心理学报 ›› 2022, Vol. 54 ›› Issue (8): 867-880.doi: 10.3724/SP.J.1041.2022.00867
• 研究报告 • 下一篇
收稿日期:
2021-12-03
发布日期:
2022-06-23
出版日期:
2022-08-25
通讯作者:
傅世敏
E-mail:fusm@gzhu.edu.cn
基金资助:
SUN Bo, ZENG Xianqing, XU Kaiyu, XIE Yunting, FU Shimin()
Received:
2021-12-03
Online:
2022-06-23
Published:
2022-08-25
Contact:
FU Shimin
E-mail:fusm@gzhu.edu.cn
摘要:
意识的神经相关物尚有争议, 且个体能否无意识自动检测视觉环境变化尚不清楚。本研究采用非注意视盲范式操控视觉意识, 并引入具有社会信息的情绪面孔, 探讨意识的神经相关物以及视觉意识与自动检测变化机制的关系。在A阶段, 部分被试对任务无关的情绪面孔处于无意识水平; 在B阶段, 所有被试对任务无关的情绪面孔处于意识水平; 在C阶段, 所有被试对任务相关的情绪面孔处于意识水平。结果显示, 任务无关的情绪面孔的意识过程诱发视觉意识负波(visual awareness negativity, VAN)、晚期正成分(late positivity, LP)和晚期枕区正成分(late occipital positivity, LOP)。此外, 无意识的情绪面孔能诱发视觉失匹配负波(visual mismatch negativity, vMMN), 且其幅值不受意识影响, 但是受任务相关性调制。这些结果提示对情绪面孔的视觉意识在不同的时间进程上有不同的ERP指标——VAN反映早期知觉经验, 而LP和LOP反映晚期意识过程, 而且面孔情绪信息的自动加工独立于视觉意识, 但是受视觉注意调制。
中图分类号:
孙博, 曾宪卿, 许恺煜, 谢韵婷, 傅世敏. (2022). 情绪面孔的意识神经相关物及其无意识自动加工:来自事件相关电位的证据. 心理学报, 54(8), 867-880.
SUN Bo, ZENG Xianqing, XU Kaiyu, XIE Yunting, FU Shimin. (2022). Neural correlates of consciousness of emotional faces and the unconscious automatic processing: Evidence from event-related potentials (ERPs). Acta Psychologica Sinica, 54(8), 867-880.
图1 A:实验刺激。前景中的12个红点会一起旋转。左图是随机线条图。中图是情绪面孔图。右图是红点持续变亮图。B:情绪面孔刺激。左图是快乐面孔, 右图是恐惧面孔。C:实验流程图。随机线条R、情绪面孔E以及红点持续变亮O指的是图A中的三种实验刺激。在一个试次中, 随机线条先呈现700 ms, 接着情绪面孔呈现100 ms。在紧接着的下一个试次中, 仍然先呈现杂乱线条背景, 再呈现情绪面孔。在之后的试次中, 杂乱线条背景和情绪面孔按此规律循环呈现。在A和B阶段, 被试需要在觉察到红点变亮时进行按键反应。在C阶段, 被试需要在觉察到情绪面孔持续消失时进行按键反应, 且只需进行一次按键反应。在出现情绪面孔持续消失条件时, 连续的三个试次都不会出现情绪面孔, 而随机线条代替情绪面孔出现。在C阶段, 为了提醒被试任务已经出现, 红点变亮作为一种事后提示, 在情绪面孔持续消失条件结束后出现。D:流动标准范式示意图。每个序列中的第一个刺激是偏差刺激, 而重复出现4次后的刺激是标准刺激。ISI (Interstimulus-interval)指的是刺激间隔。E:以快乐面孔为例, 同一种情绪面孔会重复出现四到八次, 从而构成5种长度的刺激序列。恐惧面孔同样有5种长度的刺激序列。F:实验阶段流程图。A、B和C阶段依次序进行。为了检查被试对情绪面孔的意识状态, 被试需要在完成A和B阶段后各填写一份意识状态检查问卷。
阶段 | 自信程度 | 频率 | ||
---|---|---|---|---|
其他图形 | 情绪面孔 | 其他图形 | 情绪面孔 | |
A | ||||
无意识组 | 1.60 (0.63) | 1.46 (0.56) | 1.10 (0.25) | 1.04 (0.19) |
意识组 | 1.78 (0.57) | 4.08 (0.79) | 1.22 (0.32) | 3.02 (0.84) |
B | ||||
无意识组 | 1.33 (0.46) | 4.90 (0.40) | 1.01 (0.05) | 4.00 (0.62) |
意识组 | 1.23 (0.44) | 5.00 (0.00) | 1.04 (0.12) | 4.23 (0.69) |
表1 自信程度和频率的评价分数[M (SD)]
阶段 | 自信程度 | 频率 | ||
---|---|---|---|---|
其他图形 | 情绪面孔 | 其他图形 | 情绪面孔 | |
A | ||||
