. (2020). Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication. Quantitative Biology. doi: 10.1007/s40484-020-0209-2
doi: 10.1007/s40484-020-0209-2 |
[25] |
Kawai T., Morita K., Masuda K., Nishida K., Shikishima M., Ohta M.,... Rokutan K. (2007). Gene expression signature in peripheral blood cells from medical students exposed to chronic psychological stress. Biological Psychology, 76(3), 147-155.
pmid: 17766027 |
[26] |
Kim B. M., Lee B. E., Park H. S., Kim Y. J., Suh Y. J., Kim J. Y.,... Ha E. H. (2016). Long working hours and overweight and obesity in working adults. Annals of Occupational and Environmental Medicine, 28(1), 1-9.
doi: 10.1186/s40557-016-0089-0 URL |
[27] |
Klatzkin R. R., Baldassaro A., & Rashid S. (2019). Physiological responses to acute stress and the drive to eat: The impact of perceived life stress. Appetite, 133, 393-399.
doi: S0195-6663(18)31001-8 pmid: 30472407 |
[28] |
Kogan A. V., Allen J. J., & Weihs K. L. (2012). Cardiac vagal control as a prospective predictor of anxiety in women diagnosed with breast cancer. Biological Psychology, 90(1), 105-111.
doi: 10.1016/j.biopsycho.2012.02.019 pmid: 22414745 |
[29] |
Krueger P. M., & Chang V. W. (2008). Being poor and coping with stress: Health behaviors and the risk of death. American Journal of Public Health, 98(5), 889-896.
doi: 10.2105/AJPH.2007.114454 pmid: 18382003 |
[30] | Lazarus R. S. (1995). Psychological stress in the workplace. In R. Crandall & P. L. Perrewé (Eds.), Occupational stress (pp. 3-14). CRC Press. |
[31] | Le-Niculescu H., Balaraman Y., Patel S. D., Ayalew M., Gupta J., Kuczenski R.,... Niculescu A. B. (2011). Convergent functional genomics of anxiety disorders: Translational identification of genes, biomarkers, pathways and mechanisms. Translational Psychiatry, 1(5), e9. |
[32] |
Liu Y., Song Y., Koopmann J., Wang M., Chang C. H. D., & Shi J. (2017). Eating your feelings? Testing a model of employees’ work-related stressors, sleep quality, and unhealthy eating. Journal of Applied Psychology, 102(8), 1237-1258.
doi: 10.1037/apl0000209 URL |
[33] |
Manichaikul A., Mychaleckyj J. C., Rich S. S., Daly K., Sale M., & Chen W.-M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22), 2867-2873.
doi: 10.1093/bioinformatics/btq559 pmid: 20926424 |
[34] | McLaughlin K. A., Rith-Najarian L., Dirks M. A., & Sheridan M. A. (2015). Low vagal tone magnifies the association between psychosocial stress exposure and internalizing psychopathology in adolescents. Journal of Clinical Child & Adolescent Psychology, 44(2), 314-328. |
[35] | Mullins V. A., Bresette W., Johnstone L., Hallmark B., & Chilton F. H. (2020). Genomics in personalized nutrition: Can you “eat for your genes”? Nutrients, 12(10), 3118. |
[36] |
O'Connor, D. B., Armitage, C. J., & Ferguson, E. (2015). Randomized test of an implementation intention-based tool to reduce stress-induced eating. Annals of Behavioral Medicine, 49(3), 331-343.
doi: 10.1007/s12160-014-9668-x pmid: 25504143 |
[37] |
O'Connor, D. B., Jones, F., Conner, M., McMillan, B., & Ferguson, E. (2008). Effects of daily hassles and eating style on eating behavior. Health Psychology, 27(1S), S20-31.
doi: 10.1037/0278-6133.27.1.S20 URL |
[38] |
Payne N., Jones F., & Harris P. R. (2005). The impact of job strain on the predictive validity of the theory of planned behaviour: An investigation of exercise and healthy eating. British Journal of Health Psychology, 10(1), 115-131.
doi: 10.1348/135910704X14636 URL |
[39] | Peeters A. (2018). Obesity and the future of food policies that promote healthy diets. Nature Reviews Endocrinology, 14(7), 430-437. |
[40] | Phoolka E. S., & Kaur N. (2012). Adversity Quotient: A new paradigm to explore. Contemporary Business Studies, 3(4), 67-78. |
[41] | Pilkington P. D., Bishop A., & Younan R. (2021). Adverse childhood experiences and early maladaptive schemas in adulthood: A systematic review and meta-analysis. Clinical Psychology & Psychotherapy, 28(3), 569-584. |
[42] |
Porges S. W. (1992). Vagal tone: A physiologic marker of stress vulnerability. Pediatrics, 90(3), 498-504.
doi: 10.1542/peds.90.3.498 URL |
[43] |
Porges S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience & Biobehavioral Reviews, 19(2), 225-233.
doi: 10.1016/0149-7634(94)00066-A URL |
[44] |
Porges S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116-143.
