心理学报 ›› 2022, Vol. 54 ›› Issue (8): 881-891.doi: 10.3724/SP.J.1041.2022.00881
陈嫣然1, 梁正1, 赵庆柏1(), 黄宇1, 李松清1,2, 于全磊1(), 周治金1()
收稿日期:
2021-08-04
发布日期:
2022-06-23
出版日期:
2022-08-25
通讯作者:
赵庆柏,于全磊,周治金
E-mail:zqbznr@mail.ccnu.edu.cn;yulei19881987@mail.ccnu.edu.cn;zhouzj@mail.ccnu.edu.cn
基金资助:
CHEN Yanran1, LIANG Zheng1, ZHAO Qingbai1(), Huang Yu1, LI Songqing1,2, YU Quanlei1(), ZHOU Zhijin1()
Received:
2021-08-04
Online:
2022-06-23
Published:
2022-08-25
Contact:
ZHAO Qingbai,YU Quanlei,ZHOU Zhijin
E-mail:zqbznr@mail.ccnu.edu.cn;yulei19881987@mail.ccnu.edu.cn;zhouzj@mail.ccnu.edu.cn
摘要:
通过描绘发散性思维测验(物品多用途, AUT)中答案生成在累积函数和语义相似性等一系列参数上的量化特征, 揭示创造性思维的语义搜索过程。结果发现:(1)新颖AUT条件中, 语义搜索呈现与自由联想类似的负加速特点, 但搜索速度较寻常AUT条件更慢。(2)新颖AUT条件中所生成的答案与题目(即物品)均具有较低的语义相似性, 且显著小于寻常AUT条件。(3)新颖AUT条件中生成的答案比寻常AUT条件表现出显著更低的聚类程度, 其中可聚类答案和未聚类答案与题目的语义相似度均较低, 且不存在显著差异, 二者在新颖性上也不存在显著差异。以上结果说明了创造性思维的语义信息搜索过程具有与自由联想类似的激活扩散特征, 但总体搜索速度较慢。新颖性要求使得个体在最初搜索时便开始摆脱题目的语义限制而进行远距离搜索(避免就近搜索), 并倾向于在每个语义场中只生成一个答案(避免局部搜索), 但也可能会在远离题目的语义场中生成多个同类别答案。
中图分类号:
陈嫣然, 梁正, 赵庆柏, 黄宇, 李松清, 于全磊, 周治金. (2022). 创造性思维中语义搜索过程:基于答案累积时间函数和语义相似性的量化分析. 心理学报, 54(8), 881-891.
CHEN Yanran, LIANG Zheng, ZHAO Qingbai, Huang Yu, LI Songqing, YU Quanlei, ZHOU Zhijin. (2022). Semantic search during creative thinking: A quantitative analysis based on cumulative distribution and semantic similarity of responses. Acta Psychologica Sinica, 54(8), 881-891.
