心理学报 ›› 2021, Vol. 53 ›› Issue (4): 337-348.doi: 10.3724/SP.J.1041.2021.00337 cstr: 32110.14.2021.00337
• 研究报告 • 下一篇
收稿日期:
2020-04-14
发布日期:
2021-04-07
出版日期:
2021-04-25
DING Jinhong1(), WANG Yamin1, JIANG Yang2
Received:
2020-04-14
Online:
2021-04-07
Published:
2021-04-25
摘要:
本研究通过控制深度视觉线索, 分析3D SFM (structure from motion)知觉中的眼动特征, 探讨注意对SFM知觉判断的影响及其时间进程。结果显示, 有线索刺激比模糊刺激的判断更加快、更加肯定(百分比更高); 眼睛移动方向和微眼跳方向都分别与知觉判断的运动方向具有一致性; 微眼跳频次、峰速度和幅度也都分别表现出深度线索的促进效应。实验结果表明, SFM知觉过程大致分为速度计算和构建三维结构两个阶段; 注意对SFM知觉的调节作用主要发生在构建三维结构阶段; 注意从150 ms开始指向选择对象, 驻留持续约200 ms后, 从局部运动矢量流转移到整体运动方向的知觉判断。
中图分类号:
丁锦红, 汪亚珉, 姜扬. (2021). 注意促进运动知觉判断的时间进程. 心理学报, 53(4), 337-348.
DING Jinhong, WANG Yamin, JIANG Yang. (2021). Temporal dynamics of eye movements and attentional modulation in perceptual judgments of structure-from-motion (SFM). Acta Psychologica Sinica, 53(4), 337-348.
图5 不同方向微眼跳频次随时间变化进程比较。(a) 有线索(CW)与无线索(AMB)的相同判断(cw)时微眼跳频次; (b) CCW-ccw和AMB-ccw的微眼跳频次; (c) 有线索条件下(CW和CCW)相应判断时微眼跳频次; (d) 无线索条件下(AMB)不同判断时微眼跳频次。 注:①阴影部分为差异显著时间窗; ② *表示 p < 0.05; **表示 p < 0.01。
[1] |
Alais,D., Apthorp,D., Karmann,A., & Cass,J. (2011). Temporal integration of movement: The time-course of motion streaks revealed by masking. PLoS ONE, 6(12),e28675. https://doi.org/10.1371/journal.pone.0028675.
doi: 10.1371/journal.pone.0028675 URL pmid: 22205961 |
[2] |
Andersen,R.A.,& Bradley,D.C. (1998). Perception of three- dimensional structure from motion. Trends in Cognitive Sciences, 2(6),222-228.
doi: 10.1016/s1364-6613(98)01181-4 URL pmid: 21227176 |
[3] |
Andersen,S.K., & Muller,M.M. (2010). Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proceedings of the National Academy of Sciences, 107(31),13878-13882.
doi: 10.1073/pnas.1002436107 URL |
[4] |
Aydın,M., Herzog,M.H., & Öğmen,H. (2011). Attention modulates spatio-temporal grouping. Vision Research, 51(4),435-446.
doi: 10.1016/j.visres.2010.12.013 URL |
[5] |
Bartlett,L.K., Graf,E.W., Hedger,N., & Adams,W.J. (2019). Motion adaptation and attention: A critical review and meta-analysis. Neuroscience & Biobehavioral Reviews, 96,290-301.
doi: 10.1016/j.neubiorev.2018.10.010 URL pmid: 30355521 |
[6] |
Bonneh,Y.S., Adini,Y., & Polat,U. (2015). Contrast sensitivity revealed by microsaccades. Journal of Vision, 15(9),1-12.
doi: 10.1167/15.9.1 URL pmid: 26131592 |
[7] | Born,R.T.,& Pack,C.C. (2002). Integration of motion signals for smooth pursuit eye movements. Annals of the New York Academy of Sciences, 956(1),453-455. |
[8] |
Burr,D., & Thompson,P. (2011). Motion psychophysics: 1985-2010. Vision Research, 51(13),1431-1456.
doi: 10.1016/j.visres.2011.02.008 URL |
[9] |
Cai,L.T., Yuan,A.E., & Backus,B.T. (2019). Binocular global motion perception is improved by dichoptic segregation when stimuli have high contrast and high speed. Journal of Vision, 19(13),1-17.
