心理学报 ›› 2023, Vol. 55 ›› Issue (11): 1745-1761.doi: 10.3724/SP.J.1041.2023.01745
• 研究报告 • 下一篇
收稿日期:
2022-12-28
发布日期:
2023-08-30
出版日期:
2023-11-25
通讯作者:
汪海玲, E-mail: hailingwang@sdnu.edu.cn
基金资助:
WANG Hailing(), CHEN Enguang, LIAN Yujing, LI Jingjing, WANG Liwei
Received:
2022-12-28
Online:
2023-08-30
Published:
2023-11-25
摘要:
研究发现, 高低面孔宽高比(facial width-to-height ratio, fWHR)在表征某男性个体实际攻击性或预测他人评价该男性个体的攻击性行为水平上存在差异, 高fWHR较低fWHR个体不仅有更强的攻击性, 也被他人评价为有更高的攻击倾向。但是, 其中的神经机制尚不清楚, 尤其是非注意条件下二者的加工机制。因而, 本研究以视觉失匹配负波(visual mismatch negativity, vMMN)为指标, 考察非注意条件下高低fWHR加工的神经机制。实验1给被试呈现中性情绪面孔, 要求被试完成注视点大小探测任务。结果发现, 高fWHR在200~500 ms, 而低fWHR在200~250 ms和300~350 ms诱发vMMN, 在300~350 ms高fWHR比低fWHR诱发的vMMN更大。实验2呈现愤怒和恐惧面孔, 结果发现, 愤怒情绪高fWHR在200~250 ms和300~400 ms诱发了vMMN, 而恐惧情绪低fWHR在左半球250~400 ms诱发vMMN。对比实验1和实验2发现, 愤怒情绪较中性情绪降低了高fWHR的vMMN。这些结果表明, 与个体感知攻击性水平密切相关的fWHR的自动加工可能受情绪信息的影响, 愤怒情绪促进高fWHR自动加工, 而恐惧情绪促进低fWHR自动加工; 但可能受情绪自动加工的影响使得愤怒情绪较中性情绪减弱了高fWHR的自动加工程度。
中图分类号:
汪海玲, 陈恩光, 连玉净, 李晶晶, 王丽薇. (2023). 面孔宽高比的自动加工. 心理学报, 55(11), 1745-1761.
WANG Hailing, CHEN Enguang, LIAN Yujing, LI Jingjing, WANG Liwei. (2023). Automatic processing of facial width-to-height ratio. Acta Psychologica Sinica, 55(11), 1745-1761.
图3 实验1 ERP结果波形图(A)和300~350 ms的地形图(B)。差异波指的是由偏差刺激减去标准刺激诱发的ERP波形。(A)阴影部分指的是偏差刺激诱发波幅较标准刺激更负, 即存在vMMN的时间窗; (B)黄色圆点指的是偏差刺激诱发波幅较标准刺激更负的电极点(P3/4、PO5/6和PO7/8)。
时间窗口 | 面孔情绪 | 电极 | |||||
---|---|---|---|---|---|---|---|
P3 | P4 | PO5 | PO6 | PO7 | PO8 | ||
200~250 ms | 中性 | 0.040 | 0.037 | 0.050 | |||
愤怒 | 0.039 | 0.011 | |||||
250~300 ms | 中性 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | |||||||
300~350 ms | 中性 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | 0.009 | 0.044 | 0.049 | ||||
350~400 ms | 中性 | 0.024 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | 0.031 | 0.035 |
表1 中性和愤怒情绪高fWHR诱发的vMMN
时间窗口 | 面孔情绪 | 电极 | |||||
---|---|---|---|---|---|---|---|
P3 | P4 | PO5 | PO6 | PO7 | PO8 | ||
200~250 ms | 中性 | 0.040 | 0.037 | 0.050 | |||
愤怒 | 0.039 | 0.011 | |||||
250~300 ms | 中性 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | |||||||
300~350 ms | 中性 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | 0.009 | 0.044 | 0.049 | ||||
350~400 ms | 中性 | 0.024 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
愤怒 | 0.031 | 0.035 |
时间窗口 | 面孔情绪 | 电极 | |||||
---|---|---|---|---|---|---|---|
P3 | P4 | PO5 | PO6 | PO7 | PO8 | ||
200~250 ms | 中性 | 0.014 | 0.001 | 0.001 | |||
恐惧 | |||||||
250~300 ms | 中性 | ||||||
恐惧 | 0.026 | ||||||
300~350 ms | 中性 | 0.019 | 0.010 | 0.031 | |||
恐惧 | 0.022 | ||||||
350~400 ms | 中性 | ||||||
恐惧 | 0.035 |
表2 中性和恐惧情绪低fWHR诱发的vMMN
时间窗口 | 面孔情绪 | 电极 | |||||
---|---|---|---|---|---|---|---|
P3 | P4 | PO5 | PO6 | PO7 | PO8 | ||
200~250 ms | 中性 | 0.014 | 0.001 | 0.001 | |||
恐惧 | |||||||
250~300 ms | 中性 | ||||||
恐惧 | 0.026 | ||||||
300~350 ms | 中性 | 0.019 | 0.010 | 0.031 | |||
恐惧 | 0.022 | ||||||
350~400 ms | 中性 | ||||||
恐惧 | 0.035 |