基础指标 | 实验条件 | 平均值 | 标准差 | t | 95% CI |
---|---|---|---|---|---|
答案个数 | 寻常 | 8.31 | 1.99 | 6.29*** | [1.19, 2.32] |
新颖 | 6.55 | 1.83 | |||
平均答案 时间(s) | 寻常 | 19.01 | 3.80 | -7.47*** | [-10.14, -5.81] |
新颖 | 26.98 | 7.23 | |||
平均答案 新颖性 | 寻常 | 2.23 | 0.51 | -9.08*** | [-1.05, -0.67] |
新颖 | 3.10 | 0.48 | |||
平均答案 字数 | 寻常 | 4.81 | 1.68 | 0.01 | [-0.59, 0.59] |
新颖 | 4.81 | 1.60 | |||
AUT难度 | 寻常 | 3.88 | 1.29 | -4.53*** | [-0.19, -0.71] |
新颖 | 5.17 | 0.94 |
表1 不同实验条件下基础指标平均值及t检验结果
基础指标 | 实验条件 | 平均值 | 标准差 | t | 95% CI |
---|---|---|---|---|---|
答案个数 | 寻常 | 8.31 | 1.99 | 6.29*** | [1.19, 2.32] |
新颖 | 6.55 | 1.83 | |||
平均答案 时间(s) | 寻常 | 19.01 | 3.80 | -7.47*** | [-10.14, -5.81] |
新颖 | 26.98 | 7.23 | |||
平均答案 新颖性 | 寻常 | 2.23 | 0.51 | -9.08*** | [-1.05, -0.67] |
新颖 | 3.10 | 0.48 | |||
平均答案 字数 | 寻常 | 4.81 | 1.68 | 0.01 | [-0.59, 0.59] |
新颖 | 4.81 | 1.60 | |||
AUT难度 | 寻常 | 3.88 | 1.29 | -4.53*** | [-0.19, -0.71] |
新颖 | 5.17 | 0.94 |
实验条件 | 基础指标 | 1 | 2 | 3 |
---|---|---|---|---|
寻常条件 | 1.答案个数 | 1 | ||
2.回答时间 | -0.75*** | 1 | ||
3.答案新颖性 | 0.32* | -0.27 | 1 | |
4.任务难度 | -0.18 | 0.07 | -0.08 | |
新颖条件 | 1.答案个数 | 1 | ||
2.回答时间 | -0.85*** | 1 | ||
3.答案新颖性 | 0.09 | -0.07 | 1 | |
4.任务难度 | 0.08 | -0.04 | 0.01 |
表2 不同实验条件下基础指标的相关关系
实验条件 | 基础指标 | 1 | 2 | 3 |
---|---|---|---|---|
寻常条件 | 1.答案个数 | 1 | ||
2.回答时间 | -0.75*** | 1 | ||
3.答案新颖性 | 0.32* | -0.27 | 1 | |
4.任务难度 | -0.18 | 0.07 | -0.08 | |
新颖条件 | 1.答案个数 | 1 | ||
2.回答时间 | -0.85*** | 1 | ||
3.答案新颖性 | 0.09 | -0.07 | 1 | |
4.任务难度 | 0.08 | -0.04 | 0.01 |
参数 | 条件 | 中位数 | 最小值 | 最大值 | U | W | Z | p |
---|---|---|---|---|---|---|---|---|
a | 寻常 | 14.84 | 6.08 | 46573.17 | 2789.00 | 5870.00 | -0.90 | 0.370 |
新颖 | 15.40 | 4.30 | 21090.66 | |||||
b | 寻常 | 128.24 | 33.79 | 568476.19 | 1889.00 | 4970.00 | -4.09 | <0.001 |
新颖 | 255.58 | 65.67 | 301612.79 |
表3 不同条件下拟合曲线参数的差异检验结果
参数 | 条件 | 中位数 | 最小值 | 最大值 | U | W | Z | p |
---|---|---|---|---|---|---|---|---|
a | 寻常 | 14.84 | 6.08 | 46573.17 | 2789.00 | 5870.00 | -0.90 | 0.370 |
新颖 | 15.40 | 4.30 | 21090.66 | |||||
b | 寻常 | 128.24 | 33.79 | 568476.19 | 1889.00 | 4970.00 | -4.09 | <0.001 |
新颖 | 255.58 | 65.67 | 301612.79 |
位置 | 实验条件 | 答案个数 | 语义相似度(M ± SD) | 实验条件 | 答案个数 | 语义相似度(M ± SD) | t | 95% CI |
---|---|---|---|---|---|---|---|---|
1 | 寻常 | 78 | 3.41 ± 1.07 | 新颖 | 78 | 1.59 ± 1.01 | 10.89*** | [1.49, 2.15] |
2 | 寻常 | 78 | 2.28 ± 1.13 | 新颖 | 78 | 1.42 ± 0.78 | 5.53*** | [0.55, 1.17] |