doi: 10.1167/19.13.1 URL pmid: 31675057 |
[10] |
Caplovitz,G.P., & Tse,P.U. (2007). Rotating dotted ellipses: Motion perception driven by grouped figural rather than local dot motion signals. Vision Research, 47(15),1979-1991.
doi: 10.1016/j.visres.2006.12.022 URL |
[11] |
Cavanagh,P. (1992). Attention-based motion perception. Science, 257(5076),1563-1565.
doi: 10.1126/science.1523411 URL pmid: 1523411 |
[12] |
Cavanagh,P., Hunt,A.R., Afraz,A., & Rolfs,M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Science, 14(4),147-153.
doi: 10.1016/j.tics.2010.01.007 URL |
[13] |
Chung,C.Y. L., & Khuu,S.K. (2014). The processing of coherent global form and motion patterns without visual awareness. Frontiers in Psychology, 5,195. https://doi.org/10.3389/fpsyg.2014.00195.
doi: 10.3389/fpsyg.2014.00195 URL pmid: 24672494 |
[14] | Cohen,J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, New Jersey:Lawrence Erlbaum Associates. |
[15] |
Conci,M., Töllner,T., Leszczynski,M., & Müller,H.J. (2011). The time-course of global and local attentional guidance in Kanizsa-figure detection. Neuropsychologia, 49(9),2456-2464.
doi: 10.1016/j.neuropsychologia.2011.04.023 URL pmid: 21549722 |
[16] |
Deubel,H. (2008). The time course of presaccadic attention shifts. Psychological Research, 72(6),630-640.
doi: 10.1007/s00426-008-0165-3 URL |
[17] |
Di Stasi, L.L., Catenad, A., Cañasc, J.J., Macknike, S.L.,& Martinez-Conde, S. (2013). Saccadic velocity as an arousal index in naturalistic tasks. Neuroscience and Biobehavioral Reviews, 37(5),968-975.
doi: 10.1016/j.neubiorev.2013.03.011 URL pmid: 23541685 |
[18] |
Dombrowe,I.C., Olivers,C.N. L., & Donk,M. (2010). The time course of color- and luminance-based salience effects. Frontiers in Psychology, 1,189. https://doi.org/10.3389/fpsyg.2010.00189.
doi: 10.3389/fpsyg.2010.00189 URL pmid: 21833249 |
[19] |
Egeth,H.E.,& Yantis,S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48,269-297.
doi: 10.1146/annurev.psych.48.1.269 URL pmid: 9046562 |
[20] |
Engbert,R., & Kliegl,R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9),1035-1045.
doi: 10.1016/s0042-6989(03)00084-1 URL pmid: 12676246 |
[21] | Fernandez,J.M., & Farell,B. (2006). A reversed structure- from-motion effect for simultaneously viewed stereo- surfaces. Vision Research, 46(8-9),1230-1241. |
[22] |
Festman,Y., & Braun,J. (2012). Feature-based attention spreads preferentially in an object-specific manner. Vision Research, 54(1),31-38.
doi: 10.1016/j.visres.2011.12.003 URL |
[23] |
Forschack,N., Andersen,S.K., & Müller,M.M. (2017). Global enhancement but local suppression in feature-based attention. Journal of Cognitive Neuroscience, 29(4),619-627.
doi: 10.1162/jocn_a_01075 URL pmid: 27897668 |
[24] |
Franconeri,S., & Handy,T. (2007). Rapid shifts of attention between two objects during spatial relationship judgments. Journal of Vision, 7(9),582. https://doi.org/10.1167/7.9.582.
doi: 10.1167/7.9.582 URL |
[25] |
Grosbras,M.H., Laird,A.R., & , Paus,T. (2005). Cortical regions involved in eye movements, shifts of attention, and gaze perception. Human Brain Mapping, 25(1),140-154.
doi: 10.1002/hbm.20145 URL pmid: 15846814 |
[26] |
Gumming,B.G., & Parker,A.J. (1994). Binocular mechanisms for detecting motion-in-depth. Vision Research, 34(4),483-495.
doi: 10.1016/0042-6989(94)90162-7 URL pmid: 8303832 |
[27] |
Hafed,Z.M., & Clark,J.J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42(22),2533-2545.
doi: 10.1016/s0042-6989(02)00263-8 URL pmid: 12445847 |
[28] |
Haith,M.M. (1966). The response of the human newborn to visual movement. Journal of Experimental Child Psychology, 3(3),235-243.
