心理科学进展 ›› 2023, Vol. 31 ›› Issue (12): 2232-2262.doi: 10.3724/SP.J.1042.2023.02232
收稿日期:
2023-02-24
出版日期:
2023-12-15
发布日期:
2023-09-11
通讯作者:
汪新建, E-mail: 基金资助:
CHEN Lijun1, HUANG Meilin1, JIANG Xiaoliu2, WANG Xinjian1()
Received:
2023-02-24
Online:
2023-12-15
Published:
2023-09-11
摘要:
是否存在莫扎特效应?若有, 其产生的机制是什么?关于这些话题目前悬而未解且争论激烈。为明确古典音乐对认知表现的促进效果及其影响因素, 探明莫扎特效应的产生机制, 本研究对检索后获得的91项研究(172个独立效果量, 7159名被试)使用随机效应模型进行元分析。结果发现:剔除异常值后, 古典音乐能显著改善认知表现, 整体效果量较小(Hedges’g = 0.36, p < 0.001), 二者之间的关系受到年龄、文化背景、实验设计类型、任务对应大脑优势半球的调节, 且性别与年龄、文化背景、优势半球存在交互作用。此外, 直接启动说得到更有力的支持, 但莫扎特效应的产生机制仍需进一步探讨。后续的研究应进一步明晰莫扎特效应的产生机制及其他潜在调节变量, 以此帮助人们更理性、全面看待莫扎特音乐的效果, 合理进行音乐教育。
中图分类号:
陈丽君, 黄美林, 蒋销柳, 汪新建. (2023). 听古典音乐真的会变聪明吗?基于广义莫扎特效应的元分析. 心理科学进展 , 31(12), 2232-2262.
CHEN Lijun, HUANG Meilin, JIANG Xiaoliu, WANG Xinjian. (2023). Does classical music make you smarter? A meta-analysis based on generalized Mozart effect. Advances in Psychological Science, 31(12), 2232-2262.
作者年份a | 国家/地区 | 年龄群体[M (SD); 范围(单位: 岁)] | 划分 类型 | 实验 设计 | 认知任务 | 音乐呈现 顺序 | 性别比 (男/女) | 样本量 | 对照组类型b (实验组−对照组) | 效果量 | 质量 评估 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alexander ( | 美国 | 19~22 | 成人 | 组内 | 阅读测试 | 背景 | - | 19 | 古典乐−通俗乐 | 0.84 | 3 |
Angel ( | 美国 | - | 成人 | 组内 | 空间认知 | 背景 | 28/28 | 56 | 古典乐−静默 | 0.79 | 3 |
Betshahbazadeh ( | 美国 | 16~51 (3人18岁以下) | 成人 | 组间 | 数学测试 | 先导 | 0/200 | 325 | 古典乐−通俗乐 | 0.20 | 2 |
古典乐−静默 | 0.08 | ||||||||||
125/0 | 古典乐−通俗乐 | 0.04 | |||||||||
古典乐−静默 | −0.08 | ||||||||||
Bolander ( | 美国 | 18~22 | 成人 | 组内 | 阅读测试 | 先导 | 9/24 | 33 | 古典乐−通俗乐 | −0.01 | 3 |
Borella ( | 意大利 | 20~35 | 成人 | 组间 | 记忆任务 | 先导 | - | 63(年轻人) | 古典乐−非音乐 | −0.19 | 2 |
20~35 | 古典乐−通俗乐 | −0.41 | |||||||||
64~75 | - | 93(老年人) | 古典乐−非音乐 | −0.28 | |||||||
64~75 | 古典乐−通俗乐 | −0.13 | |||||||||
Borella ( | 意大利 | 65~75 | 成人 | 组间 | 记忆任务; 空间认知 | 先导 | 16/19 | 70 | 古典乐1−非音乐 | 0.45 | 2 |
12/23 | 古典乐2−非音乐 | 0.28 | |||||||||
Bottiroli ( | 意大利 | 69.03(5.79); 60~84 | 成人 | 组内 | 记忆任务 | 背景 | 14/51 | 65 | 古典乐−非音乐 | 0.28 | 3 |
古典乐−通俗乐 | |||||||||||
Bressler ( | 美国 | 5~5.80 | 前运算期儿童 | 组间 | 记忆任务 | 先导 | 9/12 | 21 | 古典乐−静默 | −0.02 | 2 |
Buerger-Cole ( | 美国 | 18岁以上 | 成人 | 组间 | 综合性认知任务 | 背景 | - | 52 | 古典乐−通俗乐 | −0.50 | 2 |
Caldwell ( | 英国 | 32;18~58 | 成人 | 组内 | 注意任务 | 背景 | 10/6 | 8(弦乐家) | 古典乐−通俗乐 | −0.52 | 3 |
8(摇滚乐手) | 古典乐−通俗乐 | 0.16 | |||||||||
Carstens ( | 美国 | 20.60(4.00); 18~38 | 成人 | 组间 | 空间认知 | 先导 | 21/30 | 51 | 古典乐−静默 | 0.08 | 2 |
Cavanaugh ( | 美国 | 七年级 | 青少年 | 组间 | 数学测试 | 背景 | 41/0 | 98 | 古典乐−静默 | 0.49 | 1 |
0/57 | 古典乐−静默 | 0.13 | |||||||||
Chou ( | 中国台湾 | 大学生(18+) | 成人 | 组间 | 阅读测试 | 背景 | 16/0 | 79 | 古典乐1−通俗乐 | 0.46 | 3 |
0/63 | 古典乐1−通俗乐 | 0.41 | |||||||||
0/67 | 84 | 古典乐2−静默 | −0.11 | ||||||||
17/0 | 古典乐2−静默 | −0.27 | |||||||||
Chrosniak ( | 美国 | 高中生 | 青少年 | 组间 | 阅读测试 | 背景 | - | 47 | 古典乐−静默 | −0.27 | 1 |
- | 56 | 古典乐−通俗乐 | −0.23 | ||||||||
Chua ( | 菲律宾 | 高中生和大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 120 | 古典乐−静默 | −0.09 | 1 |
- | 古典乐−通俗乐 | 0.10 | |||||||||
Cortez ( | 菲律宾 | 15~19 | 青少年 | 组间 | 综合性认知任务 | 先导 | 11/41 | 76 | 古典乐−通俗乐 | −0.61 | 3 |
Dai ( | 中国 | 9~10 | 具体运算期 儿童 | 组内 | 空间认知 | 先导 | - | 87 | 古典乐−静默 | 0.20 | 3 |
古典乐−通俗乐 | |||||||||||
Dawson ( | 美国 | 七年级 | 青少年 | 组内 | 阅读测试 | 背景 | 92/0 | 170 | 古典乐−通俗乐1 | 0.31 | 3 |
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
0/78 | 古典乐−通俗乐1 | 0.28 | |||||||||
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
Dosseville ( | 法国 | 18~23 | 成人 | 组间 | 综合性认知任务 | 背景 | 190/59 | 249 | 古典乐−静默 | 0.53 | 3 |
Du ( | 中国 | 24.38(1.12) | 成人 | 组间 | 阅读测试 | 背景 | 5/8 | 26 | 古典乐1−静默 | −0.56 | 1 |
24.38(1.12) | 5/8 | 古典乐2−静默 | −0.09 | ||||||||
Flores ( | 加拿大 | 大学生 | 成人 | 组间 | 阅读测试; 空间认知 | 背景 | - | 86 | 古典乐−静默 | −0.08 | 2 |
- | 古典乐−通俗乐 | −0.17 | |||||||||
Gavazzi ( | 意大利 | 27.90(4.10) | 成人 | 组内 | 注意任务 | 背景 | 7/8 | 15(非音乐家) | 古典乐−静默 | 1.31 | 3 |
7/8 | 15(音乐家) | 古典乐−通俗乐 | 1.21 | ||||||||
Gilleta ( | 加拿大 | 19.60(2.60); 18~34 | 成人 | 组内 | 空间认知 | 先导 | 0/26 | 56 | 古典乐−静默 | 0.12 | 3 |
26/0 | 古典乐−静默 | 0.03 | |||||||||
Hallam ( | 英国 | 11~12 | 具体运算期 儿童 | 组间 | 记忆任务 | 背景 | 10/0 | 20 | 古典乐−静默 | 1.23 | 2 |
0/10 | 古典乐−静默 | 1.16 | |||||||||
Hausmann ( | 英国 | 20.64(0.74); 18~22 | 成人 | 组间 | 注意任务 | 先导 | 21/26 | 44 | 古典乐−静默 | 1.51 | 2 |
20.67(0.91):19~24 | 36/31 | 32 | 古典乐−静默 | 3.49c | |||||||
Hayashi ( | 美国 | 20.77(0.36) | 成人 | 组内 | 注意任务 | 背景 | - | 48 | 古典乐−静默 | −0.14 | 3 |
Ho ( | 英国 | 20; 18~23 | 成人 | 组内 | 注意任务 | 背景 | 13/21 | 34 | 古典乐−静默 | 1.64 | 3 |
Hui ( | 美国 | 4.69; 3.17~6.25 | 前运算期儿童 | 组内 | 空间认知 | 先导 | 25/16 | 41 | 古典乐−静默 | −0.07 | 5 |
古典乐−通俗乐 | |||||||||||
Ivanov ( | 澳大利亚 | 11.09; 10~12 | 具体运算期 儿童 | 组间 | 空间认知 | 背景 | 42/34 | 76 | 古典乐1−静默 | 0.76 | 2 |
古典乐2−静默 | 0.65 | ||||||||||
Jausovec ( | 斯洛文尼亚 | 20.20(0.60); 19~21 | 成人 | 组内 | 注意任务 | 背景 | 5/15 | 20 | 古典乐−静默 | −0.04 | 3 |
Jausovec ( | 斯洛文尼亚 | 20.50 | 成人 | 组间 | 空间认知 | 先导 | 12/12 | 24 | 古典乐−静默 | 2.26 | 2 |
Jones ( | 美国 | 20.30(1.70) | 成人 | 组内 | 注意任务 | 背景 | 7/5 | 12 | 古典乐−静默 | 0.14 | 3 |
古典乐−通俗乐 | |||||||||||
Jones ( | 美国 | 20.75(1.75); 19~27 | 成人 | 组间 | 空间认知 | 先导 | 20/21 | 41 | 古典乐−静默 | 0.91 | 1 |
Jones ( | 美国 | 15.88(1.12); 14~18 | 青少年 | 组间 | 空间认知 | 先导 | 38/48 | 86 | 古典乐−静默 | 0.54 | 2 |
Ju Hui ( | 马来西亚 | 18~30 | 成人 | 组间 | 记忆任务 | 先导 | 20/19 | 58 | 古典乐−静默 | 0.15 | 3 |
18~30 | 24/15 | 古典乐−通俗乐 | 0.15 | ||||||||
Kumaradevan ( | 爱尔兰 | 17~23 | 成人 | 组内 | 注意任务 | 背景 | 25/55 | 80 | 古典乐−静默 | 2.22 | 1 |
古典乐−通俗乐 | |||||||||||
Kuschpel ( | 德国 | 24.5(3.42); 19~32 | 成人 | 组内 | 记忆任务 | 先导 | 17/18 | 35 | 古典乐−静默 | −0.34 | 3 |
古典乐−通俗乐 | |||||||||||
Lake ( | 美国 | 66.10(2.90) | 成人 | 组内 | 注意任务 | 先导 | 4/8 | 12 | 古典乐−静默 | 0.04 | 5 |
Lange-Küttner ( | 英国 | 19~65 | 成人 | 组间 | 注意任务 | 先导 | 16/40 | 56 | 古典乐−静默 | 0.52 | 2 |
Lewis ( | 加拿大 | 二年级 | 具体运算期 儿童 | 组内 | 阅读测试 | 背景 | 7/0 | 7 | 古典乐−静默 | 0.47 | 3 |
古典乐−通俗乐 | |||||||||||
0/4 | 4 | 古典乐−静默 | −0.71 | ||||||||
古典乐−通俗乐 | |||||||||||
Lewis ( | 加拿大 | 三年级 | 0/7 | 7 | 古典乐−静默 | 0.13 | |||||
古典乐−通俗乐 | |||||||||||
4/0 | 4 | 古典乐−静默 | −0.48 | ||||||||
古典乐−通俗乐 | |||||||||||
Lin ( | 中国台湾 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 60 | 古典乐−静默 | 0.45 | 2 |
Lints ( | 加拿大 | 21 | 成人 | 组间 | 空间认知 | 先导 | 0/140 | 140 | 古典乐1−非音乐1 | −0.46 | 2 |
古典乐1−非音乐2 | −0.30 | ||||||||||
古典乐2−非音乐1 | −0.32 | ||||||||||
古典乐2−非音乐2 | −0.17 | ||||||||||
Mammarella ( | 意大利 | 81(4.50); 73~86 | 成人 | 组内 | 记忆任务 | 背景 | - | 24 | 古典乐−静默 | 0.72 | 3 |
古典乐−非音乐 | |||||||||||
Mattar ( | 约旦 | 5~6 | 前运算期儿童 | 组间 | 综合性认知任务 | 先导 | - | 21 | 古典乐−静默 | 12.26 | 2 |
McClure ( | 美国 | 18~22 | 成人 | 组间 | 空间认知 | 先导 | 22/111 | 133 | 古典乐1−静默 | 0.32 | 2 |
古典乐2−静默 | 0.02 | ||||||||||
古典乐3−静默 | −0.13 | ||||||||||
McCutcheon ( | 美国 | 36.30(13.60) | 成人 | 组内 | 空间认知 | 先导 | 12/24 | 36 | 古典乐−静默 | −0.20 | 2 |
古典乐−通俗乐 | |||||||||||
McKelvie ( | 新西兰 | 11.95(0.61); 11~13 | 具体运算期 儿童 | 组间 | 空间认知 | 先导 | 24/31 | 55 | 古典乐−通俗乐 | 0.57 | 1 |
12.22(0.48); 11.5~13 | 组内 | 15/33 | 48 | 古典乐−通俗乐 | −0.05 | ||||||
Mohan. ( | 印度 | 13~14 | 青少年 | 组内 | 阅读测试 | 背景 | 14/20 | 34 | 古典乐−静默 | 0.46 | 3 |
古典乐−通俗乐 | |||||||||||
Mualem ( | 以色列 | 8~9 | 具体运算期 儿童 | 组内 | 综合性认知任务 | 先导 | 36/24 | 60 | 古典乐−静默 | 2.91 | 3 |
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 56 | 古典乐1−静默 | 0.27 | 2 |
- | 28 | 古典乐2−非音乐 | 0.02 | ||||||||
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 28 | 古典乐1−静默 | 0.53 | 3 |
- | 28 | 古典乐2−静默 | 0.78 | ||||||||
- | 13 | 古典乐−非音乐 | 0.78 | ||||||||
Newman ( | 美国 | 27.30; 18~51 | 成人 | 组间 | 空间认知 | 先导 | - | 78 | 古典乐−静默 | −0.14 | 2 |
古典乐−非音乐 | |||||||||||
Pecci ( | 意大利 | 68(4.50) | 成人 | 组内 | 空间认知 | 先导 | - | 10 | 古典乐−静默 | 0.23 | 3 |
Rauscher ( | 美国 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 36 | 古典乐−静默 | 0.78 | 3 |
古典乐−非音乐 | |||||||||||
Rideout ( | 美国 | 18.90(1.10); 18~21 | 成人 | 组内 | 空间认知 | 先导 | 16/16 | 32 | 古典乐−非音乐 | 0.33 | 3 |
Rideout ( | 美国 | 21.10; 19~22 | 成人 | 组内 | 空间认知 | 先导 | 4/4 | 8 | 古典乐−非音乐 | 0.46 | 3 |
Rideout ( | 美国 | 17~22 | 成人 | 组内 | 空间认知 | 先导 | 8/8 | 16 | 古典乐−非音乐 | 0.41 | 3 |
Roth ( | 美国 | 21.90; 18~51 | 成人 | 组间 | 阅读测试 | 先导 | - | 30 | 古典乐−静默 | 2.05 | 2 |
Sittler ( | 美国 | 22 | 成人 | 组间 | 综合性认知任务 | 背景 | 29/0 | 29 | 古典乐−静默 | 0.40 | 3 |
21.93 | 29/0 | 29 | 古典乐−通俗乐 | 0.57 | |||||||