无意识组 | 1.60 (0.63) | 1.46 (0.56) | 1.10 (0.25) | 1.04 (0.19) |
意识组 | 1.78 (0.57) | 4.08 (0.79) | 1.22 (0.32) | 3.02 (0.84) |
B | ||||
无意识组 | 1.33 (0.46) | 4.90 (0.40) | 1.01 (0.05) | 4.00 (0.62) |
意识组 | 1.23 (0.44) | 5.00 (0.00) | 1.04 (0.12) | 4.23 (0.69) |
阶段 | 反应时 | 准确率 | 虚报次数 |
---|---|---|---|
A | 718 (106) | 0.97 (0.06) | 0.70 (1.11) |
B | 719 (105) | 0.96 (0.06) | 0.65 (0.95) |
C | 1386 (239) | 0.87 (0.11) | 4.65 (4.37) |
表2 三个实验阶段的反应时(ms)、准确率和虚报次数[M (SD)]
阶段 | 反应时 | 准确率 | 虚报次数 |
---|---|---|---|
A | 718 (106) | 0.97 (0.06) | 0.70 (1.11) |
B | 719 (105) | 0.96 (0.06) | 0.65 (0.95) |
C | 1386 (239) | 0.87 (0.11) | 4.65 (4.37) |
图2 意识的神经相关物和任务相关性的影响。A:无意识组在A阶段和B阶段总平均波形图、差异波的波形图和地形图。差异波由无意识组的B阶段减去A阶段的ERPs得出。在PO7/8电极上的200~300 ms和400~600 ms的差异波分别是VAN和LOP。柱状图是快乐和恐惧面孔诱发的VAN波幅。误差线表示标准误, *表示有显著差异, 且*代表p < 0.05, **代表p < 0.01; B:C阶段和B阶段总平均的波形图、差异波的波形图和地形图。差异波由C阶段减去B阶段的ERPs得出。在PO7/8电极上的180~250 ms和400~500 ms的差异波分别是SN和LOP。柱状图是快乐和恐惧面孔诱发的SN波幅。
图3 vMMN的分析结果图。A:三个实验阶段的偏差和标准刺激的总平均波形图、vMMN差异波的波形图和地形图。差异波由偏差刺激减去标准刺激的ERPs得出。B:三个实验阶段在250 ~ 350 ms时间窗内的vMMN的平均幅值。误差线表示标准误。*表示有显著差异, *代表p < 0.05, **代表p < 0.01; C:A阶段的无意识组和意识组的在250 ~ 350 ms时间窗内的vMMN的平均幅值。
[1] | Aru J., & Bachmann T. (2017). In and out of consciousness: How does conscious processing (d)evolve over time? Frontiers in Psychology, 8, 128. |
[2] |
Axelrod V., Bar M., & Rees G. (2015). Exploring the unconscious using faces. Trends in Cognitive Sciences, 19(1), 35-45.
doi: 10.1016/j.tics.2014.11.003 pmid: 25481216 |
[3] |
Becker D. V., Neel R., Srinivasan N., Neufeld S., Kumar D., & Fouse S. (2012). The vividness of happiness in dynamic facial displays of emotion. Plos One, 7(1), e26551.
doi: 10.1371/journal.pone.0026551 URL |
[4] | Brosch T., Pourtois G., & Sander D. (2010). The perception and categorisation of emotional stimuli: A review. Cognition & Emotion, 24(3), 377-400. |
[5] |
Calvo M. G., & Nummenmaa L. (2008). Detection of emotional faces: Salient physical features guide effective visual search. Journal of Experiment Psychology: General, 137(3), 471-494.
doi: 10.1037/a0012771 URL |
[6] |
Chen B., Sun P., & Fu S. (2020). Consciousness modulates the automatic change detection of masked emotional faces: Evidence from visual mismatch negativity. Neuropsychologia, 144, 107459.