doi: 10.1016/0022-0965(66)90067-1 URL pmid: 5945067 |
[29] |
Hedges,J.H., Gartshteyn,Y., Kohn,A., Rust,N.C., Shadlen,M.N., Newsome,W.T.,& Movshon,J.A. (2011). Dissociation of neuronal and psychophysical responses to local and global motion. Current Biology, 21(23),2023-2028.
doi: 10.1016/j.cub.2011.10.049 URL |
[30] | Hermens,F., & Walker,R. (2010). What determines the direction of microsaccades? Journal of Eye Movement Research, 3(4),1-20. |
[31] | Hirshkowitz,A., Biondi,M., & Wilcox,T. (2017). Cortical responses to shape-from-motion stimuli in the infant. Neurophoton, 5(1),011014. https://doi.org/10.1117/1.nph.5.1.011014. |
[32] |
Horwitz,G.D., & Albright,T.D. (2003). Short-latency fixational saccades induced by luminance increments. Journal of Neurophysiology, 90(2),1333-1339.
doi: 10.1152/jn.00146.2003 URL pmid: 12904512 |
[33] |
Hubel,D.H., & Wiesel,T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160(1),106-154.
doi: 10.1113/jphysiol.1962.sp006837 URL |
[34] | Ishii,T., Motoyoshi,I., & Kamachi,M.G. (2013). Removal of attention facilitates global motion detection. The Japanese Journal of Psychonomic Science, 32(1),135-136. |
[35] | Jiang, Y., Boehler, C. N., Nönnig, N., Düzel, E., Hopf, J. M., Heinze, H. J.,& Schoenfeld M. A. (2008). Binding 3-D object perception in the human visual cortex. Journal of Cognition Neuroscience, 20(4),553-562. |
[36] |
Jiang,Y., Pantle,A.J.,& Mark,L.S. (1998). Visual inertia of rotating 3-D objects. Perception & Psychophysics, 60(2),275-286.
doi: 10.3758/bf03206036 URL pmid: 9529911 |
[37] |
Johnson,S.P., Davidow,J., Hall-Haro,C., & Frank,M.C. (2008). Development of perceptual completion originates in information acquisition. Developmental Psychology, 44(5),1214-1224.
doi: 10.1037/a0013215 URL pmid: 18793055 |
[38] |
Kaneko,H., Itakura,S., & Inagami,M. (2011). Relationship between the frequency of microsaccade and attentional state. i-Perception, 2(4),332-332.
doi: 10.1068/ic332 URL |
[39] |
Kasai,T., & Takeya,R. (2012). Time course of spatial and feature selective attention for partly-occluded objects. Neuropsychologia, 50(9),2281-2289.
doi: 10.1016/j.neuropsychologia.2012.05.032 URL |
[40] | Krueger,E., Schneider,A., Sawyer,B., Chavaillaz,A., Sonderegger,A., Groner,R.,& Hancock,P. (2019). Microsaccades distinguish looking from seeing. Journal of Eye Movement Research, 12(6). https://doi.org/10.16910/jemr.12.6.2. |
[41] |
Kuldkepp,N., Kreegipuu,K., Raidvee,A., Näätänen,R., & Allik,J. (2013). Unattended and attended visual change detection of motion as indexed by event-related potentials and its behavioral correlates. Frontiers in Human Neuroscience, 7,476. https://doi.org/10.3389/fnhum.2013.00476.
doi: 10.3389/fnhum.2013.00476 URL pmid: 23966932 |
[42] |
Lamberty,K., Gobbelé,R., Schoth,F., Buchner,H., & Waberski,T.D. (2008). The temporal pattern of motion in depth perception derived from ERPs in humans. Neuroscience Letters, 439(2),198-202.
doi: 10.1016/j.neulet.2008.04.101 URL pmid: 18514406 |
[43] |
Laubrock,J., Engbert,R., & Kliegl,R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14),1-17.
doi: 10.1167/8.14.10 URL pmid: 19146311 |
[44] |
Lin,Y., & Tadin,D. (2019). Motion perception: Slow development of center-surround suppression. Current Biology, 29(18),R878-R880.
doi: 10.1016/j.cub.2019.07.079 URL pmid: 31550474 |
[45] |
Martínez,G.A. R., & Parra,H.C. (2018). Bistable perception: Neural bases and usefulness in psychological research. International Journal of Psychological Research, 11(2),63-76.