[1] | Adams R. B., Gordon H. L., Baird A. A., Ambady N., & Kleck R. E. (2003). Effects of gaze on amygdala sensitivity to anger and fear faces. Science, 300(5625), 1536−1536. https://doi.org/10.1126/science.1082244 |
[2] | Batty M., & Taylor M. J. (2003). Early processing of the six basic facial emotional expressions. Cognitive Brain Research, 17(3), 613−620. https://doi.org/10.1016/S0926- 6410(03)00174-5 |
[3] | Carré J. M., & McCormick C. M. (2008). In your face: Facial metrics predict aggressive behaviour in the laboratory and in varsity and professional hockey players. Proceedings of the Royal Society B-Biological Sciences, 275(1651), 2651−2656. https://doi.org/10.1098/rspb.2008.0873 |
[4] | Carré J. M., McCormick C. M., & Hariri A. R. (2011). The social neuroendocrinology of human aggression. Psychoneuroendocrinology, 36(7), 935−944. https://doi.org/10.1016/j.psyneuen.2011.02.001 |
[5] | Carré J. M., McCormick C. M., & Mondloch C. J. (2009). Facial structure is a reliable cue of aggressive behavior. Psychological Science, 20(10), 1194−1198. https://doi.org/ 10.1111/j.1467-9280.2009.02423.x |
[6] | Carré J. M., Morrissey M. D., Mondloch C. J., & McCormick C. M. (2010). Estimating aggression from emotionally neutral faces: Which facial cues are diagnostic? Perception, 39(3), 356−377. https://doi.org/10.1068/p6543 |
[7] | Carré J. M., Murphy K. R., & Hariri A. R. (2013). What lies beneath the face of aggression? Social Cognitive and Affective Neuroscience, 8(2), 224−229. https://doi.org/ 10.1093/scan/nsr096 |
[8] |
Chen B., Sun P., & Fu S. (2020). Consciousness modulates the automatic change detection of masked emotional faces: Evidence from visual mismatch negativity. Neuropsychologia, 144, 107459. https://doi.org/10.1016/ j.neuropsychologia.2020.107459
doi: 10.1016/j.neuropsychologia.2020.107459 URL |
[9] |
Costa M., Lio G., Gomez A., & Sirigu A. (2017). How components of facial width to height ratio differently contribute to the perception of social traits. Plos One, 12(2), e0172739. https://doi.org/10.1371/journal.pone.0172739
doi: 10.1371/journal.pone.0172739 URL |
[10] |
Csizmadia P., Petro B., Kojouharova P., Gaal Z. A., Scheiling K., Nagy B., & Czigler I. (2021). Older adults automatically detect age of older adults’ photographs: A visual mismatch negativity study. Frontiers in Human Neuroscience, 15, 707702. https://doi.org/10.3389/fnhum. 2021.707702
doi: 10.3389/fnhum.2021.707702 URL |
[11] | Czigler I., Balazs L., & Winkler I. (2002). Memory-based detection of task-irrelevant visual changes. Psychophysiology, 39(6), 869−873. https://doi.org/10.1111/1469-8986.3960869 |
[12] | Deska J. C., Lloyd E. P., & Hugenberg K. (2018). The face of fear and anger: Facial width-to-height ratio biases recognition of angry and fearful expressions. Emotion, 18(3), 453−464. https://doi.org/10.1037/emo0000328 |
[13] | Eimer M. (2011). The face-sensitive N170 component of the event-related brain potential. In: Calder A. J. et al. (Eds). The oxford handbook of face perception (pp. 329−344). Oxford University Press. |