doi: 10.1016/j.neuropsychologia.2020.107459 URL |
[7] |
Czigler I. (2014). Visual mismatch negativity and categorization. Brain Topogr, 27(4), 590-598.
doi: 10.1007/s10548-013-0316-8 pmid: 24057352 |
[8] |
Czigler I., Weisz J., & Winkler I. (2007). Backward masking and visual mismatch negativity: Electrophysiological evidence for memory-based detection of deviant stimuli. Psychophysiology, 44(4), 610-619.
pmid: 17521378 |
[9] |
Dehaene S., & Changeux J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200-227.
doi: 10.1016/j.neuron.2011.03.018 URL |
[10] |
Duval E. R., Moser J. S., Huppert J. D., & Simons R. F. (2013). What’s in a Face? Journal of Psychophysiology, 27(1), 27-38.
doi: 10.1027/0269-8803/a000083 URL |
[11] |
Eimer M., & Holmes A. (2002). An ERP study on the time course of emotional face processing. Neuroreport, 13(4), 427-431.
doi: 10.1097/00001756-200203250-00013 URL |
[12] | Feldman H., & Friston K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. |
[13] |
Flynn M., Liasis A., Gardner M., & Towell T. (2017). Visual mismatch negativity to masked stimuli presented at very brief presentation rates. Experimental Brain Research, 235(2), 555-563.
doi: 10.1007/s00221-016-4807-1 URL |
[14] |
Forster J., Koivisto M., & Revonsuo A. (2020). ERP and MEG correlates of visual consciousness: The second decade. Consciousness and Cognition, 80, 102917.
doi: 10.1016/j.concog.2020.102917 URL |
[15] |
Friston K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138.
doi: 10.1038/nrn2787 pmid: 20068583 |
[16] | Hillyard S. A., & Anllo-Vento L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the Natlonal Academy of Sciences of the United States of America, 95(3), 781-787. |
[17] |
Kimura M., Kondo H., Ohira H., & Schröger E. (2012). Unintentional temporal context-based prediction of emotional faces: An electrophysiological study. Cerebral Cortex, 22(8), 1774-1785.
doi: 10.1093/cercor/bhr244 URL |
[18] | Kimura M., & Takeda Y. (2013). Task difficulty affects the predictive process indexed by visual mismatch negativity. Frontiers in Human Neuroscience, 7, 267. |
[19] |
Koch C., Massimini M., Boly M., & Tononi G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews Neuroscience, 17(5), 307-321.
doi: 10.1038/nrn.2016.22 URL |
[20] |
Koivisto M., & Grassini S. (2016). Neural processing around 200 ms after stimulus-onset correlates with subjective visual awareness. Neuropsychologia, 84, 235-243.
doi: 10.1016/j.neuropsychologia.2016.02.024 pmid: 26944872 |
[21] |
Koivisto M., Grassini S., Salminen-Vaparanta N., & Revonsuo A. (2017). Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, 29(9), 1621-1631.
doi: 10.1162/jocn_a_01149 pmid: 28557691 |
[22] |
Koivisto M., & Revonsuo A. (2007). Electrophysiological correlates of visual consciousness and selective attention. Neuroreport, 18(8), 753-756.
pmid: 17471060 |
[23] | Koivisto M., & Revonsuo A. (2008). The role of selective attention in visual awareness of stimulus features: Electrophysiological studies. Cognitive Affective & Behavioral Neuroscience, 8(2), 195-210. |
[24] |
Koivisto M., & Revonsuo A. (2010). Event-related brain potential correlates of visual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 922-934.
doi: 10.1016/j.neubiorev.2009.12.002 pmid: 20005249 |
[25] |
Koivisto M., Revonsuo A., & Salminen N. (2005). Independence of visual awareness from attention at early processing stages. Neuroreport, 16(8), 817-821.
pmid: 15891577 |
[26] |
Koivisto M., Salminen-Vaparanta N., Grassini S., & Revonsuo A. (2016). Subjective visual awareness emerges prior to P3. European Journal of Neuroscience, 43(12), 1601-1611.
doi: 10.1111/ejn.13264 pmid: 27109009 |
[27] |
Kreegipuu K., Kuldkepp N., Sibolt O., Toom M., Allik J., & Naatanen R. (2013). vMMN for schematic faces: Automatic detection of change in emotional expression. Frontiers in Human Neuroscience, 7, 714.