doi: 10.21500/20112084.3375 URL pmid: 32612780 |
[46] |
Meyberg,S., Sinn,P., Engbert,R., & Sommer,W. (2017). Revising the link between microsaccades and the spatial cueing of voluntary attention. Vision Research, 133,47-60.
doi: S0042-6989(17)30013-5 pmid: 28163059 |
[47] |
Meyberg,S., Sommer,W., & Dimigen,O. (2017). How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study. Neuropsychologia, 99,64-80.
doi: S0028-3932(17)30067-2 pmid: 28254651 |
[48] |
Motoyoshi,I., Ishii,T., & Kamachi,M.G. (2015). Limited attention facilitates coherent motion processing. Journal of Vision, 15(13),1. https://doi.org/10.1167/15.13.1..
doi: 10.1167/15.13.1 URL pmid: 26327254 |
[49] |
Nishida,S., Kawabe,T., Sawayama,M., & Fukiage,T. (2018). Motion perception: From detection to interpretation. Annual Review of Vision Science, 4(20),501-523.
doi: 10.1146/annurev-vision-091517-034328 URL |
[50] |
Otero-Millan,J., Castro,J.L. A., Macknik,S.L.,& Martinez- Conde,S. (2014). Unsupervised clustering method to detect microsaccades. Journal of Vision, 14(2),1-17.
doi: 10.1167/14.2.1 URL pmid: 24492596 |
[51] |
Papathomas,T.V., Gorea,A., & Julesz,B. (1991). Two carriers for motion perception: Color and luminance. Vision Research, 31(11),1883-1891.
doi: 10.1016/0042-6989(91)90183-6 URL pmid: 1771772 |
[52] | Park,W.J., & Tadin,D. (2018). Motion perception. In J. Serences (Ed.). The Stevens’ handbook of experimental psychology and cognitive neuroscience: Sensation, perception and attention (4th ed.)(pp.415-488). Wiley. |
[53] |
Peterson,M.S., & Kramer,A.F. (2001). Attentional guidance of the eyes by contextual information and abrupt onsets. Perception & Psychophysics, 63,1239-1249.
doi: 10.3758/bf03194537 URL pmid: 11766947 |
[54] | Pomerantz,J.R. (1970). Eye movements affect the perception of apparent (beta) movement. Psychological Science, 19(4),193-194. |
[55] |
Ramachandran,V.S., & Anstis,S.M. (1983). Perceptual organization in moving patterns. Nature, 304,529-531.
doi: 10.1038/304529a0 URL pmid: 6877373 |
[56] |
Ramirez-Moreno,D.F., Schwartz,O., & Ramirez-Villegas,J.F. (2013). A saliency-based bottom-up visual attention model for dynamic scenes analysis. Biological Cybernetics, 107(2),141-160.
doi: 10.1007/s00422-012-0542-2 pmid: 23314730 |
[57] |
Rider,A.T., Nishida,S., & Johnston,A. (2016). Multiple- stage ambiguity in motion perception reveals global computation of local motion directions. Journal of Vision, 16(15), 7,1-11.
doi: 10.1167/16.15.1 URL pmid: 27918785 |
[58] |
Rock,I., Halper,F., DiVita,J., & Wheeler,D. (1987). Eye movement as a cue to figure motion in anorthoscopic perception. Journal of Experimental Psychology: Human Perception and Performance, 13(3),344-352.
doi: 10.1037//0096-1523.13.3.344 URL pmid: 2958583 |
[59] |
Rolfs,M., Engbert,R., & Kliegl,R. (2004). Microsaccade orientation supports attentional enhancement opposite a peripheral cue: Commentary on Tse, Sheinberg, and Logothetis (2003). Psychological Science, 15(10),705-707.
doi: 10.1111/j.0956-7976.2004.00744.x URL pmid: 15447643 |
[60] | Ryan,A.E., Keane,B., & Wallis,G. (2019). Microsaccades and covert attention: Evidence from a continuous, divided attention task. Journal of Eye Movement Research, 12(6). https://doi.org/10.16910/jemr.12.6.6. |
[61] | Sara,G., Tony,P., Roberto,B., Kerstin,H., & Mariagrazia,B. (2017). The effect of luminance condition on form, form-from-motion and motion perception. Frontiers in Cognitive Psychology, 2(2),65-72. |
[62] |
Schmitt,C., Klingenhoefer,S., & Bremmer,F. (2018). Preattentive and Predictive Processing of Visual Motion. Scientific Reports, 8, 12399. https://doi.org/10.1038/s41598-018-30832-9.