3 | 寻常 | 78 | 1.87 ± 0.97 | 新颖 | 78 | 1.31 ± 0.67 | 4.22*** | [0.30, 0.83] |
4 | 寻常 | 78 | 1.83 ± 0.96 | 新颖 | 74 | 1.30 ± 0.64 | 4.08*** | [0.28, 0.80] |
5 | 寻常 | 76 | 1.72 ± 0.93 | 新颖 | 65 | 1.22 ± 0.52 | 4.06*** | [0.26, 0.75] |
6 | 寻常 | 72 | 1.71 ± 0.94 | 新颖 | 55 | 1.53 ± 0.86 | 1.15 | [-0.13, 0.51] |
7 | 寻常 | 63 | 1.68 ± 0.93 | 新颖 | 35 | 1.34 ± 0.73 | 2.00* | [0.02, 0.68] |
8 | 寻常 | 42 | 1.89 ± 1.10 | 新颖 | 24 | 1.21 ± 0.41 | 3.60*** | [0.30, 1.06] |
9 | 寻常 | 31 | 1.61 ± 0.96 | 新颖 | 13 | 1.31 ± 0.48 | 1.41 | [-0.13, 0.74] |
10 | 寻常 | 21 | 2.05 ± 1.20 | 新颖 | 7 | 1.00 ± 0.00 | 4.00*** | [0.50, 1.60] |
表4 不同实验条件题目与各位置答案的语义相似度均值与t检验结果
位置 | 实验条件 | 答案个数 | 语义相似度(M ± SD) | 实验条件 | 答案个数 | 语义相似度(M ± SD) | t | 95% CI |
---|---|---|---|---|---|---|---|---|
1 | 寻常 | 78 | 3.41 ± 1.07 | 新颖 | 78 | 1.59 ± 1.01 | 10.89*** | [1.49, 2.15] |
2 | 寻常 | 78 | 2.28 ± 1.13 | 新颖 | 78 | 1.42 ± 0.78 | 5.53*** | [0.55, 1.17] |
3 | 寻常 | 78 | 1.87 ± 0.97 | 新颖 | 78 | 1.31 ± 0.67 | 4.22*** | [0.30, 0.83] |
4 | 寻常 | 78 | 1.83 ± 0.96 | 新颖 | 74 | 1.30 ± 0.64 | 4.08*** | [0.28, 0.80] |
5 | 寻常 | 76 | 1.72 ± 0.93 | 新颖 | 65 | 1.22 ± 0.52 | 4.06*** | [0.26, 0.75] |
6 | 寻常 | 72 | 1.71 ± 0.94 | 新颖 | 55 | 1.53 ± 0.86 | 1.15 | [-0.13, 0.51] |
7 | 寻常 | 63 | 1.68 ± 0.93 | 新颖 | 35 | 1.34 ± 0.73 | 2.00* | [0.02, 0.68] |
8 | 寻常 | 42 | 1.89 ± 1.10 | 新颖 | 24 | 1.21 ± 0.41 | 3.60*** | [0.30, 1.06] |
9 | 寻常 | 31 | 1.61 ± 0.96 | 新颖 | 13 | 1.31 ± 0.48 | 1.41 | [-0.13, 0.74] |
10 | 寻常 | 21 | 2.05 ± 1.20 | 新颖 | 7 | 1.00 ± 0.00 | 4.00*** | [0.50, 1.60] |
实验条件 | 平均可聚类答案百分比 | ||
---|---|---|---|
d ≤ 0.25 | d ≤ 0.50 | d ≤ 0.75 | |
寻常 | 0.31 | 0.58 | 0.78 |
新颖 | 0.17 | 0.38 | 0.60 |
表5 各个聚类标准下可聚类答案百分比
实验条件 | 平均可聚类答案百分比 | ||
---|---|---|---|
d ≤ 0.25 | d ≤ 0.50 | d ≤ 0.75 | |
寻常 | 0.31 | 0.58 | 0.78 |
新颖 | 0.17 | 0.38 | 0.60 |
实验 条件 | 聚类 情况 | 被试 个数 | 新颖性评分 (M ± SD) | 各答案和题目的语 义相似度(M ± SD) |
---|---|---|---|---|
寻常条件 | 未聚类 | 31 | 2.67 ± 0.88 | 1.63 ± 0.46 |
可聚类 | 31 | 1.96 ± 0.51 | 2.45 ± 0.54 | |
新颖条件 | 未聚类 | 31 | 3.23 ± 0.61 | 1.37 ± 0.39 |
可聚类 | 31 | 3.06 ± 0.74 | 1.43 ± 0.50 |
表6 两种实验条件下不同聚类情况答案的新颖性评分与各答案和题目的语义相似度
实验 条件 | 聚类 情况 | 被试 个数 | 新颖性评分 (M ± SD) | 各答案和题目的语 义相似度(M ± SD) |
---|---|---|---|---|
寻常条件 | 未聚类 | 31 | 2.67 ± 0.88 | 1.63 ± 0.46 |
可聚类 | 31 | 1.96 ± 0.51 | 2.45 ± 0.54 | |
新颖条件 | 未聚类 | 31 | 3.23 ± 0.61 | 1.37 ± 0.39 |
可聚类 | 31 | 3.06 ± 0.74 | 1.43 ± 0.50 |
[1] |