doi: 10.1016/j.biopsycho.2006.06.009 pmid: 17049418 |
[45] | Reichenberger J., Pannicke, B., Arend, A. K., Petrowski, K., & Blechert, J. (2021). Does stress eat away at you or make you eat? EMA measures of stress predict day to day food craving and perceived food intake as a function of trait stress-eating. Psychology & Health, 36(2), 129-147. |
[46] |
Ruf A., Neubauer, A. B., Koch, E. D., Ebner, P. U., Reif, A., & Matura, S. (2022). Individual differences in the dietary response to stress in ecological momentary assessment: Does the individual-difference model need expansion? Applied Psychology: Health and Well-Being. doi: 10.1111/aphw.12400
doi: 10.1111/aphw.12400 |
[47] | Schwarzer R., & Hamilton K. (2020). Changing behavior using the health action process approach. The Handbook of Behavior Change, 89-103. |
[48] |
Schwarzer R., & Luszczynska A. (2008). How to overcome health-compromising behaviors: The health action process approach. European Psychologist, 13(2), 141-151.
doi: 10.1027/1016-9040.13.2.141 URL |
[49] |
Schwarzer R., Lippke S., & Luszczynska A. (2011). Mechanisms of health behavior change in persons with chronic illness or disability: The health action process approach (HAPA). Rehabilitation Psychology, 56(3), 161-170.
doi: 10.1037/a0024509 pmid: 21767036 |
[50] | Schwarzer R., Schüz, B., Ziegelmann, J. P., Lippke, S., Luszczynska, A., & Scholz, U. (2007). Adoption and maintenance of four health behaviors: Theory-guided longitudinal studies on dental flossing, seat belt use, dietary behavior, and physical activity. Annals of Behavioral Medicine, 33, 156-166. |
[51] |
Shiffman S., Stone A. A., & Hufford M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1-32.
pmid: 18509902 |
[52] |
Shuck, B., Hart, J., Walker, K., & Keith, R. (2021). Work determinants of health: New directions for research and practice in human resource development. Human Resource Development Quarterly. doi: 10.1002/hrdq.21468
doi: 10.1002/hrdq.21468 |
[53] | Siegrist J., & Rödel A. (2006). Work stress and health risk behavior. Scandinavian Journal of Work, Environment & Health, 32(6), 473-481. |
[54] |
Smeets T. (2010). Autonomic and hypothalamic-pituitary- adrenal stress resilience: Impact of cardiac vagal tone. Biological Psychology, 84(2), 290-295.
doi: 10.1016/j.biopsycho.2010.02.015 pmid: 20206227 |
[55] |
Smyth J. M., & Stone A. A. (2003). Ecological momentary assessment research in behavioral medicine. Journal of Happiness Studies, 4(1), 35-52.
doi: 10.1023/A:1023657221954 URL |
[56] |
Sniehotta F. F. (2009). Towards a theory of intentional behaviour change: Plans, planning, and self-regulation. British Journal of Health Psychology, 14, 261-273.
doi: 10.1348/135910708X389042 pmid: 19102817 |
[57] | Sniehotta F. F., Scholz U., & Schwarzer R. (2005). Bridging the intention-behaviour gap: Planning, self-efficacy and action control in the adoption and maintenance of physical exercise. Psychology & Health, 20(2), 143-160. |
[58] |
Souza G. G. L., Mendonça-de-Souza A. C. F., Barros E. M., Coutinho E. F. S., Oliveira L., Mendlowicz M. V.,... Volchan E. (2007). Resilience and vagal tone predict cardiac recovery from acute social stress. Stress, 10(4), 368-374.
pmid: 17853065 |
[59] |
Steptoe A., Hamer M., & Chida Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain, Behavior, And Immunity, 21(7), 901-912.
doi: 10.1016/j.bbi.2007.03.011 pmid: 17475444 |
[60] |
Stevenson R. J. (2017). Psychological correlates of habitual diet in healthy adults. Psychological Bulletin, 143(1), 53-90.
doi: 10.1037/bul0000065 pmid: 27618545 |
[61] |
Stone A. A., & Brownell K. D. (1994). The stress-eating paradox: Multiple daily measurements in adult males and females. Psychology and Health, 9(6), 425-436.
doi: 10.1080/08870449408407469 URL |
[62] |
Stults-Kolehmainen M. A., & Sinha R. (2014). The effects of stress on physical activity and exercise. Sports Medicine, 44(1), 81-121.
doi: 10.1007/s40279-013-0090-5 pmid: 24030837 |
[63] | Sullivan P. F., Fan C., & Perou C. M. (2006). Evaluating the comparability of gene expression in blood and brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141(3), 261-268. |
[64] |
Torres S. J., & Nowson C. A. (2007). Relationship between stress, eating behavior, and obesity. Nutrition, 23(11-12), 887-894.
doi: 10.1016/j.nut.2007.08.008 pmid: 17869482 |
[65] |
Van Der Zwaluw C. S., & Engels R. C. (2009). Gene- environment interactions and alcohol use and dependence: Current status and future challenges. Addiction, 104(6), 907-914.
doi: 10.1111/add.2009.104.issue-6 URL |
[66] |
van Strien T., Snoek H. M., van der Zwaluw C. S., & Engels R. C. (2010). Parental control and the dopamine D2 receptor gene (DRD2) interaction on emotional eating in adolescence. Appetite, 54(2), 255-261.