doi: 10.1038/s41598-018-36342-y URL pmid: 30584247 |
[63] |
Schütz,A.C., Braun,D.I., & Gegenfurtner,K.R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 9,1-30.
doi: 10.1167/11.5.1 URL pmid: 21536727 |
[64] |
Scocchia,L., Valsecchi,M., & Triesch,J. (2014). Top-down influences on ambiguous perception: The role of stable and transient states of the observer. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00979.
doi: 10.3389/fnhum.2014.01029 URL pmid: 25646077 |
[65] |
Simion,F., Regolin,L., & Bulf,H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 105(2),809-813.
doi: 10.1073/pnas.0707021105 URL pmid: 18174333 |
[66] |
Smith,K.C., & Abrams,R.A. (2018). Motion onset really does capture attention. Attention, Perception & Psychophysics, 80(7),1775-1784.
doi: 10.3758/s13414-018-1548-1 URL pmid: 29971749 |
[67] |
Stelmach,L.B., Herdman,C.M.,& McNeil,K.R. (1994). Attentional modulation of visual processes in motion perception. Journal of Experimental Psychology: Human Perception and Performance, 20(1),108-121.
doi: 10.1037/0096-1523.20.1.108 URL |
[68] |
Stone,L.S., & Thompson,P. (1992). Human speed perception is contrast dependent. Vision Research, 32(8),1535-1549.
doi: 10.1016/0042-6989(92)90209-2 URL pmid: 1455726 |
[69] |
Stonkute,S., Braun,J., & Pastukhov,A. (2012). The role of attention in ambiguous reversals of structure-from-motion. PLoS ONE, 7(5),e37734. https://doi.org/10.1371/journal.pone.0037734.
doi: 10.1371/journal.pone.0037734 URL pmid: 22629450 |
[70] |
Stoppel,C.M., Boehler,C.N., Strumpf,H., Krebs,R.M., Heinze,H.J., Hopf,J.M., & Schoenfeld,M.A. (2012). Spatiotemporal dynamics of feature-based attention spread: Evidence from combined electroencephalographic and magnetoencephalographic recordings. Journal of Neuroscience, 32(28),9671-9676.
doi: 10.1523/JNEUROSCI.0439-12.2012 URL |
[71] |
Thompson,P. (1982). Perceived rate of movement depends on contrast. Vision Research, 22(3),377-380.
doi: 10.1016/0042-6989(82)90153-5 URL pmid: 7090191 |
[72] |
Treisman,A., & Gelade,G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1),97-136.
doi: 10.1016/0010-0285(80)90005-5 URL pmid: 7351125 |
[73] |
Treisman,A., & Gormican,S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1),15-48.
pmid: 3353475 |
[74] |
Treue,S., Husain,M., & Andersen,R.A. (1991). Human perception of structure from motion. Vision Research, 31(1),59-75.
doi: 10.1016/0042-6989(91)90074-f URL pmid: 2006555 |
[75] |
Tsal,Y., & Kolbet,L. (1985). Disambiguating ambiguous figures by selective attention. The Quarterly Journal of Experimental Psychology Section A, 37(1),25-37.
doi: 10.1080/14640748508400950 URL |
[76] | van Rullen, R., Reddy, L., & Koch, C. (2005). Attention- driven discrete sampling of motion perception. Proceedings of the National Academy of Sciencesof the United States of America, 102(14),5291-5296. |
[77] |
van Zoest, W., Donk, M., & van der Stigchel, S. (2012). Stimulus-salience and the time-course of saccade trajectory deviations. Journal of Vision, 12(8),16-16.
doi: 10.1167/12.8.16 URL pmid: 22923727 |
[78] |
van Zoest, W., Heimler, B., & Pavani, F. (2016). The oculomotor salience of flicker, apparent motion and continuous motion in saccade trajectories. Experimental Brain Research, 235(1),181-191.
doi: 10.1007/s00221-016-4779-1 URL pmid: 27683004 |
[79] |
Wallach,H., & O'Connell,D.N. (1953). The kinetic depth effect. Journal of Experimental Psychology, 45(4),205-217.
doi: 10.1037/h0056880 URL pmid: 13052853 |
[80] |
Wang,L., Yang,X., Shi,J., & Jiang,Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84,217-224.