[14] | Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175−191. https://doi.org/10.3758/BF03193146 |
[15] | Fu S. M., Fan S. L., & Chen L. (2003). Event-related potentials reveal involuntary processing of orientation changes in the visual modality. Psychophysiology, 40(5), 770−775. https://doi.org/10.1111/1469-8986.00077 |
[16] |
Geniole S. N., Denson T. F., Dixson B. J., Carré J. M., & McCormick C. M. (2015). Evidence from meta-analyses of the facial width-to-height ratio as an evolved cue of threat. Plos One, 10(7), e0132726. https://doi.org/10.1371/journal.pone.0132726
doi: 10.1371/journal.pone.0132726 URL |
[17] |
Geniole S. N., Keyes A. E., Mondloch C. J., Carré J. M., & McCormick C. M. (2012). Facing Aggression: Cues Differ for Female versus Male Faces. Plos One, 7(1), e30366. https://doi.org/10.1371/journal.pone.0030366
doi: 10.1371/journal.pone.0030366 URL |
[18] | Geniole S. N., & McCormick C. M. (2015). Facing our ancestors: Judgements of aggression are consistent and related to the facial width-to-height ratio in men irrespective of beards. Evolution and Human Behavior, 36(4), 279−285. https://doi.org/10.1016/j.evolhumbehav.2014.12.005 |
[19] | Goetz S. M. M., Shattuck K. S., Miller R. M., Campbell J. A., Lozoya E., Weisfeld G. E., & Carré J. M. (2013). Social status moderates the relationship between facial structure and aggression. Psychological Science, 24(11), 2329−2334. https://doi.org/10.1177/0956797613493294 |
[20] | Gong X., Huang Y. X., Wang Y., & Luo Y. J. (2011). Revision of the Chinese facial affective picture system. Chinese Mental Health Journal, 25(1), 40−46. |
[龚栩, 黄宇霞, 王妍, 罗跃嘉. (2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25(1), 40−46.] | |
[21] | Groppe D. M., Urbach T. P., & Kutas M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711−1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x |
[22] |
Haselhuhn M. P., Ormiston M. E., & Wong E. M. (2015). Men’s facial width-to-height ratio predicts aggression: A meta-analysis. Plos One, 10(4), e0122637. https://doi.org/10.1371/journal.pone.0122637
doi: 10.1371/journal.pone.0122637 URL |
[23] | Haselhuhn M. P., & Wong E. M. (2011). Bad to the bone: Facial structure predicts unethical behaviour. Proceedings of the Royal Society B-Biological Sciences, 279(1728), 571−576. https://doi.org/10.1098/rspb.2011.1193 |
[24] | Haselton M. G., & Funder D. C. (2006). The evolution of accuracy and bias in social judgment. In: Schaller M. et al. (Eds.). Evolution and social psychology (pp. 15−37). Psychosocial Press. |
[25] | Hehman E., Leitner J. B., Deegan M. P., & Gaertner S. L. (2013). Facial structure is indicative of explicit support for prejudicial beliefs. Psychological Science, 24(3), 289−296. https://doi.org/10.1177/0956797612451467 |
[26] | Hehman E., Leitner J. B., & Gaertner S. L. (2013). Enhancing static facial features increases intimidation. Journal of Experimental Social Psychology, 49(4), 747−754. https://doi.org/10.1016/j.jesp.2013.02.015 |