doi: 10.3389/fnhum.2013.00714 pmid: 24191149 |
[28] |
Kuldkepp N., Kreegipuu K., Raidvee A., Näätänen R., & Allik J. (2013). Unattended and attended visual change detection of motion as indexed by event-related potentials and its behavioral correlates. Frontiers in Human Neuroscience, 7, 476.
doi: 10.3389/fnhum.2013.00476 pmid: 23966932 |
[29] |
Lamme V. A. F. (2010). How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1(3), 204-220.
doi: 10.1080/17588921003731586 URL |
[30] |
Lamy D., Salti M., & Bar-Haim Y. (2009). Neural correlates of subjective awareness and unconscious processing: An ERP study. Journal of Cognitive Neuroscience, 21(7), 1435-1446.
doi: 10.1162/jocn.2009.21064 URL |
[31] |
LoBue V. (2009). More than just another face in the crowd: Superior detection of threatening facial expressions in children and adults. Developmental Science, 12(2), 305-313.
doi: 10.1111/j.1467-7687.2008.00767.x URL |
[32] |
Luo W., Feng W., He W., Wang N. Y., & Luo Y. J. (2010). Three stages of facial expression processing: ERP study with rapid serial visual presentation. Neuroimage, 49(2), 1857-1867.
doi: 10.1016/j.neuroimage.2009.09.018 URL |
[33] |
Maier A., & Tsuchiya N. (2021). Growing evidence for separate neural mechanisms for attention and consciousness. Attention Perception & Psychophysics, 83(2), 558-576.
doi: 10.3758/s13414-020-02146-4 URL |
[34] | Morris J. S., Ohman A., & Dolan R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the Natlonal Academy of Sciences of the United States of America, 96(4), 1680-1685. |
[35] |
O'Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939-973.
pmid: 12239892 |
[36] |
Palermo R., & Rhodes G. (2007). Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia, 45(1), 75-92.
pmid: 16797607 |
[37] |
Pazo-Alvarez P., Amenedo E., & Cadaveira F. (2004). Automatic detection of motion direction changes in the human brain. European Journal of Neuroscience, 19(7), 1978-1986.
pmid: 15078572 |
[38] |
Pegna A. J., Khateb A., Lazeyras F., & Seghier M. L. (2005). Discriminating emotional faces without primary visual cortices involves the right amygdala. Nature Neuroscience, 8(1), 24-25.
pmid: 15592466 |
[39] | Pitts M. A., Lutsyshyna L. A., & Hillyard S. A. (2018). The relationship between attention and consciousness: An expanded taxonomy and implications for 'no-report' paradigms. Philosophical Transactions of the Royal Society B-Biological Sciences, 373(1755). |
[40] |
Pitts M. A., Martinez A., & Hillyard S. A. (2012). Visual processing of contour patterns under conditions of inattentional blindness. Journal of Cognitive Neuroscience, 24(2), 287-303.
doi: 10.1162/jocn_a_00111 URL |
[41] | Pitts M. A., Metzler S., & Hillyard S. A. (2014). Isolating neural correlates of conscious perception from neural correlates of reporting one’s perception. Frontiers in Psychology, 5, 1078. |
[42] |
Polich J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
doi: 10.1016/j.clinph.2007.04.019 pmid: 17573239 |
[43] |
Railo H., Koivisto M., & Revonsuo A. (2011). Tracking the processes behind conscious perception: A review of event- related potential correlates of visual consciousness. Consciousness and Cognition, 20(3), 972-983.
doi: 10.1016/j.concog.2011.03.019 URL |
[44] |
Rutiku R., & Bachmann T. (2017). Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Consciousness and Cognition, 54, 3-19.
doi: 10.1016/j.concog.2017.05.003 URL |
[45] |
Rutiku R., Martin M., Bachmann T., & Aru J. (2015). Does the P300 reflect conscious perception or its consequences? Neuroscience, 298, 180-189.
doi: 10.1016/j.neuroscience.2015.04.029 pmid: 25907442 |
[46] |
Salti M., Bar-Haim Y., & Lamy D. (2012). The P3 component of the ERP reflects conscious perception, not confidence. Consciousness and Cognition, 21(2), 961-968.
doi: 10.1016/j.concog.2012.01.012 pmid: 22341937 |
[47] |
Santesso D. L., Meuret A. E., Hofmann S. G., Mueller E. M., Ratner K. G., Roesch E. B., & Pizzagalli D. A. (2008). Electrophysiological correlates of spatial orienting towards angry faces: A source localization study. Neuropsychologia, 46(5), 1338-1348.