22 | 0/25 | 25 | 古典乐−静默 | 0.12 | |||||||
21.20 | 0/25 | 25 | 古典乐−通俗乐 | 0.88 | |||||||
Smith ( | 英国 | 20 | 成人 | 组内 | 空间认知 | 先导 | - | 24 | 古典乐−静默 | 0.42 | 3 |
Standing ( | 加拿大 | 21.80 | 成人 | 组内 | 空间认知 | 先导 | 20/40 | 60 | 古典乐−静默 | 0.08 | 3 |
古典乐−非音乐 | |||||||||||
Steele ( | 美国 | 大学生 | 成人 | 组内 | 记忆任务 | 先导 | 8/28 | 36 | 古典乐−非音乐 | −0.02 | 3 |
古典乐−通俗乐 | |||||||||||
Steele, Bass ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | 42/83 | 125 | 古典乐1−静默 | 1.00 | 2 |
古典乐2−静默 | 0.37 | ||||||||||
Steele, Bella ( | 加拿大 | 大学生 (西安大略大学) | 成人 | 组间 | 空间认知 | 先导 | - | 46 | 古典乐−通俗乐 | 2.78 | 1 |
- | 45 | 古典乐−静默 | 1.97 | ||||||||
美国 | 大学生(阿巴拉 契亚州立大学) | 组内 | - | 18 | 古典乐−静默 | −0.39 | |||||
古典乐−通俗乐 | |||||||||||
加拿大 | 大学生 (蒙特利尔大学) | 组内 | - | 32 | 古典乐−静默 | −1.59 | |||||
Steele, Brown ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 136 | 古典乐−非音乐 | 1.79 | 2 |
Stough ( | 新西兰 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 30 | 古典乐−静默 | 0.11 | 3 |
古典乐−通俗乐 | |||||||||||
Su ( | 中国台湾 | 小学高年级 | 具体运算期 儿童 | 组内 | 阅读测试; 记忆任务 | 背景 | 37/29 | 62 | 古典乐−静默 | 0.47 | 3 |
Sweeny ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 184 | 古典乐−静默 | −0.15 | 2 |
Taylor ( | 新西兰 | 大学生 | 成人 | 组间 | 数学测试 | 背景 | 103/25 | 128 | 古典乐−静默 | 0.24 | 1 |
Theofilidis ( | 希腊 | 大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 168 | 古典乐−静默 | −0.45 | 2 |
- | 古典乐−通俗乐 | 0.01 | |||||||||
Thompson ( | 英国 | 75.94(4.42) | 成人 | 组内 | 记忆任务 | 背景 | 5/11 | 16 | 古典乐−静默 | 0.51 | 3 |
Thompson ( | 澳大利亚 | 17~48 | 成人 | 组间 | 阅读测试 | 背景 | 15/26 | 41 | 古典乐−静默 | −0.60 | 1 |
Toon ( | 美国 | 18~44 | 成人 | 组间 | 阅读测试 | 背景 | - | 513 | 古典乐−通俗乐1 | 0.13 | 2 |
18~44 | 组内 | - | 古典乐−静默 | 0.09 | |||||||
18~44 | 组间 | - | 古典乐−通俗乐2 | 0.14 | |||||||
Twomey ( | 英国 | 25(6.50); 17~44 | 成人 | 组间 | 空间认知 | 先导 | 20/20 | 20(音乐家) | 古典乐−静默 | 0.16 | 2 |
25(6.50); 17~44 | 20(非音乐家) | 古典乐−静默 | 1.03 | ||||||||
Wiseman ( | 美国 | 16~27(20.60) | 成人 | 组间 | 空间认知 | 先导 | - | 52 | 古典乐−静默 | −0.23 | 5 |
古典乐−通俗乐 | −0.78 | ||||||||||
龚菊芳 ( | 中国 | 大学生 | 成人 | 组内 | 阅读测试 | 背景 | 0/61 | 61 | 古典乐−静默 | 0.01 | 3 |
30/0 | 30 | 古典乐−静默 | −0.41 | ||||||||
谷岳 ( | 中国 | 3.40 | 前运算期儿童 | 组间 | 记忆任务 | 背景 | 17/0 | 17 | 古典乐−静默 | 0.98 | 2 |
14/0 | 14 | 古典乐−通俗乐 | −0.04 | ||||||||
0/23 | 23 | 古典乐−静默 | 2.45 | ||||||||
0/21 | 21 | 古典乐−通俗乐 | 3.56 | ||||||||
19/0 | 19 | 古典乐−静默 | 3.15 | ||||||||
0/21 | 21 | 古典乐−静默 | 1.61 | ||||||||
黄君 ( | 中国 | 大学生; 20.30 | 成人 | 组内 | 空间认知 | 先导 | 0/28 | 28 | 古典乐−静默 | 0.56 | 2 |
组内 | 13/0 | 13 | 古典乐−静默 | 0.29 | |||||||
大学生; 21.10 | 组间 | - | 60 | 古典乐1−静默 | 0.55 | ||||||
大学生; 21.10 | 组间 | - | 古典乐2−静默 | 0.27 | |||||||
大学生; 20.90 | 组内 | 16/27;剔4 | 39 | 古典乐−中国民乐 | 0.42 | ||||||
大学生; 20.55 | 组内 | 8/30 | 38 | 古典乐−非音乐 | 0.19 | ||||||
景银霞 ( | 中国 | 19.8(0.88); 18~22 | 成人 | 组内 | 阅读测试 | 背景 | 37/0 | 37 | 古典乐−静默 | 0.39 | 3 |
0/27 | 27 | 古典乐−静默 | −1.32 | ||||||||
孔令龙 ( | 中国 | 21.11 | 成人 | 组内 | 空间认知 | 先导 | - | 40 | 古典乐−静默 | 0.62 | 4 |
李继鹏 ( | 中国 | 20~30 | 成人 | 组内 | 记忆任务 | 背景 | 10/10 | 20 | 古典乐−通俗乐 | 0.11 | 3 |
古典乐−静默 | |||||||||||
李宁宁 ( | 中国 | 初中生与高中生 | 青少年 | 组内 | 阅读测试 | 背景 | - | 72 | 古典乐−通俗乐 | 1.41 | 3 |
古典乐−静默 | |||||||||||
李文辉 ( | 中国 | 5~6 | 前运算期儿童 | 组间 | 注意任务 | 先导 | 27/28 | 55 | 古典乐−静默 | 3.05 | 2 |
李哲 ( | 中国 | 21(1.21); 18~24 | 成人 | 组间 | 记忆任务 | 背景 | 17/20; 剔5 | 32 | 古典乐−静默 | 0.81 | 2 |
古典乐−中国民乐 | 0.63 | ||||||||||
20.56(0.99); 18~22 | 9/24; 剔3 | 30 | 古典乐−静默 | −0.31 | |||||||
古典乐−中国民乐 | −0.51 | ||||||||||
刘玥 ( | 中国 | 初一 | 青少年 | 组间 | 记忆任务 | 背景 | - | 210 | 古典乐−静默 | 0.52 | 1 |
古典乐−通俗乐1 | 0.89 | ||||||||||
古典乐−通俗乐2 | 0.91 | ||||||||||
古典乐−通俗乐3 | 0.59 | ||||||||||
汪菲 ( | 中国 | 5.40; 4.17~5.75 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 24/20 | 44 | 古典乐−通俗乐 | 1.05 | 1 |
古典乐−静默 | 1.00 | ||||||||||
5.10; 4.67~5.67 | 20/20 | 40 | 古典乐−静默 | 1.02 | |||||||
王玲 ( | 中国 | 5.51(0.35) | 前运算期儿童 | 组内 | 综合性认知任务 | 背景 | 13/14 | 27 | 古典乐−非音乐 | −0.53 | 3 |
古典乐−通俗乐 | |||||||||||
3.67(0.21) | 16/15 | 31 | 古典乐−非音乐 | −0.17 | |||||||
古典乐−通俗乐 | |||||||||||
4.58(0.28) | 15/15 | 30 | 古典乐−非音乐 | 0.06 | |||||||
古典乐−通俗乐 | |||||||||||
吴海珍 ( | 中国 | 5.38 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 0/120 | 120 | 古典乐1−通俗乐 | 4.38c | 1 |
古典乐1−静默 | 3.89c | ||||||||||
古典乐2−静默 | 2.92 | ||||||||||
5.44 | 前运算期儿童 | 0/59 | 59 | 古典乐1−静默 | 2.91 | ||||||
古典乐2−静默 | 2.85 | ||||||||||
古典乐1−通俗乐 | 2.79 | ||||||||||
57/0 | 57 | 古典乐1−静默 | 0.19 | ||||||||
古典乐1−通俗乐 | −0.34 | ||||||||||
古典乐2−静默 | −0.69 | ||||||||||
杨芬 ( | 中国 | 大学生; 22.10 | 成人 | 组间 | 空间认知 | 背景 | - | 41 | 古典乐−静默 | 0.56 | 2 |
古典乐−通俗乐 | 0.53 | ||||||||||
于馨滢 ( | 中国 | 13.10(0.55); 12~14 | 青少年 | 组内 | 记忆任务 | 先导 | - | 40 | 古典乐−通俗乐 | 0.74 | 3 |
诸薇娜 ( | 中国 | 23.40(2.30)20~27 | 成人 | 组内 | 注意任务 | 背景 | 5/7 | 12 | 古典乐−静默 | −0.30 | 3 |
古典乐−中国民乐 | |||||||||||
22.8(1.34); 20~25 | 8/8 | 16 | 古典乐−静默 | −0.39 | |||||||
23(1.33); 20~29 | 8/7 | 15 | 古典乐−静默 | −0.23 | |||||||
古典乐−中国民乐 | |||||||||||
22(1.60); 20~24 | 6/7 | 13 | 古典乐−静默 | 0.00 | |||||||
古典乐−中国民乐 |
表1 纳入分析的原始研究信息
作者年份a | 国家/地区 | 年龄群体[M (SD); 范围(单位: 岁)] | 划分 类型 | 实验 设计 | 认知任务 | 音乐呈现 顺序 | 性别比 (男/女) | 样本量 | 对照组类型b (实验组−对照组) | 效果量 | 质量 评估 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alexander ( | 美国 | 19~22 | 成人 | 组内 | 阅读测试 | 背景 | - | 19 | 古典乐−通俗乐 | 0.84 | 3 |
Angel ( | 美国 | - | 成人 | 组内 | 空间认知 | 背景 | 28/28 | 56 | 古典乐−静默 | 0.79 | 3 |
Betshahbazadeh ( | 美国 | 16~51 (3人18岁以下) | 成人 | 组间 | 数学测试 | 先导 | 0/200 | 325 | 古典乐−通俗乐 | 0.20 | 2 |
古典乐−静默 | 0.08 | ||||||||||
125/0 | 古典乐−通俗乐 | 0.04 | |||||||||
古典乐−静默 | −0.08 | ||||||||||
Bolander ( | 美国 | 18~22 | 成人 | 组内 | 阅读测试 | 先导 | 9/24 | 33 | 古典乐−通俗乐 | −0.01 | 3 |
Borella ( | 意大利 | 20~35 | 成人 | 组间 | 记忆任务 | 先导 | - | 63(年轻人) | 古典乐−非音乐 | −0.19 | 2 |
20~35 | 古典乐−通俗乐 | −0.41 | |||||||||
64~75 | - | 93(老年人) | 古典乐−非音乐 | −0.28 | |||||||
64~75 | 古典乐−通俗乐 | −0.13 | |||||||||
Borella ( | 意大利 | 65~75 | 成人 | 组间 | 记忆任务; 空间认知 | 先导 | 16/19 | 70 | 古典乐1−非音乐 | 0.45 | 2 |
12/23 | 古典乐2−非音乐 | 0.28 | |||||||||
Bottiroli ( | 意大利 | 69.03(5.79); 60~84 | 成人 | 组内 | 记忆任务 | 背景 | 14/51 | 65 | 古典乐−非音乐 | 0.28 | 3 |
古典乐−通俗乐 | |||||||||||
Bressler ( | 美国 | 5~5.80 | 前运算期儿童 | 组间 | 记忆任务 | 先导 | 9/12 | 21 | 古典乐−静默 | −0.02 | 2 |
Buerger-Cole ( | 美国 | 18岁以上 | 成人 | 组间 | 综合性认知任务 | 背景 | - | 52 | 古典乐−通俗乐 | −0.50 | 2 |
Caldwell ( | 英国 | 32;18~58 | 成人 | 组内 | 注意任务 | 背景 | 10/6 | 8(弦乐家) | 古典乐−通俗乐 | −0.52 | 3 |
8(摇滚乐手) | 古典乐−通俗乐 | 0.16 | |||||||||
Carstens ( | 美国 | 20.60(4.00); 18~38 | 成人 | 组间 | 空间认知 | 先导 | 21/30 | 51 | 古典乐−静默 | 0.08 | 2 |
Cavanaugh ( | 美国 | 七年级 | 青少年 | 组间 | 数学测试 | 背景 | 41/0 | 98 | 古典乐−静默 | 0.49 | 1 |
0/57 | 古典乐−静默 | 0.13 | |||||||||
Chou ( | 中国台湾 | 大学生(18+) | 成人 | 组间 | 阅读测试 | 背景 | 16/0 | 79 | 古典乐1−通俗乐 | 0.46 | 3 |
0/63 | 古典乐1−通俗乐 | 0.41 | |||||||||
0/67 | 84 | 古典乐2−静默 | −0.11 | ||||||||
17/0 | 古典乐2−静默 | −0.27 | |||||||||
Chrosniak ( | 美国 | 高中生 | 青少年 | 组间 | 阅读测试 | 背景 | - | 47 | 古典乐−静默 | −0.27 | 1 |
- | 56 | 古典乐−通俗乐 | −0.23 | ||||||||
Chua ( | 菲律宾 | 高中生和大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 120 | 古典乐−静默 | −0.09 | 1 |
- | 古典乐−通俗乐 | 0.10 | |||||||||
Cortez ( | 菲律宾 | 15~19 | 青少年 | 组间 | 综合性认知任务 | 先导 | 11/41 | 76 | 古典乐−通俗乐 | −0.61 | 3 |
Dai ( | 中国 | 9~10 | 具体运算期 儿童 | 组内 | 空间认知 | 先导 | - | 87 | 古典乐−静默 | 0.20 | 3 |
古典乐−通俗乐 | |||||||||||
Dawson ( | 美国 | 七年级 | 青少年 | 组内 | 阅读测试 | 背景 | 92/0 | 170 | 古典乐−通俗乐1 | 0.31 | 3 |
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
0/78 | 古典乐−通俗乐1 | 0.28 | |||||||||
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
Dosseville ( | 法国 | 18~23 | 成人 | 组间 | 综合性认知任务 | 背景 | 190/59 | 249 | 古典乐−静默 | 0.53 | 3 |
Du ( | 中国 | 24.38(1.12) | 成人 | 组间 | 阅读测试 | 背景 | 5/8 | 26 | 古典乐1−静默 | −0.56 | 1 |
24.38(1.12) | 5/8 | 古典乐2−静默 | −0.09 | ||||||||
Flores ( | 加拿大 | 大学生 | 成人 | 组间 | 阅读测试; 空间认知 | 背景 | - | 86 | 古典乐−静默 | −0.08 | 2 |
- | 古典乐−通俗乐 | −0.17 | |||||||||
Gavazzi ( | 意大利 | 27.90(4.10) | 成人 | 组内 | 注意任务 | 背景 | 7/8 | 15(非音乐家) | 古典乐−静默 | 1.31 | 3 |
7/8 | 15(音乐家) | 古典乐−通俗乐 | 1.21 | ||||||||
Gilleta ( | 加拿大 | 19.60(2.60); 18~34 | 成人 | 组内 | 空间认知 | 先导 | 0/26 | 56 | 古典乐−静默 | 0.12 | 3 |
26/0 | 古典乐−静默 | 0.03 | |||||||||
Hallam ( | 英国 | 11~12 | 具体运算期 儿童 | 组间 | 记忆任务 | 背景 | 10/0 | 20 | 古典乐−静默 | 1.23 | 2 |
0/10 | 古典乐−静默 | 1.16 | |||||||||