[27] | Itier R. J., Latinus M., & Taylor M. J. (2006). Face, eye and object early processing: What is the face specificity? Neuroimage, 29(2), 667−676. https://doi.org/10.1016/ j.neuroimage.2005.07.041 |
[28] |
Kecskés-Kovács K., Sulykos I., & Czigler I. (2013). Is it a face of a woman or a man? Visual mismatch negativity is sensitive to gender category. Frontiers in Human Neuroscience, 7, 532. https://doi.org/10.3389/fnhum.2013.00532
doi: 10.3389/fnhum.2013.00532 URL pmid: 24027518 |
[29] | Kimura M., Katayama J., Ohira H., & Schroeger E. (2009). Visual mismatch negativity: New evidence from the equiprobable paradigm. Psychophysiology, 46(2), 402−409. https://doi.org/10.1111/j.1469-8986.2008.00767.x |
[30] |
Kovarski K., Latinus M., Charpentier J., Clery H., Roux S., Houy-Durand E., … Gomot M. (2017). Facial expression related vMMN: Disentangling emotional from neutral change detection. Frontiers in Human Neuroscience, 11, 18. https://doi.org/10.3389/fnhum.2017.00018
doi: 10.3389/fnhum.2017.00018 URL pmid: 28194102 |
[31] |
Kreegipuu K., Kuldkepp N., Sibolt O., Toom M., Allik J., & Näätänen R. (2013). vMMN for schematic faces: Automatic detection of change in emotional expression. Frontiers in Human Neuroscience, 7, 714. https://doi.org/ 10.3389/fnhum.2013.00714
doi: 10.3389/fnhum.2013.00714 URL pmid: 24191149 |
[32] |
Lefevre C. E., Etchells P. J., Howell E. C., Clark A. P., & Penton-Voak I. S. (2014). Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. Biology Letters, 10(10), 20140729. https://doi.org/10.1098/ rsbl.2014.0729
doi: 10.1098/rsbl.2014.0729 URL |
[33] | Lefevre C. E., Lewis G. J., Perrett D. I., & Penke L. (2013). Telling facial metrics: Facial width is associated with testosterone levels in men. Evolution and Human Behavior, 34(4), 273−279. https://doi.org/10.1016/j.evolhumbehav. 2013.03.005 |
[34] |
Li X., Lu Y., Sun G., Gao L., & Zhao L. (2012). Visual mismatch negativity elicited by facial expressions: New evidence from the equiprobable paradigm. Behavioral and Brain Functions, 8, 7. https://doi.org/10.1186/1744-9081-8-7
doi: 10.1186/1744-9081-8-7 URL pmid: 22300600 |
[35] | Luo W., Feng W., He W., Wang N., & Luo Y. (2010). Three stages of facial expression processing: ERP study with rapid serial visual presentation. Neuroimage, 49(2), 1857−1867. https://doi.org/10.1016/j.neuroimage.2009.09.018 |
[36] | Maris E., & Oostenveld R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177−190. https://doi.org/10.1016/j.jneumeth. 2007.03.024 |
[37] |
Merlhiot G., Mondillon L., Meot A., Dutheil F., & Mermillod M. (2021). Facial width-to-height ratio underlies perceived dominance on facial emotional expressions. Personality and Individual Differences, 172, 110583. https://doi.org/10.1016/j.paid.2020.110583
doi: 10.1016/j.paid.2020.110583 URL |
[38] | Peterson C. K., Shackman A. J., & Harmon-Jones E. (2008). The role of asymmetrical frontal cortical activity in aggression. Psychophysiology, 45(1), 86−92. https://doi.org/ 10.1111/j.1469-8986.2007.00597.x |