Acar S., & Runco M. A. (2019). Divergent thinking: New methods, recent research, and extended theory. Psychology of Aesthetics, Creativity, and the Arts, 13( 2), 153-158.
doi: 10.1037/aca0000231 URL |
[2] |
Bai X. J. & Yao H. J. (2018). Differences in cognitive inhibition between persons with high and low creativity: Evidences from behavioral and physiological studies. Acta Psychologica Sinica, 50(11), 1197-1211.
doi: 10.3724/SP.J.1041.2018.01197 URL |
[ 白学军, 姚海娟. (2018). 高低创造性思维水平者的认知抑制能力: 行为和生理的证据. 心理学报, 50(11), 1197-1211.] | |
[3] | Beaty R. E., Christensen A. P., Benedek M., Silvia P. J., & Schacter D. L. (2017). Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production. Neuroimage, 148, 189-196. |
[4] | Beaty R. E., Nusbaum E. C., & Silvia P. J. (2014). Does insight problem solving predict real-world creativity? Psychology of Aesthetics, Creativity & the Arts, 8(3), 287-292. |
[5] |
Beaty R. E., Silvia P. J., Nusbaum E. C., Jauk E., & Benedek M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186-1197.
doi: 10.3758/s13421-014-0428-8 URL |
[6] | Benedek M., Kenett Y. N., Umdasch K., Anaki D., Faust M., & Neubauer A. C. (2017). How semantic memory structure and intelligence contribute to creative thought: A network science approach. Thinking & Reasoning, 23(2), 158-183. |
[7] |
Benedek M., & Neubauer A. C. (2013). Revisiting Mednick's model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. Journal of Creative Behavior, 47(4), 273-289.
doi: 10.1002/jocb.35 URL |
[8] | Benedek M., Neubauer A. C., & Könen T. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity & the Arts, 6(3), 273-281. |
[9] | Bink M. L., & Marsh R. L. (2000). Cognitive regularities in creative activity. Review of General Psychology, 4(1), 57-78. |
[10] |
Chrysikou E. G., Weber M. J., & Thompson-Schill S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341-355.
doi: 10.1016/j.neuropsychologia.2013.10.021 URL |
[11] |
Collins A. M., & Loftus E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428.
doi: 10.1037/0033-295X.82.6.407 URL |
[12] |
Dijksterhuis A., & Meurs T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15(1), 135-146.
pmid: 16019229 |
[13] |
Friendly M. L. (1977). In search of the M-gram: The structure of organization in free recall. Cognitive Psychology, 9(2), 188-249.
doi: 10.1016/0010-0285(77)90008-1 URL |
[14] |
Gilhooly K. J., Fioratou E., Anthony S. H., & Wynn V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98(4), 611-625.