Hausmann ( | 英国 | 20.64(0.74); 18~22 | 成人 | 组间 | 注意任务 | 先导 | 21/26 | 44 | 古典乐−静默 | 1.51 | 2 |
20.67(0.91):19~24 | 36/31 | 32 | 古典乐−静默 | 3.49c | |||||||
Hayashi ( | 美国 | 20.77(0.36) | 成人 | 组内 | 注意任务 | 背景 | - | 48 | 古典乐−静默 | −0.14 | 3 |
Ho ( | 英国 | 20; 18~23 | 成人 | 组内 | 注意任务 | 背景 | 13/21 | 34 | 古典乐−静默 | 1.64 | 3 |
Hui ( | 美国 | 4.69; 3.17~6.25 | 前运算期儿童 | 组内 | 空间认知 | 先导 | 25/16 | 41 | 古典乐−静默 | −0.07 | 5 |
古典乐−通俗乐 | |||||||||||
Ivanov ( | 澳大利亚 | 11.09; 10~12 | 具体运算期 儿童 | 组间 | 空间认知 | 背景 | 42/34 | 76 | 古典乐1−静默 | 0.76 | 2 |
古典乐2−静默 | 0.65 | ||||||||||
Jausovec ( | 斯洛文尼亚 | 20.20(0.60); 19~21 | 成人 | 组内 | 注意任务 | 背景 | 5/15 | 20 | 古典乐−静默 | −0.04 | 3 |
Jausovec ( | 斯洛文尼亚 | 20.50 | 成人 | 组间 | 空间认知 | 先导 | 12/12 | 24 | 古典乐−静默 | 2.26 | 2 |
Jones ( | 美国 | 20.30(1.70) | 成人 | 组内 | 注意任务 | 背景 | 7/5 | 12 | 古典乐−静默 | 0.14 | 3 |
古典乐−通俗乐 | |||||||||||
Jones ( | 美国 | 20.75(1.75); 19~27 | 成人 | 组间 | 空间认知 | 先导 | 20/21 | 41 | 古典乐−静默 | 0.91 | 1 |
Jones ( | 美国 | 15.88(1.12); 14~18 | 青少年 | 组间 | 空间认知 | 先导 | 38/48 | 86 | 古典乐−静默 | 0.54 | 2 |
Ju Hui ( | 马来西亚 | 18~30 | 成人 | 组间 | 记忆任务 | 先导 | 20/19 | 58 | 古典乐−静默 | 0.15 | 3 |
18~30 | 24/15 | 古典乐−通俗乐 | 0.15 | ||||||||
Kumaradevan ( | 爱尔兰 | 17~23 | 成人 | 组内 | 注意任务 | 背景 | 25/55 | 80 | 古典乐−静默 | 2.22 | 1 |
古典乐−通俗乐 | |||||||||||
Kuschpel ( | 德国 | 24.5(3.42); 19~32 | 成人 | 组内 | 记忆任务 | 先导 | 17/18 | 35 | 古典乐−静默 | −0.34 | 3 |
古典乐−通俗乐 | |||||||||||
Lake ( | 美国 | 66.10(2.90) | 成人 | 组内 | 注意任务 | 先导 | 4/8 | 12 | 古典乐−静默 | 0.04 | 5 |
Lange-Küttner ( | 英国 | 19~65 | 成人 | 组间 | 注意任务 | 先导 | 16/40 | 56 | 古典乐−静默 | 0.52 | 2 |
Lewis ( | 加拿大 | 二年级 | 具体运算期 儿童 | 组内 | 阅读测试 | 背景 | 7/0 | 7 | 古典乐−静默 | 0.47 | 3 |
古典乐−通俗乐 | |||||||||||
0/4 | 4 | 古典乐−静默 | −0.71 | ||||||||
古典乐−通俗乐 | |||||||||||
Lewis ( | 加拿大 | 三年级 | 0/7 | 7 | 古典乐−静默 | 0.13 | |||||
古典乐−通俗乐 | |||||||||||
4/0 | 4 | 古典乐−静默 | −0.48 | ||||||||
古典乐−通俗乐 | |||||||||||
Lin ( | 中国台湾 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 60 | 古典乐−静默 | 0.45 | 2 |
Lints ( | 加拿大 | 21 | 成人 | 组间 | 空间认知 | 先导 | 0/140 | 140 | 古典乐1−非音乐1 | −0.46 | 2 |
古典乐1−非音乐2 | −0.30 | ||||||||||
古典乐2−非音乐1 | −0.32 | ||||||||||
古典乐2−非音乐2 | −0.17 | ||||||||||
Mammarella ( | 意大利 | 81(4.50); 73~86 | 成人 | 组内 | 记忆任务 | 背景 | - | 24 | 古典乐−静默 | 0.72 | 3 |
古典乐−非音乐 | |||||||||||
Mattar ( | 约旦 | 5~6 | 前运算期儿童 | 组间 | 综合性认知任务 | 先导 | - | 21 | 古典乐−静默 | 12.26 | 2 |
McClure ( | 美国 | 18~22 | 成人 | 组间 | 空间认知 | 先导 | 22/111 | 133 | 古典乐1−静默 | 0.32 | 2 |
古典乐2−静默 | 0.02 | ||||||||||
古典乐3−静默 | −0.13 | ||||||||||
McCutcheon ( | 美国 | 36.30(13.60) | 成人 | 组内 | 空间认知 | 先导 | 12/24 | 36 | 古典乐−静默 | −0.20 | 2 |
古典乐−通俗乐 | |||||||||||
McKelvie ( | 新西兰 | 11.95(0.61); 11~13 | 具体运算期 儿童 | 组间 | 空间认知 | 先导 | 24/31 | 55 | 古典乐−通俗乐 | 0.57 | 1 |
12.22(0.48); 11.5~13 | 组内 | 15/33 | 48 | 古典乐−通俗乐 | −0.05 | ||||||
Mohan. ( | 印度 | 13~14 | 青少年 | 组内 | 阅读测试 | 背景 | 14/20 | 34 | 古典乐−静默 | 0.46 | 3 |
古典乐−通俗乐 | |||||||||||
Mualem ( | 以色列 | 8~9 | 具体运算期 儿童 | 组内 | 综合性认知任务 | 先导 | 36/24 | 60 | 古典乐−静默 | 2.91 | 3 |
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 56 | 古典乐1−静默 | 0.27 | 2 |
- | 28 | 古典乐2−非音乐 | 0.02 | ||||||||
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 28 | 古典乐1−静默 | 0.53 | 3 |
- | 28 | 古典乐2−静默 | 0.78 | ||||||||
- | 13 | 古典乐−非音乐 | 0.78 | ||||||||
Newman ( | 美国 | 27.30; 18~51 | 成人 | 组间 | 空间认知 | 先导 | - | 78 | 古典乐−静默 | −0.14 | 2 |
古典乐−非音乐 | |||||||||||
Pecci ( | 意大利 | 68(4.50) | 成人 | 组内 | 空间认知 | 先导 | - | 10 | 古典乐−静默 | 0.23 | 3 |
Rauscher ( | 美国 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 36 | 古典乐−静默 | 0.78 | 3 |
古典乐−非音乐 | |||||||||||
Rideout ( | 美国 | 18.90(1.10); 18~21 | 成人 | 组内 | 空间认知 | 先导 | 16/16 | 32 | 古典乐−非音乐 | 0.33 | 3 |
Rideout ( | 美国 | 21.10; 19~22 | 成人 | 组内 | 空间认知 | 先导 | 4/4 | 8 | 古典乐−非音乐 | 0.46 | 3 |
Rideout ( | 美国 | 17~22 | 成人 | 组内 | 空间认知 | 先导 | 8/8 | 16 | 古典乐−非音乐 | 0.41 | 3 |
Roth ( | 美国 | 21.90; 18~51 | 成人 | 组间 | 阅读测试 | 先导 | - | 30 | 古典乐−静默 | 2.05 | 2 |
Sittler ( | 美国 | 22 | 成人 | 组间 | 综合性认知任务 | 背景 | 29/0 | 29 | 古典乐−静默 | 0.40 | 3 |
21.93 | 29/0 | 29 | 古典乐−通俗乐 | 0.57 | |||||||
22 | 0/25 | 25 | 古典乐−静默 | 0.12 | |||||||
21.20 | 0/25 | 25 | 古典乐−通俗乐 | 0.88 | |||||||
Smith ( | 英国 | 20 | 成人 | 组内 | 空间认知 | 先导 | - | 24 | 古典乐−静默 | 0.42 | 3 |
Standing ( | 加拿大 | 21.80 | 成人 | 组内 | 空间认知 | 先导 | 20/40 | 60 | 古典乐−静默 | 0.08 | 3 |
古典乐−非音乐 | |||||||||||
Steele ( | 美国 | 大学生 | 成人 | 组内 | 记忆任务 | 先导 | 8/28 | 36 | 古典乐−非音乐 | −0.02 | 3 |
古典乐−通俗乐 | |||||||||||
Steele, Bass ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | 42/83 | 125 | 古典乐1−静默 | 1.00 | 2 |
古典乐2−静默 | 0.37 | ||||||||||
Steele, Bella ( | 加拿大 | 大学生 (西安大略大学) | 成人 | 组间 | 空间认知 | 先导 | - | 46 | 古典乐−通俗乐 | 2.78 | 1 |
- | 45 | 古典乐−静默 | 1.97 | ||||||||
美国 | 大学生(阿巴拉 契亚州立大学) | 组内 | - | 18 | 古典乐−静默 | −0.39 | |||||
古典乐−通俗乐 | |||||||||||
加拿大 | 大学生 (蒙特利尔大学) | 组内 | - | 32 | 古典乐−静默 | −1.59 | |||||
Steele, Brown ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 136 | 古典乐−非音乐 | 1.79 | 2 |
Stough ( | 新西兰 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 30 | 古典乐−静默 | 0.11 | 3 |
古典乐−通俗乐 | |||||||||||
Su ( | 中国台湾 | 小学高年级 | 具体运算期 儿童 | 组内 | 阅读测试; 记忆任务 | 背景 | 37/29 | 62 | 古典乐−静默 | 0.47 | 3 |
Sweeny ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 184 | 古典乐−静默 | −0.15 | 2 |
Taylor ( | 新西兰 | 大学生 | 成人 | 组间 | 数学测试 | 背景 | 103/25 | 128 | 古典乐−静默 | 0.24 | 1 |
Theofilidis ( | 希腊 | 大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 168 | 古典乐−静默 | −0.45 | 2 |
- | 古典乐−通俗乐 | 0.01 | |||||||||
Thompson ( | 英国 | 75.94(4.42) | 成人 | 组内 | 记忆任务 | 背景 | 5/11 | 16 | 古典乐−静默 | 0.51 | 3 |
Thompson ( | 澳大利亚 | 17~48 | 成人 | 组间 | 阅读测试 | 背景 | 15/26 | 41 | 古典乐−静默 | −0.60 | 1 |
Toon ( | 美国 | 18~44 | 成人 | 组间 | 阅读测试 | 背景 | - | 513 | 古典乐−通俗乐1 | 0.13 | 2 |
18~44 | 组内 | - | 古典乐−静默 | 0.09 | |||||||
18~44 | 组间 | - | 古典乐−通俗乐2 | 0.14 | |||||||
Twomey ( | 英国 | 25(6.50); 17~44 | 成人 | 组间 | 空间认知 | 先导 | 20/20 | 20(音乐家) | 古典乐−静默 | 0.16 | 2 |
25(6.50); 17~44 | 20(非音乐家) | 古典乐−静默 | 1.03 | ||||||||
Wiseman ( | 美国 | 16~27(20.60) | 成人 | 组间 | 空间认知 | 先导 | - | 52 | 古典乐−静默 | −0.23 | 5 |
古典乐−通俗乐 | −0.78 | ||||||||||
龚菊芳 ( | 中国 | 大学生 | 成人 | 组内 | 阅读测试 | 背景 | 0/61 | 61 | 古典乐−静默 | 0.01 | 3 |
30/0 | 30 | 古典乐−静默 | −0.41 | ||||||||
谷岳 ( | 中国 | 3.40 | 前运算期儿童 | 组间 | 记忆任务 | 背景 | 17/0 | 17 | 古典乐−静默 | 0.98 | 2 |
14/0 | 14 | 古典乐−通俗乐 | −0.04 | ||||||||
0/23 | 23 | 古典乐−静默 | 2.45 | ||||||||
0/21 | 21 | 古典乐−通俗乐 | 3.56 | ||||||||
19/0 | 19 | 古典乐−静默 | 3.15 | ||||||||
0/21 | 21 | 古典乐−静默 | 1.61 | ||||||||
黄君 ( | 中国 | 大学生; 20.30 | 成人 | 组内 | 空间认知 | 先导 | 0/28 | 28 | 古典乐−静默 | 0.56 | 2 |
组内 | 13/0 | 13 | 古典乐−静默 | 0.29 | |||||||
大学生; 21.10 | 组间 | - | 60 | 古典乐1−静默 | 0.55 | ||||||
大学生; 21.10 | 组间 | - | 古典乐2−静默 | 0.27 | |||||||
大学生; 20.90 | 组内 | 16/27;剔4 | 39 | 古典乐−中国民乐 | 0.42 | ||||||
大学生; 20.55 | 组内 | 8/30 | 38 | 古典乐−非音乐 | 0.19 | ||||||
景银霞 ( | 中国 | 19.8(0.88); 18~22 | 成人 | 组内 | 阅读测试 | 背景 | 37/0 | 37 | 古典乐−静默 | 0.39 | 3 |
0/27 | 27 | 古典乐−静默 | −1.32 | ||||||||
孔令龙 ( | 中国 | 21.11 | 成人 | 组内 | 空间认知 | 先导 | - | 40 | 古典乐−静默 | 0.62 | 4 |
李继鹏 ( | 中国 | 20~30 | 成人 | 组内 | 记忆任务 | 背景 | 10/10 | 20 | 古典乐−通俗乐 | 0.11 | 3 |
古典乐−静默 | |||||||||||
李宁宁 ( | 中国 | 初中生与高中生 | 青少年 | 组内 | 阅读测试 | 背景 | - | 72 | 古典乐−通俗乐 | 1.41 | 3 |
古典乐−静默 | |||||||||||
李文辉 ( | 中国 | 5~6 | 前运算期儿童 | 组间 | 注意任务 | 先导 | 27/28 | 55 | 古典乐−静默 | 3.05 | 2 |
李哲 ( | 中国 | 21(1.21); 18~24 | 成人 | 组间 | 记忆任务 | 背景 | 17/20; 剔5 | 32 | 古典乐−静默 | 0.81 | 2 |
古典乐−中国民乐 | 0.63 | ||||||||||
20.56(0.99); 18~22 | 9/24; 剔3 | 30 | 古典乐−静默 | −0.31 | |||||||
古典乐−中国民乐 | −0.51 | ||||||||||
刘玥 ( | 中国 | 初一 | 青少年 | 组间 | 记忆任务 | 背景 | - | 210 | 古典乐−静默 | 0.52 | 1 |
古典乐−通俗乐1 | 0.89 | ||||||||||
古典乐−通俗乐2 | 0.91 | ||||||||||
古典乐−通俗乐3 | 0.59 | ||||||||||
汪菲 ( | 中国 | 5.40; 4.17~5.75 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 24/20 | 44 | 古典乐−通俗乐 | 1.05 | 1 |
古典乐−静默 | 1.00 | ||||||||||
5.10; 4.67~5.67 | 20/20 | 40 | 古典乐−静默 | 1.02 | |||||||
王玲 ( | 中国 | 5.51(0.35) | 前运算期儿童 | 组内 | 综合性认知任务 | 背景 | 13/14 | 27 | 古典乐−非音乐 | −0.53 | 3 |
古典乐−通俗乐 | |||||||||||
3.67(0.21) | 16/15 | 31 | 古典乐−非音乐 | −0.17 | |||||||
古典乐−通俗乐 | |||||||||||
4.58(0.28) | 15/15 | 30 | 古典乐−非音乐 | 0.06 | |||||||
古典乐−通俗乐 | |||||||||||
吴海珍 ( | 中国 | 5.38 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 0/120 | 120 | 古典乐1−通俗乐 | 4.38c | 1 |