[39] |
Sassenhagen J., & Draschkow D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. Psychophysiology, 56(6), e13335. https://doi.org/10.1111/psyp.13335
doi: 10.1111/psyp.2019.56.issue-6 URL |
[40] | Smith M. L., Cottrell G. W., Gosselin F., & Schyns P. G. (2005). Transmitting and decoding facial expressions. Psychological Science, 16(3), 184−189. https://doi.org/ 10.2307/40064199 |
[41] | Stefanics G., Csukly G., Komlosi S., Czobor P., & Czigler I. (2012). Processing of unattended facial emotions: A visual mismatch negativity study. Neuroimage, 59(3), 3042−3049. https://doi.org/10.1016/j.neuroimage.2011.10.041 |
[42] |
Stefanics G., Kremlacek J., & Czigler I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, 666. https://doi.org/10.3389/ fnhum.2014.00666
doi: 10.3389/fnhum.2014.00666 URL pmid: 25278859 |
[43] | Stirrat M., Stulp G., & Pollet T. V. (2012). Male facial width is associated with death by contact violence: Narrow-faced males are more likely to die from contact violence. Evolution and Human Behavior, 33(5), 551−556. https://doi.org/10.1016/j.evolhumbehav.2012.02.002 |
[44] | Sulykos I., & Czigler I. (2011). One plus one is less than two: Visual features elicit non-additive mismatch-related brain activity. Brain Research, 1398, 64−71. https://doi.org/ 10.1016/j.brainres.2011.05.009 |
[45] | Vormbrock R., Bruchmann M., Menne L., Straube T., & Schindler S. (2023). Testing stimulus exposure time as the critical factor of increased EPN and LPP amplitudes for fearful faces during perceptual distraction tasks. Cortex, 160, 9−23. https://doi.org/10.1016/j.cortex.2022.12.011 |
[46] |
Wang H., Chen E., Li J., Ji F., Lian Y., & Fu S. (2022). Configural but not featural face information is associated with automatic processing. Frontiers in Human Neuroscience, 16, 884823. https://doi.org/10.3389/fnhum.2022.884823
doi: 10.3389/fnhum.2022.884823 URL |
[47] | Wang H., & Fu S. (2018). Spatial attention modulates the temporal sequence of hemispheric asymmetry in configural and featural face processing. Neuropsychologia, 111, 269− 275. https://doi.org/10.1016/j.neuropsychologia.2018.01.029 |
[48] | Wang H., Guo S., & Fu S. (2016). Double dissociation of configural and featural face processing on P1 and P2 components as a function of spatial attention. Psychophysiology, 53(8), 1165−1173. https://doi.org/ 10.1111/psyp.12669 |
[49] | Wang H., Qiu R., Li W., Li S., & Fu S. (2020). Cultural differences in the time course of configural and featural processing for own-race faces. Neuroscience, 446, 157−170. https://doi.org/10.1016/j.neuroscience.2020.08.003 |
[50] | Wang H., Sun P., Ip C., Zhao X., & Fu S. (2015). Configural and featural face processing are differently modulated by attentional resources at early stages: An event-related potential study with rapid serial visual presentation. Brain Research, 1602, 75−84. https://doi.org/ 10.1016/j.brainres.2015.01.017 |