doi: 10.1016/j.appet.2009.11.006 pmid: 19925838 |
[67] |
Wardle J., Steptoe A., Oliver G., & Lipsey Z. (2000). Stress, dietary restraint and food intake. Journal of Psychosomatic Research, 48(2), 195-202.
doi: 10.1016/s0022-3999(00)00076-3 pmid: 10719137 |
[68] |
Webb T. L., & Sheeran P. (2007). How do implementation intentions promote goal attainment? A test of component processes. Journal of Experimental Social Psychology, 43(2), 295-302.
doi: 10.1016/j.jesp.2006.02.001 URL |
[69] |
Willett W. C. (1994). Diet and health: What should we eat? Science, 264(5158), 532-537.
pmid: 8160011 |
[70] | Yang T. Z., & Huang H. T. (2003). An epidemiological study on stress among urban residents in social transition period. Journal of Chinese Epidemiology, 24(9), 760-764. |
[杨廷忠, 黄汉腾. (2003). 社会转型中城市居民心理压力的流行病学研究. 中华流行病学杂志, 24(9), 760-764.] | |
[71] | Zhou H., Long L. (2004). The procedure and statistical remedy for common method variance. Advances for Psychological Science, 12(6), 942-950. |
[周浩, 龙立荣. (2004). 共同方法偏差的统计检验与控制方法. 心理科学进展, 12(6), 942-950.] |
[1] | 白荣, 高叶淼, 李金文, 刘霞. 远近端人际压力与FKBP5基因对青少年自伤行为的联合影响:基于发展的视角[J]. 心理学报, 2023, 55(9): 1477-1488. |
[2] | 刘倩文, 王振宏. 亲子关系、感觉加工敏感性与COMT Val158Met多态性对学前儿童亲社会行为的交互影响[J]. 心理学报, 2023, 55(5): 711-725. |
[3] | 林小楠, 曹衍淼, 张文新, 纪林芹. 多巴胺系统多基因与青少年攻击行为的U型关系:母亲消极教养的调节作用[J]. 心理学报, 2023, 55(4): 588-599. |
[4] | 曹衍淼, 方惠慈, 朱欣悦, 纪林芹, 张文新. BDNF基因、同伴关系与青少年早期抑郁:基于动态发展视角[J]. 心理学报, 2023, 55(10): 1620-1636. |
[5] | 张文新, 李曦, 陈光辉, 曹衍淼. 母亲积极教养与青少年亲社会行为:共情的中介作用与OXTR基因的调节作用[J]. 心理学报, 2021, 53(9): 976-991. |
[6] | 田相娟, 曹衍淼, 张文新. 母亲消极教养、同伴侵害与FKBP5基因对青少年抑郁的影响[J]. 心理学报, 2020, 52(12): 1407-1420. |
[7] | 王美萍, 郑晓洁, 夏桂芝, 刘迪迪, 陈翩, 张文新. 负性生活事件与青少年早期抑郁的关系:COMT基因Val158Met多态性与父母教养行为的调节作用[J]. 心理学报, 2019, 51(8): 903-913. |
[8] | 曹衍淼, 张文新. 多巴胺系统基因与母亲教养行为对青少年抑郁的影响:一项多基因研究 *[J]. 心理学报, 2019, 51(10): 1102-1115. |
[9] | 张明亮, 司继伟, 杨伟星, 邢淑芬, 李红霞, 张佳佳. BDNF基因rs6265多态性与父母教育卷入对小学儿童基本数学能力的交互作用 *[J]. 心理学报, 2018, 50(9): 1007-1017. |
[10] | 曹丛;王美萍;曹衍淼;纪林芹;张文新. MAOA基因T941G多态性与同伴侵害对男青少年早期抑郁的交互作用:COMT基因Val158Met 多态性的调节效应[J]. 心理学报, 2017, 49(2): 206-218. |
[11] | 周雅, 范方, 彭婷, 李媛媛, 龙可, 周洁莹, 梁颖欣. NR3C1基因多态性及单倍型、父母教养方式 对青少年焦虑障碍的影响[J]. 心理学报, 2017, 49(10): 1287-1301. |
[12] | 曹衍淼;王美萍;曹丛;纪林芹;张文新. DRD2基因TaqIA多态性与同伴侵害对青少年早期抑郁的交互作用[J]. 心理学报, 2017, 49(1): 28-39. |
[13] | 王美萍;张文新;陈欣银. 5-HTR1A基因rs6295多态性与父母教养行为对青少年早期抑郁的交互作用:不同易感性模型的验证[J]. 心理学报, 2015, 47(5): 600-610. |
[14] | 王美萍;纪林芹;张文新. MAOA基因rs6323多态性与同伴关系对男青少年早期抑郁的影响[J]. 心理学报, 2015, 47(10): 1260-1268. |
[15] | 王美萍;张文新. COMT基因rs6267多态性与青少年期亲子亲合与冲突的关系:性别与父母教养行为的调节作用分析[J]. 心理学报, 2014, 46(7): 931-941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||