doi: 10.1016/j.neuroimage.2013.08.041 pmid: 23994124 |
[81] |
Ward,R., Duncan,J., & Shapiro,K. (1996). The slow time- course of visual attention. Cognitive Psychology, 30(1),79-109.
pmid: 8660782 |
[82] |
Wasmuht,D.F., Parker,A.J., & Krug,K. (2019). Interneuronal correlations at longer time scales predict decision signals for bistable structure-from-motion perception. Scientific Reports, 9, 11449. https://doi.org/10.1038/s41598-019-47786-1.
doi: 10.1038/s41598-019-56816-x URL pmid: 31892720 |
[83] | Zhang,Y., Li,A., Han,Y., Zhang,S., & Zhang,M. (2016). The effect of microsaccade types on attention. Journal of Sichuan Normal University (Social Sciences Edition), 43(6),29-37. |
张阳, 李艾苏, 韩玉, 张少杰, 张明. (2016). 微眼动类型对注意的影响. 四川师范大学学报(社会科学版), 43(6),29-37. |
[1] | 连浩敏, 张倩, 谷雪敏, 李寿欣. 持续性视觉注意对视觉工作记忆项目优先加工的影响[J]. 心理学报, 2025, 57(2): 191-206. |
[2] | 庞超, 陈颜璋, 王莉, 杨喜端, 贺雅, 李芷莹, 欧阳小钰, 傅世敏, 南威治. 客体信息在视觉工作记忆编码和维持阶段的不同注意选择模式[J]. 心理学报, 2023, 55(9): 1397-1410. |
[3] | 李海峰, 林世卿, 万博温. 价值导向的注意刷新及其机制[J]. 心理学报, 2023, 55(8): 1234-1242. |
[4] | 高玉林, 唐晓雨, 刘思宇, 王爱君, 张明. 内源性空间线索有效性对老年人视听觉整合的影响[J]. 心理学报, 2023, 55(5): 671-684. |
[5] | 卓利楠, 曾祥玉, 吴冰, 牛荣荣, 于萍, 王玮文. 内侧前额皮层−伏隔核环路在决策冲动中的作用:基于动物模型的研究[J]. 心理学报, 2023, 55(4): 556-571. |
[6] | 尹华站, 张丽, 刘鹏玉, 李丹. 负性情绪的动机维度对时距知觉的影响:注意控制和注意偏向的中介作用[J]. 心理学报, 2023, 55(12): 1917-1931. |
[7] | 陈悦源, 方卫宁, 郭北苑, 鲍海峰. 作业中断对任务绩效的影响及心理疲劳的调节作用[J]. 心理学报, 2023, 55(1): 22-35. |
[8] | 孙博, 曾宪卿, 许恺煜, 谢韵婷, 傅世敏. 情绪面孔的意识神经相关物及其无意识自动加工:来自事件相关电位的证据[J]. 心理学报, 2022, 54(8): 867-880. |
[9] | 彭宇彬, 宛小昂. 视觉搜索中风味引发对关联颜色的注意偏向[J]. 心理学报, 2022, 54(7): 736-747. |
[10] | 闫驰, 高云飞, 胡赛赛, 宋方兴, 王勇慧, 赵晶晶. 目光注视线索对客体注意的影响及作用机制[J]. 心理学报, 2022, 54(7): 748-760. |
[11] | 周子暖, 陈颜璋, 傅世敏. 预期对注意的影响受制于被预期主体是目标还是分心物[J]. 心理学报, 2022, 54(3): 221-235. |
[12] | 张青, 王争艳. 母亲敏感性与婴儿气质、注意对学步儿执行功能影响的交互作用:一项两年的追踪研究[J]. 心理学报, 2022, 54(2): 141-153. |
[13] | 郑思琦, 孟迎芳, 黄发杰. 目标决策还是动作诱发?动作反应对注意促进效应的影响[J]. 心理学报, 2022, 54(11): 1325-1339. |
[14] | 李婉悦, 刘燊, 韩尚锋, 张林, 徐强. 特质焦虑在面部表情前注意加工阶段的影响:来自ERP的证据[J]. 心理学报, 2022, 54(1): 1-11. |
[15] | 张妮, 刘文, 刘方, 郭鑫. 8~12岁儿童抑郁与认知重评的关系:悲伤面孔注意偏向的中介作用[J]. 心理学报, 2022, 54(1): 25-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||