[51] | Wang W., Miao D., & Zhao L. (2014). Automatic detection of orientation changes of faces versus non-face objects: A visual MMN study. Biological Psychology, 100, 71−78. https://doi.org/10.1016/j.biopsycho.2014.05.004 |
[52] |
Weston E. M., Friday A. E., & Lio P. (2007). Biometric evidence that sexual selection has shaped the hominin face. Plos One, 2(8), e710. https://doi.org/10.1371/journal.pone.0000710
doi: 10.1371/journal.pone.0000710 URL pmid: 17684556 |
[53] | Wong E. M., Ormiston M. E., & Haselhuhn M. P. (2011). A face only an investor could love: CEOs’ facial structure predicts their firms’ financial performance. Psychological Science, 22(12), 1478−1483. https://doi.org/10.1177/ 0956797611418838 |
[54] | Zeng X. Q., Xu B., Sun B., Ye J. T., & Fu S. M. (2021). EMMN varies with deviant-standard stimulus pair type and emotion type: Evidence from a meta-analysis study. Advances in Psychological Science, 29(7), 1163−1178. |
[曾宪卿, 许冰, 孙博, 叶健彤, 傅世敏. (2021). EMMN受偏差-标准刺激对类型和情绪类型影响: 来自元分析的证据. 心理科学进展, 29(7), 1163−1178.] | |
[55] | Zheng Z. G., Yu Z. H., Liao H., & Liu J. P. (2017). Can we judge a person by his appearance? A literature review of facial width-to-height ratio. Journal of Psychological Science, 40(5), 1235−1241. |
[郑治国, 俞宗火, 廖华, 刘建平. (2017). 能以貌取人吗? 面孔宽高比研究述评. 心理科学, 40(5), 1235−1241.] | |
[56] | Zochowska A., Nowicka M. M., Wojcik M. J., & Nowicka A. (2021). Self-face and emotional faces-are they alike? Social Cognitive and Affective Neuroscience, 16(6), 593−607. https://doi.org/10.1093/scan/nsab020 |
[1] | 田杨阳, 李东, 闫向博, 李曌, 崔倩, 蒋重清. 动态高兴表情评价中的表征动量效应和参照依赖效应[J]. 心理学报, 2024, 56(1): 29-43. |
[2] | 陈沛琪, 张银玲, 胡馨木, 王静, 买晓琴. 10~12岁儿童社会价值取向对第三方利他行为的影响:情绪的作用[J]. 心理学报, 2023, 55(8): 1255-1269. |
[3] | 梅颖, 刘郡彤, 刘红红, 傅洋, 罗熙, 雷怡. 自悯写作对恐惧消退的促进作用[J]. 心理学报, 2023, 55(8): 1317-1329. |
[4] | 王妹, 程思, 李宜伟, 李红, 张丹丹. 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究[J]. 心理学报, 2023, 55(7): 1063-1073. |
[5] | 祝养浩, 龙立荣, 刘文兴. 领导感激表达能提高员工的追随行为吗?情绪表达真诚性的作用[J]. 心理学报, 2023, 55(7): 1160-1175. |
[6] | 王哲, 倪昊, 封丹, 严璘璘, 孙宇浩. 面孔熟悉过程中部件加工与整体加工的区域异步性和眼睛区域特异性[J]. 心理学报, 2023, 55(6): 861-876. |
[7] | 郭晓栋, 郑泓, 阮盾, 胡丁鼎, 王毅, 王艳郁, 陈楚侨. 认知和情感共情与负性情绪:情绪调节的作用机制[J]. 心理学报, 2023, 55(6): 892-904. |
[8] | 谢慧, 林轩怡, 胡婉柔, 胡晓晴. 情绪调节促进负性社会反馈的遗忘:来自行为和脑电的证据[J]. 心理学报, 2023, 55(6): 905-919. |
[9] | 张丹丹, 李宜伟, 于文汶, 莫李澄, 彭程, 刘黎黎. 0~1岁婴儿情绪偏向的发展:近红外成像研究[J]. 心理学报, 2023, 55(6): 920-929. |
[10] | 肖家乐, 申子姣, 李晓燕, 林丹华. 同伴侵害变化轨迹及其与抑郁情绪和外化问题的关系:共同增强还是风险易感[J]. 心理学报, 2023, 55(6): 978-993. |
[11] | 李丽源, 高祥宇, 郑晓明. 员工积极主动行为的组态效应:基于过程的视角[J]. 心理学报, 2023, 55(5): 792-811. |
[12] | 郑茜, 张亭亭, 李量, 范宁, 杨志刚. 言语的情绪韵律和情绪语义对听觉去信息掩蔽的作用[J]. 心理学报, 2023, 55(2): 177-191. |
[13] | 王小琴, 谈雅菲, 蒙杰, 刘源, 位东涛, 杨文静, 邱江. 情绪调节灵活性对负性情绪的影响:来自经验取样的证据[J]. 心理学报, 2023, 55(2): 192-209. |
[14] | 高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. 腹内侧前额叶在内隐认知重评中的因果作用[J]. 心理学报, 2023, 55(2): 210-223. |
[15] | 黄成利, 胡超. 死亡意识的恐惧管理和悲伤管理[J]. 心理学报, 2023, 55(2): 318-335. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||