古典乐1−静默 | 3.89c | ||||||||||
古典乐2−静默 | 2.92 | ||||||||||
5.44 | 前运算期儿童 | 0/59 | 59 | 古典乐1−静默 | 2.91 | ||||||
古典乐2−静默 | 2.85 | ||||||||||
古典乐1−通俗乐 | 2.79 | ||||||||||
57/0 | 57 | 古典乐1−静默 | 0.19 | ||||||||
古典乐1−通俗乐 | −0.34 | ||||||||||
古典乐2−静默 | −0.69 | ||||||||||
杨芬 ( | 中国 | 大学生; 22.10 | 成人 | 组间 | 空间认知 | 背景 | - | 41 | 古典乐−静默 | 0.56 | 2 |
古典乐−通俗乐 | 0.53 | ||||||||||
于馨滢 ( | 中国 | 13.10(0.55); 12~14 | 青少年 | 组内 | 记忆任务 | 先导 | - | 40 | 古典乐−通俗乐 | 0.74 | 3 |
诸薇娜 ( | 中国 | 23.40(2.30)20~27 | 成人 | 组内 | 注意任务 | 背景 | 5/7 | 12 | 古典乐−静默 | −0.30 | 3 |
古典乐−中国民乐 | |||||||||||
22.8(1.34); 20~25 | 8/8 | 16 | 古典乐−静默 | −0.39 | |||||||
23(1.33); 20~29 | 8/7 | 15 | 古典乐−静默 | −0.23 | |||||||
古典乐−中国民乐 | |||||||||||
22(1.60); 20~24 | 6/7 | 13 | 古典乐−静默 | 0.00 | |||||||
古典乐−中国民乐 |
影响因素 | 分组 | k | 效果量及95%置信区间 (95% confidence interval) | Q | I2 (%) | p | |||
---|---|---|---|---|---|---|---|---|---|
g | 下限 | 上限 | |||||||
中外被试 | 中国 | 53 | 0.64 | 0.36 | 0.91 | 508.34 | 94.64 | 0.018 | |
外国 | 115 | 0.27 | 0.15 | 0.39 | 609.24 | 87.71 | |||
性别 | 男 | 21 | 0.20 | −0.01 | 0.41 | 48.12 | 56.25 | 0.201 | |
女 | 26 | 0.70 | 0.21 | 1.18 | 243.26 | 95.05 | |||
年龄段 | 前运算期儿童(3~6岁) | 21 | 1.10 | 0.51 | 1.69 | 336.69 | 97.32 | 0.002 | |
具体运算期儿童(7~12岁) | 13 | 0.56 | 0.06 | 1.07 | 114.36 | 89.51 | |||
青少年(13~17岁) | 15 | 0.40 | 0.16 | 0.64 | 59.16 | 79.95 | |||
成人(18岁及以上) | 119 | 0.24 | 0.13 | 0.36 | 576.85 | 86.77 | |||
实验设计 | 组间 | 101 | 0.48 | 0.31 | 0.65 | 670.09 | 91.36 | 0.037 | |
组内 | 67 | 0.22 | 0.07 | 0.37 | 402.36 | 89.42 | |||
音乐顺序 | 先导 | 88 | 0.45 | 0.27 | 0.63 | 728.49 | 92.67 | 0.207 | |
背景 | 80 | 0.26 | 0.12 | 0.39 | 344.27 | 85.96 | |||
对照组类型 | 古典−静默 | 109 | 0.38 | 0.20 | 0.57 | 968.33 | 93.63 | 0.837a | |
古典−非音乐 | 24 | 0.15 | −0.05 | 0.36 | 141.24 | 85.91 | |||
古典−中国民乐 | 6 | 0.10 | −0.24 | 0.44 | 7.14 | 29.41 | |||
古典−通俗音乐 | 60 | 0.34 | 0.15 | 0.53 | 421.01 | 91.97 | |||
歌词 | 古典−通俗音乐(有歌词) | 12 | 0.41 | 0.39 | 0.78 | 91.69 | 87.24 | 0.162b | |
古典−通俗音乐(无歌词) | 22 | 0.43 | 0.02 | 0.83 | 166.25 | 95.97 | |||
情绪 | 积极情绪古典音乐−静默 | 11 | 0.93 | 0.13 | 1.73 | 114.28 | 94.06 | 0.507c | |
消极情绪古典音乐−静默 | 2 | 0.24 | −1.31 | 1.80 | 19.28 | 94.81 | |||
认知任务类型 | 空间认知 | 69 | 0.47 | 0.29 | 0.66 | 488.19 | 90.80 | 0.325 | |
阅读测试 | 29 | 0.07 | −0.14 | 0.28 | 113.43 | 84.51 | |||
注意任务 | 16 | 0.52 | 0.02 | 1.02 | 124.57 | 90.10 | |||
记忆任务 | 36 | 0.45 | 0.22 | 0.69 | 185.95 | 89.76 | |||
数学测试 | 7 | 0.13 | −0.02 | 0.29 | 3.11 | 0.00 | |||
综合性认知测试 | 11 | 0.32 | −0.27 | 0.91 | 184.90 | 96.80 | |||
优势半球 | 左半球 | 35 | 0.08 | −0.08 | 0.25 | 116.17 | 78.92 | 0.019 | |
右半球 | 72 | 0.44 | 0.26 | 0.63 | 569.33 | 91.90 | |||
年龄段×性别 | 女性−前运算期儿童 | 7 | 2.69 | 2.28 | 3.10 | 7.43 | 17.40 | <0.001 | |
女性−具体运算期儿童 | 3 | 0.12 | −0.84 | 1.08 | 5.94 | 69.74 | |||
女性−青少年 | 2 | 0.24 | −0.01 | 0.50 | 0.27 | 0.00 | |||
女性−成人 | 14 | −0.04 | −0.28 | 0.21 | 40.57 | 72.39 | |||
男性−前运算期儿童 | 6 | 0.47 | −0.57 | 1.50 | 29.55 | 88.26 | |||
男性−具体运算期儿童 | 3 | 0.34 | −0.56 | 1.24 | 5.52 | 65.63 | |||
男性−青少年 | 2 | 0.34 | 0.08 | 0.60 | 0.28 | 0.00 | |||
男性−成人 | 10 | 0.09 | −0.10 | 0.27 | 9.94 | 11.09 | |||
中外被试×性别 | 中国−女性 | 10 | 1.78 | 0.78 | 2.78 | 179.43 | 94.76 | 0.005 | |
中国−男性 | 9 | 0.30 | −0.33 | 0.93 | 35.28 | 85.25 | |||
外国−女性 | 16 | 0.04 | −0.12 | 0.19 | 25.66 | 35.26 | |||
外国−男性 | 12 | 0.19 | 0.03 | 0.35 | 12.48 | 1.61 | |||
认知任务类型×性别 | 女性−阅读测试 | 7 | −0.15 | −0.59 | 0.30 | 28.32 | 82.76 | 0.217 | |
男性−阅读测试 | 7 | 0.11 | −0.19 | 0.42 | 10.68 | 46.48 | |||
女性−空间认知 | 10 | 1.04 | 0.09 | 1.20 | 152.10 | 95.98 | |||
男性−空间认知 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 | |||
女性−记忆任务 | 4 | 2.15 | 1.19 | 3.11 | 8.14 | 64.98 | |||
男性−记忆任务 | 4 | 1.28 | 0.00 | 2.56 | 14.46 | 80.60 | |||
女性−数学测试 | 3 | 0.14 | −0.08 | 0.35 | 0.24 | 0.00 | |||
男性−数学测试 | 3 | 0.07 | −0.20 | 0.34 | 2.34 | 0.00 | |||
女性−综合性认知测试 | 2 | 0.49 | −0.26 | 1.23 | 1.84 | 45.68 | |||
男性−综合性认知测试 | 2 | 0.49 | −0.02 | 0.99 | 0.11 | 0.00 | |||
优势半球× 性别 | 女性−左半球 | 10 | −0.04 | −0.33 | 0.25 | 29.55 | 76.26 | 0.036 | |
女性−右半球 | 10 | 1.04 | 0.09 | 1.99 | 152.10 | 95.98 | |||
男性−左半球 | 10 | 0.12 | −0.09 | 0.33 | 13.36 | 33.02 | |||
男性−右半球 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 |
表2 广义莫扎特效应的影响因素:亚组分析和交互作用分析
影响因素 | 分组 | k | 效果量及95%置信区间 (95% confidence interval) | Q | I2 (%) | p | |||
---|---|---|---|---|---|---|---|---|---|
g | 下限 | 上限 | |||||||
中外被试 | 中国 | 53 | 0.64 | 0.36 | 0.91 | 508.34 | 94.64 | 0.018 | |
外国 | 115 | 0.27 | 0.15 | 0.39 | 609.24 | 87.71 | |||
性别 | 男 | 21 | 0.20 | −0.01 | 0.41 | 48.12 | 56.25 | 0.201 | |
女 | 26 | 0.70 | 0.21 | 1.18 | 243.26 | 95.05 | |||
年龄段 | 前运算期儿童(3~6岁) | 21 | 1.10 | 0.51 | 1.69 | 336.69 | 97.32 | 0.002 | |
具体运算期儿童(7~12岁) | 13 | 0.56 | 0.06 | 1.07 | 114.36 | 89.51 | |||
青少年(13~17岁) | 15 | 0.40 | 0.16 | 0.64 | 59.16 | 79.95 | |||
成人(18岁及以上) | 119 | 0.24 | 0.13 | 0.36 | 576.85 | 86.77 | |||
实验设计 | 组间 | 101 | 0.48 | 0.31 | 0.65 | 670.09 | 91.36 | 0.037 | |
组内 | 67 | 0.22 | 0.07 | 0.37 | 402.36 | 89.42 | |||
音乐顺序 | 先导 | 88 | 0.45 | 0.27 | 0.63 | 728.49 | 92.67 | 0.207 | |
背景 | 80 | 0.26 | 0.12 | 0.39 | 344.27 | 85.96 | |||
对照组类型 | 古典−静默 | 109 | 0.38 | 0.20 | 0.57 | 968.33 | 93.63 | 0.837a | |
古典−非音乐 | 24 | 0.15 | −0.05 | 0.36 | 141.24 | 85.91 | |||
古典−中国民乐 | 6 | 0.10 | −0.24 | 0.44 | 7.14 | 29.41 | |||
古典−通俗音乐 | 60 | 0.34 | 0.15 | 0.53 | 421.01 | 91.97 | |||
歌词 | 古典−通俗音乐(有歌词) | 12 | 0.41 | 0.39 | 0.78 | 91.69 | 87.24 | 0.162b | |
古典−通俗音乐(无歌词) | 22 | 0.43 | 0.02 | 0.83 | 166.25 | 95.97 | |||
情绪 | 积极情绪古典音乐−静默 | 11 | 0.93 | 0.13 | 1.73 | 114.28 | 94.06 | 0.507c | |
消极情绪古典音乐−静默 | 2 | 0.24 | −1.31 | 1.80 | 19.28 | 94.81 | |||
认知任务类型 | 空间认知 | 69 | 0.47 | 0.29 | 0.66 | 488.19 | 90.80 | 0.325 | |
阅读测试 | 29 | 0.07 | −0.14 | 0.28 | 113.43 | 84.51 | |||
注意任务 | 16 | 0.52 | 0.02 | 1.02 | 124.57 | 90.10 | |||
记忆任务 | 36 | 0.45 | 0.22 | 0.69 | 185.95 | 89.76 | |||
数学测试 | 7 | 0.13 | −0.02 | 0.29 | 3.11 | 0.00 | |||
综合性认知测试 | 11 | 0.32 | −0.27 | 0.91 | 184.90 | 96.80 | |||
优势半球 | 左半球 | 35 | 0.08 | −0.08 | 0.25 | 116.17 | 78.92 | 0.019 | |
右半球 | 72 | 0.44 | 0.26 | 0.63 | 569.33 | 91.90 | |||
年龄段×性别 | 女性−前运算期儿童 | 7 | 2.69 | 2.28 | 3.10 | 7.43 | 17.40 | <0.001 | |
女性−具体运算期儿童 | 3 | 0.12 | −0.84 | 1.08 | 5.94 | 69.74 | |||
女性−青少年 | 2 | 0.24 | −0.01 | 0.50 | 0.27 | 0.00 | |||
女性−成人 | 14 | −0.04 | −0.28 | 0.21 | 40.57 | 72.39 | |||
男性−前运算期儿童 | 6 | 0.47 | −0.57 | 1.50 | 29.55 | 88.26 | |||
男性−具体运算期儿童 | 3 | 0.34 | −0.56 | 1.24 | 5.52 | 65.63 | |||
男性−青少年 | 2 | 0.34 | 0.08 | 0.60 | 0.28 | 0.00 | |||
男性−成人 | 10 | 0.09 | −0.10 | 0.27 | 9.94 | 11.09 | |||
中外被试×性别 | 中国−女性 | 10 | 1.78 | 0.78 | 2.78 | 179.43 | 94.76 | 0.005 | |
中国−男性 | 9 | 0.30 | −0.33 | 0.93 | 35.28 | 85.25 | |||
外国−女性 | 16 | 0.04 | −0.12 | 0.19 | 25.66 | 35.26 | |||
外国−男性 | 12 | 0.19 | 0.03 | 0.35 | 12.48 | 1.61 | |||
认知任务类型×性别 | 女性−阅读测试 | 7 | −0.15 | −0.59 | 0.30 | 28.32 | 82.76 | 0.217 | |
男性−阅读测试 | 7 | 0.11 | −0.19 | 0.42 | 10.68 | 46.48 | |||
女性−空间认知 | 10 | 1.04 | 0.09 | 1.20 | 152.10 | 95.98 | |||
男性−空间认知 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 | |||
女性−记忆任务 | 4 | 2.15 | 1.19 | 3.11 | 8.14 | 64.98 | |||
男性−记忆任务 | 4 | 1.28 | 0.00 | 2.56 | 14.46 | 80.60 | |||
女性−数学测试 | 3 | 0.14 | −0.08 | 0.35 | 0.24 | 0.00 | |||
男性−数学测试 | 3 | 0.07 | −0.20 | 0.34 | 2.34 | 0.00 | |||
女性−综合性认知测试 | 2 | 0.49 | −0.26 | 1.23 | 1.84 | 45.68 | |||
男性−综合性认知测试 | 2 | 0.49 | −0.02 | 0.99 | 0.11 | 0.00 | |||
优势半球× 性别 | 女性−左半球 | 10 | −0.04 | −0.33 | 0.25 | 29.55 | 76.26 | 0.036 | |
女性−右半球 | 10 | 1.04 | 0.09 | 1.99 | 152.10 | 95.98 | |||
男性−左半球 | 10 | 0.12 | −0.09 | 0.33 | 13.36 | 33.02 | |||
男性−右半球 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 |
*元分析用到的参考文献 | |
[1] | 边玉芳. (2013). 左脑和右脑在心理发展中的不同作用——儿童大脑单侧化实验. 中小学心理健康教育, 238(23), 34-35. |
[2] | 陈丹, 隋雪, 王小东, 钱丽, 姜娜. (2008). 音乐对大学生阅读影响的眼动研究. 心理科学, 31(2), 385-388. |
[3] | 陈丹丹, 董芸竹, 杨思敏, 何先友. (2011). 音乐认知的跨文化研究——认知神经科学的视角. 华南师范大学学报(自然科学版), (增刊), 122-125. |
[4] | 陈丽君, 文琪. (2017). 音乐欣赏教学中的美感体验与功能实证. 华东师范大学学报(教育科学版), 35(5), 117-127+162. |
[5] |
陈晓宇, 杜媛媛, 刘强. (2022). 积极情绪提高背景线索学习的适应性. 心理学报, 54(12), 1481-1490.