doi: 10.1111/j.2044-8295.2007.tb00467.x URL |
[15] |
Gruenewald P. J., & Lockhead G. R. (1980). The free recall of category examples. Journal of Experimental Psychology: Human Learning and Memory, 6(3), 225-240.
doi: 10.1037/0278-7393.6.3.225 URL |
[16] | Guo F., Zhao Q. B., Hu L. X., Fei X. Y., Chen S., & Zhou Z. J. (2019). The roles of central executive sub-functions in different phases of creative thinking process. Journal of Psychological Science, 42(4), 790-797. |
[ 郭芳, 赵庆柏, 胡丽霞, 费昕媛, 陈石, 周治金. (2019). 执行功能子成分对创造性思维不同认知加工阶段的影响. 心理科学, 42(4), 790-797.] | |
[17] |
Hass R. W. (2017). Semantic search during divergent thinking. Cognition, 166, 344-357.
doi: 10.1016/j.cognition.2017.05.039 URL |
[18] |
Hass R. W., & Beaty R. E. (2018). Use or consequences: Probing the cognitive difference between two measures of divergent thinking. Frontiers in Psychology, 9, 2327.
doi: 10.3389/fpsyg.2018.02327 URL |
[19] |
Hills T. T., Todd P. M., & Jones M. N. (2015). Foraging in semantic fields: How we search through memory. Topics in Cognitive Science, 7(3), 513-534.
doi: 10.1111/tops.12151 URL |
[20] |
Huang F., Tang S., Sun P., & Luo J. (2018). Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation. Neuroimage, 172, 381-389.
doi: 10.1016/j.neuroimage.2018.01.070 URL |
[21] |
Kenett Y. N. (2019). What can quantitative measures of semantic distance tell us about creativity? Current Opinion in Behavioral Sciences, 27, 11-16.
doi: 10.1016/j.cobeha.2018.08.010 |
[22] |
Kenett Y. N., Anaki D., & Faust M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407.
doi: 10.3389/fnhum.2014.00407 pmid: 24959129 |
[23] | Kenett Y. N., & Austerweil J. L. (2016). Examining search processes in low and high creative individuals with random walks. In A. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (pp. 313-318). Austin, TX: Cognitive Science Society. |
[24] |
Kenett Y. N., Beaty R. E., Silvia P. J., Anaki D., & Faust M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 377-388.
doi: 10.1037/aca0000056 URL |
[25] |
Kenett Y. N., Gold R., & Faust M. (2018). Metaphor comprehension in low and high creative individuals. Frontiers in Psychology, 9, 482.
doi: 10.3389/fpsyg.2018.00482 pmid: 29686639 |
[26] |
Kenett Y. N., Levy O., Kenett D. Y., Stanley H. E., Faust M., & Havlin S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings of the National Academy of Sciences, 115(5), 867-872.
doi: 10.1073/pnas.1717362115 URL |
[27] | Kumar A. A., Steyvers M., & Balota D. A. (2021). A critical review of network-based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science. Advance online publication. https://doi.org/10.1111/tops.12548 |
[28] |
Li Y., Kenett Y. N., Hu W., & Beaty R. E. (2021). Flexible semantic network structure supports the production of creative metaphor. Creativity Research Journal, 33(3), 209-223.
doi: 10.1080/10400419.2021.1879508 URL |
[29] |
Mednick S. A. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220-232.
doi: 10.1037/h0048850 URL |
[30] | Ohlsson S. Ed. (2011). Deep learning: How the mind overrides experience. Cambridge University Press: New York. |
[31] | Olson J. A., Nahas J., Chmoulevitch D., Cropper S. J., & Webb M. E. (2021). Naming unrelated words predicts creativity. Proceedings of the National Academy of Sciences, 118(25), e2022340118. |
[32] |
Rominger C., Papousek I., Perchtold C. M., Weber B., Weiss E. M., & Fink A. (2018). The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia, 118, 13-19.