doi: 10.1016/j.neuropsychologia.2007.12.013 pmid: 18249424 |
[48] | Sato W., Kubota Y., & Toichi M. (2014). Enhanced subliminal emotional responses to dynamic facial expressions. Frontiers in Psychology, 5, 994. |
[49] |
Schlossmacher I., Dellert T., Pitts M., Bruchmann M., & Straube T. (2020). Differential effects of awareness and task relevance on early and late ERPs in a no-report visual oddball paradigm. Journal of Neuroscience, 40(14), 2906-2913.
doi: 10.1523/JNEUROSCI.2077-19.2020 pmid: 32122954 |
[50] |
Segal S. C., & Moulson M. C. (2020). What drives the attentional bias for fearful faces? An eye-tracking investigation of 7-month-old infants’ visual scanning patterns. Infancy, 25(5), 658-676.
doi: 10.1111/infa.12351 URL |
[51] |
Shafto J. P., & Pitts M. A. (2015). Neural signatures of conscious face perception in an inattentional blindness paradigm. Journal of Neuroscience, 35(31), 10940-10948.
doi: 10.1523/JNEUROSCI.0145-15.2015 URL |
[52] |
Stefanics G., Csukly G., Komlosi S., Czobor P., & Czigler I. (2012). Processing of unattended facial emotions: A visual mismatch negativity study. Neuroimage, 59(3), 3042-3049.
doi: 10.1016/j.neuroimage.2011.10.041 pmid: 22037000 |
[53] |
Stefanics G., Heinzle J., Horvath A. A., & Stephan K. E. (2018). Visual mismatch and predictive coding: A computational single-trial ERP study. Journal of Neuroscience, 38(16), 4020-4030.
doi: 10.1523/JNEUROSCI.3365-17.2018 pmid: 29581379 |
[54] |
Stefanics G., Kremláček J., & Czigler I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, 666.
doi: 10.3389/fnhum.2014.00666 pmid: 25278859 |
[55] |
Tamietto M., & de Gelder B. (2010). Neural bases of the non- conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697-709.
doi: 10.1038/nrn2889 pmid: 20811475 |
[56] |
Tsuchiya N., Wilke M., Frässle S., & Lamme V. A. F. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19(12), 757-770.
doi: 10.1016/j.tics.2015.10.002 URL |
[57] |
Wirth B. E., & Wentura D. (2020). It occurs after all: Attentional bias towards happy faces in the dot-probe task. Attention Perception & Psychophysics, 82(5), 2463-2481.
doi: 10.3758/s13414-020-02017-y URL |
[1] | 汪海玲, 陈恩光, 连玉净, 李晶晶, 王丽薇. 面孔宽高比的自动加工[J]. 心理学报, 2023, 55(11): 1745-1761. |
[2] | 李红, 杨小光, 郑文瑜, 王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647. |
[3] | 赵庆柏;柯娓;童彪;周治金; 周宗奎. 网络语言的创造性加工过程:新颖N400与LPC[J]. 心理学报, 2017, 49(2): 143-154. |
[4] | 赵庆柏, 魏琳琳, 李瑛, 周治金, 赵黎莉, 唐磊. 新颖语义联结形成的右半球优势效应[J]. 心理学报, 2017, 49(11): 1370-1382. |
[5] | 蔡阿燕;杨洁敏;许爽;袁加锦. 表达抑制调节负性情绪的男性优势 ——来自事件相关电位的证据[J]. 心理学报, 2016, 48(5): 482-494. |
[6] | 雷寰宇;魏柳青;吕创;张学民;闫晓倩. 多身份追踪中基于表情特征的分组效应[J]. 心理学报, 2016, 48(2): 141-152. |
[7] | 刘文娟;沈曼琼;李莹;王瑞明. 情绪概念加工与情绪面孔知觉的相互影响[J]. 心理学报, 2016, 48(2): 163-173. |
[8] | 王敬欣;贾丽萍;白学军;罗跃嘉. 返回抑制过程中情绪面孔加工优先:ERPs研究[J]. 心理学报, 2013, 45(1): 1-10. |
[9] | 梁毅,陈红,邱江,高笑,赵婷婷. 负面身体自我女性对身体信息的记忆偏向: 来自ERP研究的证据 [J]. 心理学报, 2008, 40(08): 913-919. |
[10] | 罗跃嘉,魏景汉,翁旭初,卫星. 汉字视听再认的ERP效应与记忆提取脑机制[J]. 心理学报, 2001, 33(6): 10-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||