doi: 10.3724/SP.J.1041.2022.01481 |
[6] | *诸薇娜. (2008). 音乐认知研究及其计算分析 (博士学位论文). 厦门大学. |
[7] | *龚菊芳. (2011). 莫扎特背景音乐对大学生英语阅读理解成绩的影响. 广西教育学院学报, 111(1), 142-145+147. |
[8] | *谷岳. (2021). 不同类型的背景音乐对小班幼儿工作记忆广度的影响 (硕士学位论文). 辽宁师范大学, 大连. |
[9] | 侯建成, 董奇. (2010). 音乐认知能力的发展及其大脑可塑性研究. 星海音乐学院学报, 120(3), 79-84. |
[10] | *黄君. (2009). 莫扎特效应的实验研究 (博士学位论文). 西南大学, 重庆. |
[11] | 蒋一禾, 朱华琴. (2011). 基于性别差异的高中音乐教学对策. 江苏教育研究, 139(31), 33-36. |
[12] | *景银霞. (2015). 背景音乐对中国英语学习者阅读理解的影响 (硕士学位论文). 兰州交通大学. |
[13] | *孔令龙. (2015). 音乐对图形推理影响的眼动研究 (硕士学位论文). 广西师范大学, 桂林. |
[14] | 赖寒, 徐苗, 宋宜颖, 刘嘉. (2013). 音乐知觉的神经基础:脑成像研究的元分析. 心理学报, 45(5), 491-507. |
[15] | 雷文斌, 刘峰. (2014). 语言线索下视觉空间知觉任务的性别差异. 心理学探新, 34(6), 511-516. |
[16] | *李继鹏, 李颖, 张东颖, 冯浩, 尹宁. (2019). 基于脑电信号溯源分析的音乐类型对学习记忆影响的研究. 中国生物医学工程学报, 38(6), 679-686. |
[17] | *李宁宁, 李洪玉. (2006). 背景音乐对中学生阅读理解的影响. 心理与行为研究, 4(2), 149-153. |
[18] | 李卫华. (2008). 背景音乐对记忆的影响研究 (硕士学位论文). 华中师范大学, 武汉. |
[19] | *李文辉, 余婷婷, 郭黎岩. (2017). 幼儿语音加工中莫扎特效应的实验研究. 沈阳师范大学学报(社会科学版), 41(3), 132-135. |
[20] | *李哲. (2009). 中西方古典音乐对记忆的影响——春江花月夜曲与莫扎特D大调双钢琴奏鸣曲K.448(硕士学位论文). 西南大学, 重庆. |
[21] | 林崇德, 杨治良, 黄希庭. (2003). 心理学大辞典(上下) (精). 上海教育出版社. |
[22] | *刘玥, 张裕鼎, 张立春. (2012). 背景音乐对中学生说明文文本信息再认的影响. 心理研究, 5(5), 75-80. |
[23] | 阮婷. (2007). 学前儿童音乐偏好的差异性研究 (硕士学位论文). 华东师范大学, 上海. |
[24] | 宋蓓, 侯建成, 骆丹, 周加仙. (2020). 音乐训练的"关键期"与"敏感期"及其音乐教育启示. 教育生物学杂志, 8(4), 278-285. |
[25] | 孙长安, 韦洪涛, 岳丽娟. (2013). 音乐对工作记忆影响及机制的ERP研究. 心理与行为研究, 11(2), 195-199. |
[26] | 孙国忠. (2011). 古典音乐: 时代·风格·经典. 星海音乐学院学报, 123(2), 59-67. |
[27] | 孙淑平. (2011). 中西音乐文化中的审美意识. 艺术百家, 27(3), 254-256. |
[28] | *汪菲. (2012). 中班幼儿莫扎特效应的实验研究 (硕士学位论文). 华南师范大学, 广州. |
[29] | *王玲, 赵蕾, 卢英俊. (2012). 莫扎特音乐对幼儿表情识别能力的影响. 幼儿教育(教育科学), 541(9), 25-31. |
[30] | 王帅帅, 李颖, 李继鹏, 王灵月, 尹宁, 杨硕. (2020). 基于皮层脑网络的背景音乐对空间认知工作记忆影响的实验研究. 生物医学工程学杂志, 37(4), 587-595. |
[31] | *吴海珍, 赵蕾, 卢英俊. (2014). 莫扎特音乐对幼儿时空推理能力影响的研究. 心理发展与教育, 30(4), 345-354. |
[32] | 许燕, 张厚粲. (2000). 小学生空间能力及其发展倾向的性别差异研究. 心理科学, 23(2), 160-164. |
[33] | *杨芬. (2016). 图形推理中的莫扎特效应:来自眼动的证据 (硕士学位论文). 山西师范大学, 太原. |
[34] |
杨集梅, 柴洁余, 邱天龙, 全小山, 郑茂平. (2022). 共情与中国民族音乐情绪识别的关系:来自ERP的证据. 心理学报, 54(10), 1181-1192.
doi: 10.3724/SP.J.1041.2022.01181 |
[35] | *于馨滢. (2019). 音乐和背景色调对中学生词汇记忆的影响 (硕士学位论文). 山西师范大学, 太原. |
[36] | 张艺. (2012). 中西方音乐异同初探. 海南师范大学学报(社会科学版), 25(5), 142-144. |
[37] | 张正元. (2020). 流行音乐的“外”与“内” ——对“流行音乐是‘外部音乐’”的解读. 人民音乐, 689(9), 88-91. |
[38] |
Aheadi, A., Dixon, P., & Glover, S. (2010). A limiting feature of the Mozart effect: Listening enhances mental rotation abilities in non-musicians but not musicians. Psychology of Music, 38(1), 107-117.
doi: 10.1177/0305735609336057 URL |
[39] | *Alexander, J., Firouzbakht, P., Glennon, L., & Lang, M. (2012). Effects of music type on reading comprehension performance and other physiological factors. Journal of Advanced Student Science, 1(1), 1-11. |
[40] |
Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2016). Studying emotion induced by music through a crowdsourcing game. Information Processing & Management, 52(1), 115-128.
doi: 10.1016/j.ipm.2015.03.004 URL |
[41] |
Altenmuller, E., Schurmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: Different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia, 40(13), 2242-2256.
pmid: 12417455 |
[42] |
Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5(3), 206-215.
doi: 10.1002/(SICI)1097-0193(1997)5:3<206::AID-HBM5>3.0.CO;2-7 pmid: 20408216 |
[43] | Anderson, N. H. (2002). Methodology and statistics in single-subject experiments. In J. Wixted (Ed.), Stevens' handbook of experimental psychology (Vol. 4, pp. 301-337). London: John Wiley & Sons, Inc. |
[44] | *Angel, L. A., Polzella, D. J., & Elvers, G. C. (2010). Background music and cognitive performance. Perceptual and Motor Skills, 110(3), 1059-1064. |
[45] |
Aoun, P., Jones, T., Shaw, G. L., & Bodner, M. (2005). Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurological Research, 27(8), 791-796.
pmid: 16354537 |
[46] |
Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Developmental Psychology, 47(4), 984-990.
doi: 10.1037/a0023819 pmid: 21744957 |
[47] |
Argstatter, H. (2016). Perception of basic emotions in music: Culture-specific or multicultural? Psychology of Music, 44(4), 674-690.
doi: 10.1177/0305735615589214 URL |
[48] |
Arikan, M. K., Devrim, M., Oran, O., Inan, S., Elhih, M., & Demiralp, T. (1999). Music effects on event-related potentials of humans on the basis of cultural environment. Neuroscience Letters, 268(1), 21-24.
pmid: 10400068 |
[49] |
Bailey, J. A., & Penhune, V. B. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Experimental Brain Research, 204(1), 91-101.
doi: 10.1007/s00221-010-2299-y pmid: 20508918 |
[50] | Bailey, J. A., & Penhune, V. B. (2012). A sensitive period for musical training:Contributions of age of onset and cognitive abilities. Annals of the New York Academy of Sciences, 1252(1), 163-170. |
[51] |
Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. Journal of Cognitive Neuroscience, 26(4), 755-767.
doi: 10.1162/jocn_a_00527 pmid: 24236696 |
[52] |
Berenbaum, S. A., & Beltz, A. M. (2011). Sexual differentiation of human behavior: Effects of prenatal and pubertal organizational hormones. Frontiers in Neuroendocrinology, 32(2), 183-200.
doi: 10.1016/j.yfrne.2011.03.001 pmid: 21397624 |
[53] | *Betshahbazadeh, Y. (2001). The effects of Mozart and Tejano music on community college student math test performance (Unpublished doctorial dissertation). Texas A&M University-Kingsville. |
[54] |
Bever, T. G., & Chiarello, R. J. (1974). Cerebral dominance in musicians and nonmusicians. Science, 185(4150), 537-539.
doi: 10.1126/science.185.4150.537 pmid: 4841585 |
[55] |
Bhattacharya, J., & Petsche, H. (2001). Universality in the brain while listening to music. Proceedings of the Royal Society B-Biological Sciences, 268(1484), 2423-2433.
doi: 10.1098/rspb.2001.1802 URL |
[56] |
Bhattacharya, J., & Petsche, H. (2005). Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Processing, 85(11), 2161-2177.
doi: 10.1016/j.sigpro.2005.07.007 URL |
[57] |
Bodner, M., Muftuler, L. T., Nalcioglu, O., & Shaw, G. L. (2001). FMRI study relevant to the Mozart effect: Brain areas involved in spatial-temporal reasoning. Neurological Research, 23(7), 683-690.
pmid: 11680506 |
[58] | *Bolander, H. B., & Callahan, S. (2021). Rockin’the GRE: The effects of preferred, non-preferred, and classical music on college students’ cognitive test performance. Butler Journal of Undergraduate Research, 7(1), 115-128. |
[59] |
*Borella, E., Carretti, B., Grassi, M., Nucci, M., & Sciore, R. (2014). Are age-related differences between yound and older adults in an aggective working memory test sensitive to the music effects? Frontiers in Aging Neuroscience, 6, 298. doi: 10.3389/fnagi.2014.00298
pmid: 25426064 |
[60] |
*Borella, E., Carretti, B., Meneghetti, C., Carbone, E., Vincenzi, M., Madonna, J. C., & Mammarella, N. (2017). Is working memory training in older adults sensitive to music? Psychological Research, 83(6), 1107-1123.
doi: 10.1007/s00426-017-0961-8 |
[61] |
*Bottiroli, S., Rosi, A., Russo, R., Vecchi, T., & Cavallini, E. (2014). The cognitive effects of listening to background music on older adults: Processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music. Frontiers in Aging Neuroscience, 6, 284. doi: 10.3389/fnagi.2014.00284
pmid: 25360112 |
[62] | *Bressler, R. A. (2003). Music and cognitive abilities: A look at the Mozart effect (Unpublished doctorial dissertation). The Chicago School of Professional Psychology. |
[63] | Brouwers, M. C., Johnston, M. E., Charette, M. L., Hanna, S. E., Jadad, A. R., & Browman, G. P. (2005). Evaluating the role of quality assessment of primary studies in systematic reviews of cancer practice guidelines. BMC Medical Research Methodology, 5(1), 8. doi: 10.1186/1471-2288-5-8 |
[64] |
Brown, T. T., & Jernigan, T. L. (2012). Brain development during the preschool years. Neuropsychology Review, 22(4), 313-333.
doi: 10.1007/s11065-012-9214-1 pmid: 23007644 |
[65] | *Buerger-Cole, H., Agyemang, S., Cotting, G., Joottu, S., & Vetter, K. (2019). How music genre affects memory retention & physiological indicators of stress. Journal of Advanced Student Sciences, 1-32. |
[66] | Cacciafesta, M., Ettorre, E., Amici, A., Cicconetti, P., Martinelli, V., Linguanti, A., & Marigliano, V. (2010). New frontiers of cognitive rehabilitation in geriatric age: The Mozart effect (ME). Archives of Gerontology and Geriatrics, 51(3), E79-E82. |
[67] |
*Caldwell, G. N., & Riby, L. M. (2007). The effects of music exposure and own genre preference on conscious and unconscious cognitive processes: A pilot ERP study. Consciousness and Cognition, 16(4), 992-996.