doi: 10.1016/j.neuropsychologia.2018.02.013 URL |
[33] |
Silvia P. J., Beaty R. E., & Nusbaum E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41(5), 328-340.
doi: 10.1016/j.intell.2013.05.004 URL |
[34] | Taylor C. L., & Barbot B. (2021). Dual pathways in creative writing processes. Psychology of Aesthetics, Creativity, and the Arts. https://doi.org/10.1037/aca0000415 |
[35] |
Teng J., Shen W. B., & Hao N. (2018). The role of cognitive control in divergent thinking. Advances in Psychological Science, 26(3), 411-422.
doi: 10.3724/SP.J.1042.2018.00411 URL |
[ 滕静, 沈汪兵, 郝宁. (2018). 认知控制在发散性思维中的作用. 心理科学进展, 26(3), 411-422.] | |
[36] | Volle E. (2018). Associative and controlled cognition in divergent thinking: Theoretical, experimental, neuroimaging evidence, and new directions. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 333-360). Cambridge University Press. |
[37] |
Wang M., Hao N., Ku Y., Grabner R. H., & Fink A. (2017). Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia, 99, 92-100.
doi: 10.1016/j.neuropsychologia.2017.03.001 URL |
[38] |
Zhao Q. B., Li S. Q., Chen S., Zhou Z. J., & Cheng L. (2015). Dynamic neural processing mode of creative problem solving. Advances in Psychological Science, 23(3), 375-384.
doi: 10.3724/SP.J.1042.2015.00375 URL |
[ 赵庆柏, 李松清, 陈石, 周治金, 成良. (2015). 创造性问题解决的动态神经加工模式. 心理科学进展, 23(3), 375-384.] |
[1] | 杨文静, 靳玉乐, 邱江, 张庆林. 问题先导下语义相似性和原型难度 对原型启发的影响[J]. 心理学报, 2018, 50(3): 260-269. |
[2] | 白学军, 姚海娟. 高低创造性思维水平者的认知抑制能力:行为和生理的证据[J]. 心理学报, 2018, 50(11): 1197-1211. |
[3] | 赵庆柏;柯娓;童彪;周治金; 周宗奎. 网络语言的创造性加工过程:新颖N400与LPC[J]. 心理学报, 2017, 49(2): 143-154. |
[4] | 赵庆柏, 魏琳琳, 李瑛, 周治金, 赵黎莉, 唐磊. 新颖语义联结形成的右半球优势效应[J]. 心理学报, 2017, 49(11): 1370-1382. |
[5] | 康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902. |
[6] | 康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088. |
[7] | 范亮艳;范晓芳;罗位超;吴功航;严序;尹大志;吕岳;朱君明;徐冬溶. 艺术设计中创造性思维的fMRI研究:一项基于智能CAD的探索[J]. 心理学报, 2014, 46(4): 427-436 . |
[8] | 方燕红;张积家. 语义相似性与类别大小对图-词干扰范式下语义效应的影响[J]. 心理学报, 2013, 45(5): 523-537. |
[9] | 王娟,沈树华,张积家. 大学生的气味词分类—— 基于语义相似性和知觉相似性的探讨[J]. 心理学报, 2011, 43(10): 1124-1137. |
[10] | 凤四海,黄希庭. 情绪形容词词义的模糊赋值[J]. 心理学报, 2004, 36(06): 704-711. |
[11] | 张锋,朱海燕. 在押毒品犯人格类型的聚类分析[J]. 心理学报, 2002, 34(02): 96-102. |
[12] | 凌文辁,白利刚,方俐洛. 我国大学科系职业兴趣类型图初探[J]. 心理学报, 1998, 30(1): 78-84. |
[13] | 施建农,徐凡. 超常与常态儿童的兴趣、动机与创造性思维的比较研究[J]. 心理学报, 1997, 29(3): 271-277. |
[14] | 吴增强,段蕙芬,沈之菲,徐芒迪,徐自生. 学业不良学生类型与特点的聚类分析[J]. 心理学报, 1994, 26(1): 92-100. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2365
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1886
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||