pmid: 16931056 |
[68] | Campbell, D. Ed. (2000). The Mozart effect for children: Awakening your child's mind, health, and creativity with music (pp. 608-610). New York: HarperCollins. |
[69] |
Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? A multilevel critique with new data. American Psychologist. 40(7), 786-799.
pmid: 3898936 |
[70] |
*Carstens, C. B., Huskins, E., & Hounshell, G. W. (1995). Listening to Mozart may not enhance performance on the revised Minnesota paper form board test. Psychological Reports, 77(1), 111-114.
pmid: 7501747 |
[71] | *Cavanaugh, L. K. (2005). A study of the effects of music on middle school students' math test scores (Unpublished doctorial dissertation). Barry University, Miami. |
[72] |
Chabris, C. F. (1999). Prelude or requiem for the 'Mozart effect'? Nature, 400(6747), 826-827.
doi: 10.1038/23608 |
[73] |
Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. Journal of Economic Behavior & Organization, 81(1), 1-8.
doi: 10.1016/j.jebo.2011.08.009 URL |
[74] |
Chen, J., Scheller, M., Wu, C., Hu, B., Peng, R., & Liu, C. (2022). The relationship between early musical training and executive functions: Validation of effects of the sensitive period. Psychology of Music, 50(1), 86-99.
doi: 10.1177/0305735620978690 URL |
[75] | *Chou, P. (2007). The effects of background music on the reading performance of Taiwanese ESL students (Unpublished doctorial dissertation). Indiana State University. |
[76] | *Chrosniak, K. M., & Talarczyk, P. (2019). The effects of different musical auditory backgrounds on a high school student’s comprehension performance. Journal of Student Research, 8(2), 1-12. |
[77] | *Chua, M., Ngie, G., Nicomedes, C. J., & Cruz, C. (2020). A study on the effect of music on short term memory with the use of digit span task among students. International Journal of Advanced Research and Publications, 4(4), 55-59. |
[78] |
Clements, A. M., Rimrodt, S. L., Abel, J. R., Blankner, J. G., Mostofsky, S. H., Pekar, J. J.,... Cutting, L. E. (2006). Sex differences in cerebral laterality of language and visuospatial processing. Brain and Language, 98(2), 150-158.
doi: 10.1016/j.bandl.2006.04.007 pmid: 16716389 |
[79] |
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
doi: 10.1037//0033-2909.112.1.155 pmid: 19565683 |
[80] | *Cortez, J. R. B., Chua, S. S., Cid, M. J. J., Claro, C. I. T., Claveria, J. R. S., Cobarrubias, C. V. D.,... Conejos, E. J. R. (2019). The effects of binaural beats stimulation compared to classical music on the memory of senior high school students: A randomized controlled trial. The Health Sciences Journal, 8(2), 90-94. |
[81] |
Crncec, R., Wilson, S. J., & Prior, M. (2006). No evidence for the Mozart effect in children. Music Perception, 23(4), 305-318.
doi: 10.1525/mp.2006.23.4.305 URL |
[82] | *Dai, M., & Marshall, N. A. (2021). Exploring the relationship between music and children’s cognitive abilitive. Problems in Music Pedagogy, 20(1), 59-70. |
[83] | *Dawson, D. (2003). Listening to music and increasing reading achievement scores in vocabulary and comprehension and total reading ability (Unpublished doctorial dissertation). Widener University, Chester. |
[84] |
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506.
doi: 10.1080/02643290244000239 pmid: 20957581 |
[85] |
Demorest, S. M., Morrison, S. J., Beken, M. N., & Jungbluth, D. (2008). Lost in translation: An enculturation effect in music memory performance. Music Perception, 25(3), 213-223.
doi: 10.1525/mp.2008.25.3.213 URL |
[86] |
Desrocher, M. E., Smith, M. L., & Taylor, M. J. (1995). Stimulus and sex-differences in performance of mental rotation-evidence from event-related potentials. Brain and Cognition, 28(1), 14-38.
pmid: 7546666 |
[87] |
di Muro, F., & Murray, K. B. (2012). An arousal regulation explanation of mood effects on consumer choice. Journal of Consumer Research, 39(3), 574-584.
doi: 10.1086/664040 URL |
[88] | Díaz, J.-L., Flores-Gutiérrez, E. O., Rio-Portilla, Y., & Cabrera, M. C. (2011). Musical emotion assessment, brain correlates, and gender differences. In T. A. Ivanova (Ed.), Music: Composition, interpretation and effects (pp.31- 56). New York: Nova Science Pub Inc. |
[89] |
Dobbs, S., Furnham, A., & McClelland, A. (2011). The effect of background music and noise on the cognitive test performance of introverts and extraverts. Applied Cognitive Psychology, 25(2), 307-313.
doi: 10.1002/acp.v25.2 URL |
[90] |
Dong, Y., Zheng, H. -Y., Wu, S. X. -Y., Huang, F. -Y., Peng, S. -N., Sun, S. Y. -K., & Zeng, H. (2022). The effect of Chinese pop background music on Chinese poetry reading comprehension. Psychology of Music, 50(5), 1544-1565.
doi: 10.1177/03057356211062940 URL |
[91] |
*Dosseville, F., Laborde, S., & Scelles, N. (2012). Music during lectures: Will students learn better? Learning and Individual Differences, 22(2), 258-262.
doi: 10.1016/j.lindif.2011.10.004 URL |
[92] |
Doyle, R. A., & Voyer, D. (2016). Stereotype manipulation effects on math and spatial test performance: A meta- analysis. Learning and Individual Differences, 47, 103-116.
doi: 10.1016/j.lindif.2015.12.018 URL |
[93] | *Du, M., Jiang, J., Li, Z., Man, D., & Jiang, C. (2020). The effects of background music on neural responses during reading comprehension. Scientific Reports, 10(1), 18651. doi: 10.1038/s41598-020-75623-3. |
[94] |
Elfenbein, H. A., & Ambady, N. (2002). On the universality and cultural specificity of emotion recognition: A meta- analysis. Psychological Bulletin, 128(2), 203-235.
doi: 10.1037/0033-2909.128.2.203 pmid: 11931516 |
[95] |
Eskine, K. E., Anderson, A. E., Sullivan, M., & Golob, E. J. (2020). Effects of music listening on creative cognition and semantic memory retrieval. Psychology of music, 48(4), 513-528.
doi: 10.1177/0305735618810792 URL |
[96] | Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017). Music therapy is a potential intervention for cognition of Alzheimer's disease: A mini-review. Translational Neurodegeneration, 6(1), 2. doi: 10.1186/s40035-017-0073-9 |
[97] | Ferreri, L., Bigand, E., Bard, P., & Bugaiska, A. (2015). The influence of music on prefrontal cortex during episodic encoding and retrieval of verbal information: A multichannel fNIRS study. Behavioural Neurology, 2015, 707625. doi: 10.1155/2015/707625 |
[98] |
Ferreri, L., Bigand, E., & Bugaiska, A. (2015). The positive effect of music on source memory. Musicae Scientiae, 19(4), 402-411.
doi: 10.1177/1029864915604684 URL |
[99] |
Ferreri, L., & Verga, L. (2016). Benefits of music on verbal learning and memory: How and when does it work? Music Perception, 34(2), 167-182.
doi: 10.1525/mp.2016.34.2.167 URL |
[100] | *Flores, D. R. A. (2021). The effects of music genre on scores in different exam types: A pilot study. Kwantlen Psychology Student Journal, 3, 86-97. |
[101] |
Foster, N. A., & Valentine, E. R. (2001). The effect of auditory stimulation on autobiographical recall in dementia. Experimental Aging Research, 27(3), 215-228.
pmid: 11441644 |
[102] |
Furnham, A., & Allass, K. (1999). The influence of musical distraction of varying complexity on the cognitive performance of extroverts and introverts. European Journal of Personality, 13(1), 27-38.
doi: 10.1002/(ISSN)1099-0984 URL |
[103] |
Gaab, N., Keenan, J. P., & Schlaug, G. (2003). The effects of gender on the neural substrates of pitch memory. Journal of Cognitive Neuroscience, 15(6), 810-820.
pmid: 14511534 |
[104] | Gainotti, G. (2019). The role of the right hemisphere in emotional and behavioral disorders of patients with frontotemporal lobar degeneration: An updated review. Frontiers in Aging Neuroscience, 11. doi: 10.3389/fnagi.2019.00055 |
[105] | * Gavazzi, G., Marzi, T., Giganti, F., Lorini, J., Fisher, A. D., & Viggiano, M. P. (2021). Pleasure plays the music: Visual attention and expertise. Retrieved Mar 18, 2021, from 10.31234/osf.io/me3c7 |
[106] |
Giannouli, V., Kolev, V., & Yordanova, J. (2019). Is there a specific Vivaldi effect on verbal memory functions? Evidence from listening to music in younger and older adults. Psychology of Music, 47(3), 325-341.
doi: 10.1177/0305735618757901 |
[107] |
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67(5), 728-734.
doi: 10.1016/j.neuron.2010.08.040 pmid: 20826305 |
[108] |
*Gilleta, K. S., Vrbancic, M. I., Elias, L. J., & Saucier, D. M. (2003). A Mozart effect for women on a mental rotations task. Perceptual and Motor Skills, 96(3), 1086-1092.
doi: 10.2466/pms.2003.96.3c.1086 URL |
[109] |
Gold, B. P., Frank, M. J., Bogert, B., & Brattico, E. (2013). Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 4, 541. doi: 10.3389/fpsyg.2013.00541
pmid: 23970875 |
[110] |
Gonzalez, M. F., & Aiello, J. R. (2019). More than meets the ear: Investigating how music affects cognitive task performance. Journal of Experimental Psychology: Applied, 25(3), 431-444.
doi: 10.1037/xap0000202 URL |
[111] |
Gultepe, B., & Coskun, H. (2016). Music and cognitive stimulation influence idea generation. Psychology of Music, 44(1), 3-14.
doi: 10.1177/0305735615580356 URL |
[112] |
Habibi, A., Damasio, A., Ilari, B., Veiga, R., Joshi, A. A., Leahy, R. M., … Damasio, H. (2018). Childhood music training induces change in micro and macroscopic brain structure: Results from a longitudinal study. Cerebral Cortex, 28(12), 4336-4347.
doi: 10.1093/cercor/bhx286 URL |
[113] | *Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils' task performance. Educational Studies, 28(2), 111-122. |
[114] | Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). New York, NY: Psychology Press. |
[115] |
*Hausmann, M., Hodgetts, S., & Eerola, T. (2016). Music- induced changes in functional cerebral asymmetries. Brain and Cognition, 104, 58-71.
doi: 10.1016/j.bandc.2016.03.001 pmid: 26970942 |
[116] | * Hayashi, M. (2021). Relationships between background music and cognitive control. Retrieved August 13, 2021, from https://escholarship.org/uc/item/8gn1q7zh |
[117] | Heng, L. (2018). Timbre in the communication of emotions among performers and listeners from western art music and Chinese Music traditions (Unpublished master’s thesis). McGill University, Montreal. |
[118] |
Herlitz, A., Reuterskiold, L., Loven, J., Thilers, P. P., & Rehnman, J. (2013). Cognitive sex differences are not magnified as a function of age, sex hormones, or puberty development during early adolescence. Developmental Neuropsychology, 38(3), 167-179.
doi: 10.1080/87565641.2012.759580 pmid: 23573795 |
[119] |
Hetland, L. (2000). Listening to music enhances spatial- temporal reasoning: Evidence for the "Mozart effect". Journal of Aesthetic Education, 34(3/4), 105-148.
doi: 10.2307/3333640 URL |
[120] |
Hines, M. (2011). Gender development and the human brain. Annual Review of Neuroscience, 34, 69-88.
doi: 10.1146/annurev-neuro-061010-113654 pmid: 21438685 |
[121] |
*Ho, C., Mason, O., & Spence, C. (2007). An investigation into the temporal dimension of the Mozart effect: Evidence from the attentional blink task. Acta Psychologica, 125(1), 117-128.
pmid: 16942739 |
[122] |
Hu, X., & Lee, J. H. (2016). Towards global music digital libraries: A cross-cultural comparison on the mood of Chinese music. Journal of Documentation, 72(5), 858-877.
doi: 10.1108/JD-01-2016-0005 URL |
[123] |
*Hui, K. (2006). Mozart effect in preschool children? Early Child Development Care, 176(3-4), 411-419.
doi: 10.1080/03004430500147540 URL |
[124] |
Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104(1), 53-69.
doi: 10.1037/0033-2909.104.1.53 URL |
[125] |
*Ivanov, V. K., & Geake, J. G. (2003). The Mozart effect and primary school children. Psychology of Music, 31(4), 405-413.
doi: 10.1177/03057356030314005 URL |
[126] |
Jaschke, A. C., Honing, H., & Scherder, E. J. A. (2018). Longitudinal analysis of music education on executive functions in primary school children. Frontiers in Neuroscience, 12, 103. doi: 10.3389/fnins.2018.00103
pmid: 29541017 |
[127] |
*Jausovec, N., & Habe, K. (2004). The influence of auditory background stimulation (Mozart's sonata K. 448) on visual brain activity. International Journal of Psychophysiology, 51(3), 261-271.
pmid: 14962578 |
[128] |
Jausovec, N., & Habe, K. (2005). The influence of Mozart's Sonata K. 448 on brain activity during the performance of spatial rotation and numerical tasks. Brain Topography, 17(4), 207-218.
pmid: 16110771 |
[129] |
*Jausovec, N., Jausovec, K., & Gerlic, I. (2006). The influence of Mozart's music on brain activity in the process of learning. Clinical Neurophysiology, 117(12), 2703-2714.
pmid: 17029951 |
[130] | Jing, Y., Jing, S., Huajian, C., Chuangang, S., & Yan, L. (2012). The gender difference in distraction of background music and noise on the cognitive task performance. In Proceedings of the 2012 8th International Conference on Natural Computation. Chongqing: IEEE. |
[131] | Johnson, K. J., Waugh, C. E., & Fredrickson, B. L. (2010). Smile to see the forest: Facially expressed positive emotions broaden cognition. Cognition & Emotion, 24, 299-321. |
[132] | *Jones, D. (2020). Effect of different music genres on cognitive task performance after high intensity interval training. Longwood Senior Theses, Longwood University. |
[133] |
*Jones, M. H., & Estell, D. B. (2007). Exploring the Mozart effect among high school students. Psychology of Aesthetics, Creativity, the Arts, 1(4), 219-224.
doi: 10.1037/1931-3896.1.4.219 URL |
[134] | *Jones, M. H., West, S. D., & Estell, D. B. (2006). The Mozart effect: Arousal, preference, and spatial performance. Psychology of Aesthetics, Creativity, the Arts, S(1), 26-32. |
[135] |
Jones, S. M., & Zigler, E. (2002). The Mozart effect: Not learning from history. Journal of Applied Developmental Psychology, 23(3), 355-372.
doi: 10.1016/S0193-3973(02)00113-2 URL |
[136] | Juslin, P. N., & Sloboda, J. (Eds). (2011). Handbook of music and emotion: Theory, research, applications. Oxford University Press. |
[137] |
Kaempfe, J., Sedlmeier, P., & Renkewitz, F. (2011). The impact of background music on adult listeners: A meta-analysis. Psychology of Music, 39(4), 424-448.
doi: 10.1177/0305735610376261 URL |
[138] | Karolis, V. R., Corbetta, M., & de Schotten, M. T. (2019). The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nature Communications, 10(1), 1417. doi: 10.1038/s41467-019-09344-1 |
[139] | Kimura, D. (2002). Sex hormones influence human cognitive pattern. Neuro Endocrinology Letters, 23(Suppl 4), 67-77. |
[140] | Kinsbourne, M. (1974). Lateral interactions in the brain. In M. Kinsbourne & W. L. Smith (Eds.), Hemispheric disconnection and cerebral function (pp. 239-259). Springfield: Thomas. |
[141] |
Kiss, L., & Linnell, K. J. (2021). The effect of preferred background music on task-focus in sustained attention. Psychological Research-Psychologische Forschung, 85(6), 2313-2325.
doi: 10.1007/s00426-020-01400-6 |
[142] |
Koelsch, S., Maess, B., Grossmann, T., & Friederici, A. D. (2003). Electric brain responses reveal gender differences in music processing. Neuroreport, 14(5), 709-713.
pmid: 12692468 |
[143] | Kosta, K., Song, Y., Fazekas, G., & Sandler, M. B. (2013). A study of cultural dependence of perceived mood in Greek music. In A. de Souza Britto, Jr., F. Gouyon, & S. Dixon (Eds.), Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR) (pp. 317-322). Curitiba, Brazil: ISMIR |
[144] |
Krumhansl, C. L. (2002). Music: A link between cognition and emotion. Current Directions in Psychological Science, 11(2), 45-50.
doi: 10.1111/1467-8721.00165 URL |
[145] |
*Kumaradevan, K. S., Balan, A., Khan, K., Alji, R. M., & Narayanan, S. N. (2021). Modulatory role of background music on cognitive interference task in young people. Irish Journal of Medical Science, 190(2), 779-786.
doi: 10.1007/s11845-020-02365-6 |
[146] |
*Kuschpel, M. S., Liu, S., Schad, D. J., Heinzel, S., Heinz, A., & Rapp, M. A. (2015). Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task. Frontiers in Psychology, 6, 1683. doi: 10.3389/fpsyg.2015.01683
pmid: 26579055 |
[147] |
*Lake, J. I., & Goldstein, F. C. (2011). An examination of an enhancing effect of music on attentional abilities in older persons with mildcognitive lmpairment. Perceptual and Motor Skills, 112(1), 267-278.
doi: 10.2466/04.10.15.PMS.112.1.267-278 URL |
[148] | *Lange-Küttner, C., & Rohloff, S. (2020). Mozart sharpens and Mahler degrades the word memory trace. Advanced Research in Psychology, 1(1), 1-8. |
[149] |
Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565.
doi: 10.1037/bul0000191 pmid: 30973235 |
[150] | Lee, J. H., & Hu, X. (2014). Cross-cultural similarities and differences in music mood perception. In Proceedings of the iConference. Berlin, Germany. |
[151] |
Leng, X. D., Shaw, G. L., & Wright, E. L. (1990). Coding of musical structure and the trion model of cortex. Music Perception, 8(1), 49-62.
doi: 10.2307/40285485 URL |
[152] |
Levinson, D. B., Smallwood, J., & Davidson, R. J. (2012). The persistence of thought: Evidence for a role of working memory in the maintenance of task-unrelated thinking. Psychological Science, 23(4), 375-380.
doi: 10.1177/0956797611431465 pmid: 22421205 |
[153] | * Lewis, M. J. (1997). The effects of three different auditory environments on the learning outcomes of primary students (Unpublished master's thesis). University of Regina. |
[154] | * Lin, H., & Hsieh, H. Y. (2011). The effect of music on spatial ability. In P. L. P. Rau (Ed) Internationalization, Design and Global Development. IDGD 2011. Lecture Notes in Computer Science (Vol. 6775, pp.185-191). Berlin, Germany: Springer-Verlag. |
[155] | Lin, L. -C., Ouyang, C. -S., Chiang, C. -T., Wu, R. -C., Wu, H. -C., & Yang, R. -C. (2014). Listening to Mozart K. 448 decreases electroencephalography oscillatory power associated with an increase in sympathetic tone in adults: A post-intervention study. Journal of the Royal Society of Medicine Open, 5(10), 1-7. |
[156] |
*Lints, A., & Gadbois, S. (2003). Is listening to mozart the only way to enhance spatial reasoning? Perceptual and Motor Skills, 97(3), 1163-1174.
doi: 10.2466/pms.2003.97.3f.1163 URL |
[157] | Loprinzi, P. D., & Frith, E. (2018). The role of sex in memory function: Considerations and recommendations in the context of exercise. Journal of Clinical Medicine, 7(6), E132. doi: 10.3390/jcm7060132 |
[158] |
*Mammarella, N., Fairfield, B., & Cornoldi, C. (2007). Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clinical and Experimental Research, 19(5), 394-399.
pmid: 18007118 |
[159] | *Mattar, J. (2013). The effect of Mozart's music on child development in a Jordanian kindergarten. Education. 133(3), 370-377. |
[160] | *McClure, L. E. (2004). The Mozart effect: The role of periodicity and musical structure (Unpublished doctorial dissertation). The Chicago School of Professional Psychology. |
[161] |
*McCutcheon, L. E . (2000). Another failure to generalize the Mozart effect. Psychological Reports, 87(1), 325-330.
pmid: 11026433 |
[162] |
Mcguinness, D., Olson, A., & Chapman, J. J. L. (1990). Sex differences in incidental recall for words and pictures. Learning Individual Differences, 2(3), 263-285.
doi: 10.1016/1041-6080(90)90006-3 URL |
[163] |
*McKelvie, P., & Low, J. (2002). Listening to Mozart does not improve children's spatial ability: Final curtains for the Mozart effect. British Journal of Developmental Psychology, 20(2), 241-258.
doi: 10.1348/026151002166433 URL |
[164] |
Merzenich, M. M., van Vleet, T. M., & Nahum, M. (2014). Brain plasticity-based therapeutics. Frontiers in Human Neuroscience, 8, 385. doi:10.3389/fnhum.2014.00385
pmid: 25018719 |
[165] |
Miles, S. A., Miranda, R. A., & Ullman, M. T. (2016). Sex differences in music: A female advantage at recognizing familiar melodies. Frontiers in Psychology, 7, 278. doi: 10.3389/fpsyg.2016.00278
pmid: 26973574 |
[166] |
Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18(1), 37-45.
doi: 10.1016/j.tics.2013.10.011 pmid: 24246136 |
[167] |
Minagawa-Kawai, Y., Cristia, A., & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1(3), 217-232.
doi: 10.1016/j.dcn.2011.03.005 pmid: 22436509 |
[168] |
*Mohan, A., & Thomas, E. (2020). Effect of background music and the cultural preference to music on adolescents' task performance. International Journal of Adolescence and Youth, 25(1), 562-573.
doi: 10.1080/02673843.2019.1689368 URL |
[169] |
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 1063-1066.
doi: 10.1111/j.1467-9280.2008.02200.x pmid: 19076473 |
[170] | Morgan, A. J., Ross, A., & Reavley, N. J. (2018). Systematic review and meta-analysis of mental health first aid training: Effects on knowledge, stigma, and helping behaviour. Plos One, 13(5), e0197102. doi: 10.1371/journal.pone.0197102 |
[171] | *Mualem, R., Badarne, B., Biswas, S., Hnout, M., & Ganem, S. (2021). Improvements in cognition and educational attainment as a result of integrating music into science teaching in elementary school. Neuroscience and Neurological Surgery, 8(5), 1-8. |
[172] | Mullikin, C. N., & Henk, W. A. (1985). Using music as a background for reading: An exploratory study. Journal of Reading, 28(4), 353-358. |
[173] |
Nadler, R. T., Rabi, R., & Minda, J. P. (2010). Better mood and better performance: Learning rule-described categories is enhanced by positive mood. Psychological Science, 21(12), 1770-1776.
doi: 10.1177/0956797610387441 pmid: 20974709 |
[174] |
Nan, Y., Knoesche, T. R., & Friederci, A. D. (2006). The perception of musical phrase structure: A cross-cultural ERP study. Brain Research, 1094, 179-191.
doi: 10.1016/j.brainres.2006.03.115 pmid: 16712816 |
[175] | * Nantais, K. M. (1997). Spatial-temporal skills and exposure to music: Is there an effect, and if so, why? (Unpublished master’s thesis). University of Windsor. |
[176] |
*Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: An artifact of preference. Psychological Science, 10(4), 370-373.
doi: 10.1111/1467-9280.00170 URL |
[177] | Nelson, C. A., & Luciana, M. (Eds.). (2001). Handbook of developmental cognitive neuroscience (pp.191-202). Cambridge: The MIT Press. |
[178] |
Nemati, S., Akrami, H., Salehi, S., Esteky, H., & Moghimi, S. (2019). Lost in music: Neural signature of pleasure and its role in modulating attentional resources. Brain Research, 1711, 7-15.
doi: S0006-8993(19)30017-4 pmid: 30629944 |
[179] |
Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents' mental- rotation performance: Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238-1242.
doi: 10.1016/j.paid.2011.02.017 URL |
[180] | Neuhaus, C. (2003). Perceiving musical scale structures. A cross-cultural event-related brain potentials study. Annals of the New York Academy of Sciences, 999, 184-188. |
[181] |
*Newman, J., Rosenbach, J. H., Burns, K. L., Latimer, B. C., Matocha, H. R., & Vogt, E. R. (1995). An experimental test of ''the Mozart effect'': Does listening to his music improve spatial ability? Perceptual and Motor Skills, 81(3), 1379-1387.
doi: 10.2466/pms.1995.81.3f.1379 URL |
[182] |
Nielzirn, S., & Cesarec, Z. (1981). On the perception of emotional meaning in music. Psychology of Music, 9(2), 17-31.
doi: 10.1177/030573568192002 URL |
[183] |
Nobre, G. C., Valentini, N. C., & Sales Nobre, F. S. (2018). Fundamental motor skills, nutritional status, perceived competence, and school performance of Brazilian children in social vulnerability: Gender comparison. Child Abuse & Neglect, 80, 335-345.
doi: 10.1016/j.chiabu.2018.04.007 URL |
[184] |
Overman, A. A., Hoge, J., Dale, J. A., Cross, J. D., & Chien, A. (2003). EEG alpha desynchronization in musicians and nonmusicians in response to changes in melody, tempo, and key in classical music. Perceptual and Motor Skills, 97(2), 519-532.
pmid: 14620240 |
[185] |
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
doi: 10.1207/S15326985EP3801_1 URL |
[186] |
Padulo, C., Mammarella, N., Brancucci, A., Altamura, M., & Fairfield, B. (2020). The effects of music on spatial reasoning. Psychological Research-Psychologische Forschung, 84(6), 1723-1728.
doi: 10.1007/s00426-019-01182-6 |
[187] |
Palejwala, M. H., & Fine, J. G. (2015). Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence, 48, 96-108.
doi: 10.1016/j.intell.2014.11.004 URL |
[188] |
Panteleeva, Y., Ceschi, G., Glowinski, D., Courvoisier, D. S., & Grandjean, D. (2018). Music for anxiety? Meta-analysis of anxiety reduction in non-clinical samples. Psychology of Music, 46(4), 473-487.
doi: 10.1177/0305735617712424 URL |
[189] |
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811-814.
doi: 10.1038/33918 |
[190] | *Pecci, M. T., Verrusio, W., Radicioni, A. F., Anzuini, A., Renzi, A., Martinelli, V.,... Cacciafesta, M. (2016). Music, spatial task performance, and brain plasticity in elderly adults. Journal of the American Geriatrics Society, 64(10), E78-E80. |
[191] |
Penner, A. M., & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37(1), 239-253.
doi: 10.1016/j.ssresearch.2007.06.012 URL |
[192] |
Perham, N., & Sykora, M. (2012). Disliked music can be better for performance than liked music. Applied Cognitive Psychology, 26(4), 550-555.
doi: 10.1002/acp.v26.4 URL |
[193] |
Perham, N., & Vizard, J. (2011). Can preference for background music mediate the irrelevant sound effect? Applied Cognitive Psychology, 25(4), 625-631.
doi: 10.1002/acp.v25.4 URL |
[194] |
Perlovsky, L., Cabanac, A., Bonniot-Cabanac, M. -C., & Cabanac, M. (2013). Mozart effect, cognitive dissonance, and the pleasure of music. Behavioural Brain Research, 244, 9-14.
doi: 10.1016/j.bbr.2013.01.036 pmid: 23380673 |
[195] |
Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Mozart effect-Shmozart effect: A meta-analysis. Intelligence, 38(3), 314-323.
doi: 10.1016/j.intell.2010.03.001 URL |
[196] |
Preis, S., Jancke, L., Schmitz-Hillebrecht, J., & Steinmetz, H. (1999). Child age and planum temporale asymmetry. Brain and Cognition, 40(3), 441-452.
pmid: 10415130 |
[197] | Price, C. J. (2010). The anatomy of language:A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62-88. |
[198] |
Proverbio, A. M., & de Benedetto, F. (2018). Auditory enhancement of visual memory encoding is driven by emotional content of the auditory material and mediated by superior frontal cortex. Biological Psychology, 132, 164-175.
doi: S0301-0511(17)30344-7 pmid: 29292233 |
[199] | *Quek, M. J. H., Santharisegar, P., Roslan, N. F. A., Elman, Z. E. E., & Arumugam, K. (2020). The effect of music intervention on intellectual ability and cognitive function among medical students randomized controlled trial. International Journal of Biomedical and Clinical Sciences, 5(1), 20-32. |
[200] |
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067-1070.
doi: 10.1111/j.1467-9280.2008.02201.x pmid: 19076474 |
[201] | Rauscher, F. H. (1999). Music exposure and the development of spatial intelligence in children. Bulletin of the Council for Research in Music Education, 142, 35-47. |
[202] |
Rauscher, F. H., Robinson, K. D., & Jens, J. J. (1998). Improved maze learning through early music exposure in rats. Neurological Research, 20(5), 427-432.
pmid: 9664590 |
[203] |
Rauscher, F. H., & Shaw, G. L. (1998). Key components of the Mozart effect. Perceptual and Motor Skills, 86(3), 835-841.
doi: 10.2466/pms.1998.86.3.835 URL |
[204] | *Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task-performance. Nature, 365(6447), 611. doi: 10.1038/365611a0 |
[205] |
Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal reasoning: Towards aneurophysiological basis. Neuroscience Letters, 185(1), 44-47.
pmid: 7731551 |
[206] | Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. Plos One, 7(7), e39904. doi: 10.1371/journal.pone.0039904 |
[207] |
Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7(3), 216-237.
doi: 10.1016/j.edurev.2012.05.003 URL |
[208] |
*Rideout, B. E., Dougherty, S., & Wernert, L. (1998). Effect of music on spatial performance: A test of generality. Perceptual and Motor Skills, 86(2), 512-514.
pmid: 9638749 |
[209] |
*Rideout, B. E., & Laubach, C. M. (1996). EEG correlates of enhanced spatial performance following exposure to music. Perceptual and Motor Skills, 82(2), 427-432.
pmid: 8724912 |
[210] |
*Rideout, B. E., & Taylor, J. (1997). Enhanced spatial performance following 10 minutes exposure to music: A replication. Perceptual and Motor Skills, 85(1), 112-114.
pmid: 9293565 |
[211] | Rizou, P. (2020). Reading with noise? The effects of background music and speech on reading comprehension in English as a foreign language (Unpublished master’s thesis). Aristotle University of Thessaloniki. |
[212] |
Robazza, C., Macaluso, C., & Durso, V. (1994). Emotional reactions to music by gender, age, and expertise. Perceptual and Motor Skills, 79(2), 939-944.
doi: 10.2466/pms.1994.79.2.939 pmid: 7870518 |
[213] |
Rodriguez-Negro, J., Javier Huertas-Delgado, F., & Yanci, J. (2021). Motor skills differences by gender in early elementary education students. Early Child Development and Care, 191(2), 281-291.
doi: 10.1080/03004430.2019.1617284 URL |
[214] |
*Roth, E. A., & Smith, K. H. (2008). The Mozart effect: Evidence for the arousal hypothesis. Perceptual and Motor Skills, 107(2), 396-402.
pmid: 19093601 |
[215] |
Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai, M. -C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience and Biobehavioral Reviews, 39, 34-50.
doi: 10.1016/j.neubiorev.2013.12.004 pmid: 24374381 |
[216] | Santosa, H., Hong, M. J., & Hong, K. -S. (2014). Lateralization of music processing auditory cortex: An fNIRS study. Frontiers in Behavioral Neuroscience, 8, 418. doi: 10.3389/fnbeh.2014.00418 |
[217] |
Sarnthein, J., vonStein, A., Rappelsberger, P., Petsche, H., Rauscher, F. H., & Shaw, G. L. (1997). Persistent patterns of brain activity: An EEC coherence study of the positive effect of music on spatial-temporal reasoning. Neurological Research, 19(2), 107-116.
pmid: 9175137 |
[218] |
Schaerlaeken, S., Glowinski, D., Rappaz, M. -A., & Grandjean, D. (2019). “Hearing music as...”: Metaphors evoked by the sound of classical music. Psychomusicology: Music, Mind, and Brain, 29(2-3), 100-116.
doi: 10.1037/pmu0000233 URL |
[219] | Shek, V., & Schubert, E. (2009, December). Background music at work: A literature review and some hypotheses. In Proceedings of the 2nd international conference on music communication science (ICoMCS2). Sydney, Australia. |
[220] | Silva, S., Belim, F., & Castro, S. L. (2020). The Mozart effect on the episodic memory of healthy adults is null, but low-functioning older adults may be an exception. Frontiers in Psychology, 11, 538194. doi: 10.3389/fpsyg.2020.538194 |
[221] | *Sittler, R. L. (2015). The effects of audio and gender within a 3D gaming environment on the achievement of different educational objectives (Unpublished doctorial dissertation). Indiana University of Pennsylvania. |
[222] | *Smith, A., Waters, B., & Jones, H. (2010). Effects of prior exposure to office noise and music on aspects of working memory. Noise & Health, 12(49), 235-243. |
[223] | *Standing, L. G., Verpaelst, C. C., & Ulmer, B. K. (2008). A demonstration of nonlinear demand characteristics in the'Mozart effect' experimental paradigm. North American Journal of Psychology, 10(3), 553-566. |
[224] |
*Steele, K. M., Ball, T. N., & Runk, R. (1997). Listening to Mozart does not enhance backwards digit span performance. Perceptual Motor Skills, 84(S3), 1179-1184.
doi: 10.2466/pms.1997.84.3c.1179 URL |
[225] |
*Steele, K. M., Bass, K. E., & Crook, M. D. (1999). The mystery of the Mozart effect: Failure to replicate. Psychological Science, 10(4), 366-369.
doi: 10.1111/1467-9280.00169 URL |
[226] | *Steele, K. M., Bella, S. D., Peretz, I., Dunlop, T., Dawe, L. A., Humphrey, G. K.,... Olmstead, C. G. (1999). Prelude or requiem for the 'Mozart effect'? Nature, 400(6747), 827. doi: 10.1038/23611 |
[227] |
*Steele, K. M., Brown, J. D., & Stoecker, J. A. (1999). Failure to confirm the Rauscher and Shaw description of recovery of the Mozart effect. Perceptual and Motor Skills, 88(3), 843-848.
doi: 10.2466/pms.1999.88.3.843 URL |
[228] | Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within-and across-nation assessment of 10 years of PISA data. Plos One, 8(3), e57988. doi: 10.1371/journal.pone.0057988 |
[229] |
Storbeck, J., & Clore, G. L. (2005). With sadness comes accuracy; with happiness, false memory: Mood and the false memory effect. Psychological Science, 16(10), 785-791.
doi: 10.1111/j.1467-9280.2005.01615.x pmid: 16181441 |
[230] | *Stough, C., Kerkin, B., Bates, T., & Mangan, G. (1994). Music and spatial IQ. Personality and Individual Differences, 17(5), 695. doi: 10.1016/0191-8869(94)90145-7 |
[231] | *Su, Y. -N., Kao, C. -C., Hsu, C. -C., Pan, L. -C., Cheng, S. -C., & Huang, Y. -M. (2017). How does Mozart's music affect children's reading? The evidence from learning anxiety and reading rates with e-books. Educational Technology & Society, 20(2), 101-112. |
[232] |
Suda, M., Morimoto, K., Obata, A., Koizumi, H., & Maki, A. (2008). Cortical responses to Mozart's sonata enhance spatial-reasoning ability. Neurological Research, 30(9), 885-888.
doi: 10.1179/174313208X319143 pmid: 18631433 |
[233] | Suh, K., & Park, J. Y. (2011). Music preference and its relationship with personality traits. Korean Journal of Psychology: General, 30(1), 185-203. |
[234] | *Sweeny, R. M. (2007). Making sense of the Mozart effect: Correcting the problems created by null hypothesis significance testing. Dissertation Abstracts International: Section B: The Sciences and Engineering, 67(11-B), 6760. |
[235] | Taheri, S., Razeghi, M., Choobineh, A., Kazemi, R., Rasipisheh, P., & Vali, M. (2022). Investigating the effect of background music on cognitive and skill performance: A cross-sectional study. Work-a Journal of Prevention Assessment & Rehabilitation, 71(4), 871-879. |
[236] |
*Taylor, J. M., & Rowe, B. J. (2012). The “Mozart effect” and the mathematical connection. Journal of College Reading Learning, 42(2), 51-66.
doi: 10.1080/10790195.2012.10850354 URL |
[237] |
*Theofilidis, A., Karakasi, M. V., Kevrekidis, D. -P., Pavlidis, P., Sofologi, M., Trypsiannis, G., & Nimatoudis, J. (2020). Gender differences in short-term memory related to music genres. Neuroscience, 448, 266-271.
doi: 10.1016/j.neuroscience.2020.08.035 pmid: 32891706 |
[238] |
*Thompson, R. G., Moulin, C. J. A., Hayre, S., & Jones, R. W. (2005). Music enhances category fluency in healthy older adults and Alzheimer's disease patients. Experimental Aging Research, 31(1), 91-99.
pmid: 15842075 |
[239] |
Thompson, V. A., & Campbell, J. I. D. (2004). A power struggle: Between- vs. within-subjects designs in deductive reasoning research. Psychologia, 47(4), 277-296.
doi: 10.2117/psysoc.2004.277 URL |
[240] |
Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12(3), 248-251.
pmid: 11437309 |
[241] |
*Thompson, W. F., Schellenberg, E. G., & Letnic, A. K. (2011). Fast and loud background music disrupts reading comprehension. Psychology of Music, 40(6), 700-708.
doi: 10.1177/0305735611400173 URL |
[242] | *Toon, K. (2019). The influence of video game music on verbal reasoning task performance (Unpublished doctorial dissertation). The Ohio State University. |
[243] |
*Twomey, A., & Esgate, A. (2002). The Mozart effect may only be demonstrable in nonmusicians. Perceptual and Motor Skills, 95(3), 1013-1026.
doi: 10.2466/pms.2002.95.3.1013 URL |
[244] | Upadhayay, N., & Guragain, S. (2014). Comparison of cognitive functions between male and female medical students: A pilot study. Journal of Clinical and Diagnostic Research, 8(6), BC12-BC15. |
[245] |
Vasilev, M. R., Kirkby, J. A., & Angele, B. (2018). Auditory distraction during reading: A bayesian meta-analysis of a continuing controversy. Perspectives on Psychological Science, 13(5), 567-597.
doi: 10.1177/1745691617747398 pmid: 29958067 |
[246] |
Verrusio, W., Ettorre, E., Vicenzini, E., Vanacore, N., Cacciafesta, M., & Mecarelli, O. (2015). The Mozart effect: A quantitative EEG study. Consciousness and Cognition, 35, 150-155.
doi: 10.1016/j.concog.2015.05.005 pmid: 26036835 |
[247] |
Viechtbauer, W., & Cheung, M. W. L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112-125.
doi: 10.1002/jrsm.11 pmid: 26061377 |
[248] |
Vollestad, J., Nielsen, M. B., & Nielsen, G. H. (2012). Mindfulness- and acceptance-based interventions for anxiety disorders: A systematic review and meta-analysis. British Journal of Clinical Psychology, 51(3), 239-260.
doi: 10.1111/j.2044-8260.2011.02024.x pmid: 22803933 |
[249] |
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250-270.
pmid: 7724690 |
[250] |
Voyer, D., Voyer, S. D., & Saint-Aubin, J. (2017). Sex differences in visual-spatial working memory: A meta- analysis. Psychonomic Bulletin & Review, 24(2), 307-334.
doi: 10.3758/s13423-016-1085-7 URL |
[251] |
Wahn, B., & Konig, P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Advances in Cognitive Psychology, 13(1), 83-96.
doi: 10.5709/acp-0209-2 pmid: 28450975 |
[252] |
Wang, M. -T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770-775.
doi: 10.1177/0956797612458937 URL |
[253] | Wang, S., & Agius, M. (2018). The neuroscience of music; a review and summary. Psychiatria Danubina, 30(7), 588-594. |
[254] |
Waterhouse, L. (2006). Multiple intelligences, the Mozart effect, and emotional intelligence: A critical review. Educational Psychologist, 41(4), 207-225.
doi: 10.1207/s15326985ep4104_1 URL |
[255] |
Weiss, E., Siedentopf, C. M., Hofer, A., Deisenhammer, E. A., Hoptman, M. J., Kremser, C.,... Fleischhacker, W. W. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344(3), 169-172.
pmid: 12812832 |
[256] |
White, E. J., Hutka, S. A., Williams, L. J., & Sylvain, M. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Systems Neuroscience, 7, 90. doi: 10.3389/fnsys.2013.00090
pmid: 24312022 |
[257] |
*Wiseman, M. C. (2013). The Mozart effect on task performance in a laparoscopic surgical simulator. Surgical Innovation, 20(5), 444-453.
doi: 10.1177/1553350612462482 pmid: 23154636 |
[258] |
Wu, C. -C., & Shih, Y. -N. (2021). The effects of background music on the work attention performance between musicians and non-musicians. International Journal of Occupational Safety and Ergonomics, 27(1), 201-205.
doi: 10.1080/10803548.2018.1558854 URL |
[259] | Xing, Y., Xia, Y., Kendrick, K., Liu, X., Wang, M., Wu, D., …Yao, D. (2016). Mozart, Mozart rhythm and retrograde Mozart effects: Evidences from behaviours and neurobiology bases. Scientific Reports, 6, 18744. doi: 10.1038/srep18744 |
[260] |
Zhang, H., Miller, K., Cleveland, R., & Cortina, K. (2018). How listening to music affects reading: Evidence from eye tracking. Journal of Experimental Psychology-Learning Memory and Cognition, 44(11), 1778-1791.
doi: 10.1037/xlm0000544 URL |
[261] |
Zhu, W., Zhang, J., Ding, X., Zhou, C., Ma, Y., & Xu, D. (2009). Crossmodal effects of Guqin and piano music on selective attention: An event-related potential study. Neuroscience Letters, 466(1), 21-26.
doi: 10.1016/j.neulet.2009.09.026 pmid: 19766172 |
[262] |
Zhu, W., Zhao, L., Zhang, J., Ding, X., Liu, H., Ni, E.,... Zhou, C. (2008). The influence of Mozart's sonata K. 448 on visual attention: An ERPs study. Neuroscience Letters, 434(1), 35-40.
doi: 10.1016/j.neulet.2008.01.043 URL |
[1] | 尹奎, 迟志康, 董念念, 李培凯, 赵景. 团队反思与团队资源开发、利用及团队结果的关系:一项元分析[J]. 心理科学进展, 2024, 32(2): 228-245. |
[2] | 孟现鑫, 陈怡静, 王馨怡, 袁加锦, 俞德霖. 学校联结与抑郁的关系:一项三水平元分析[J]. 心理科学进展, 2024, 32(2): 246-263. |
[3] | 康丹, 文敏, 张颖杰. 儿童精细动作技能与数学能力的关系:一项元分析[J]. 心理科学进展, 2023, 31(8): 1443-1459. |
[4] | 李莹, 赵鸿瑜, 张木军, 范子璇, 王悦. 执行控制的双语优势效应及其调节变量:来自元分析的证据[J]. 心理科学进展, 2023, 31(6): 970-987. |
[5] | 张婷, 张珂霖, 周仁来. 经前期综合征女性的HPA轴功能失调:一项基于皮质醇水平的元分析[J]. 心理科学进展, 2023, 31(6): 988-1001. |
[6] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[7] | 曾润喜, 李游. 自我效能感与网络健康信息搜寻关系的元分析[J]. 心理科学进展, 2023, 31(4): 535-551. |
[8] | 吴佳桧, 傅海伦, 张玉环. 感知社会支持与学生学业成就关系的元分析:学习投入的中介作用[J]. 心理科学进展, 2023, 31(4): 552-569. |
[9] | 郭英, 田鑫, 胡东, 白书琳, 周蜀溪. 羞愧对亲社会行为影响的三水平元分析[J]. 心理科学进展, 2023, 31(3): 371-385. |
[10] | 李燕, 陈文进, 张书维. 基于元分析的助推效果研究:“认知路径”与“透明性”的二维视角[J]. 心理科学进展, 2023, 31(12): 2275-2294. |
[11] | 张兴贵, 胡献丹, 苏涛. 高绩效工作系统会降低员工幸福感吗?来自元分析的证据[J]. 心理科学进展, 2023, 31(11): 2005-2024. |
[12] | 从欣蕊, 武泽宇, 曼祖拉·艾山江, 姜云鹏, 刘妍, 吴瑕. 动作电子游戏对不同注意子网络的影响——来自元分析的证据[J]. 心理科学进展, 2023, 31(10): 1843-1855. |
[13] | 陈必忠, 孙晓军. 中国内地大学生时间管理倾向的时代变迁:1999~2020[J]. 心理科学进展, 2022, 30(9): 1968-1980. |
[14] | 杜宇飞, 欧阳辉月, 余林. 隔代抚养与老年人抑郁水平:一项基于东西方文化背景的元分析[J]. 心理科学进展, 2022, 30(9): 1981-1992. |
[15] | 赵宁, 刘鑫, 李纾, 郑蕊. 默认选项设置的助推效果:来自元分析的证据[J]. 心理科学进展, 2022, 30(6): 1230-1241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||