心理科学进展 ›› 2024, Vol. 32 ›› Issue (10): 1567-1577.doi: 10.3724/SP.J.1042.2024.01567
• 研究构想 • 下一篇
收稿日期:
2024-04-07
出版日期:
2024-10-15
发布日期:
2024-08-13
通讯作者:
杨玉芳, E-mail: yangyf@psych.ac.cn基金资助:
Received:
2024-04-07
Online:
2024-10-15
Published:
2024-08-13
摘要:
节拍结构作为音乐在时间维度的组织框架, 不仅是作曲家的创作基础, 还是人们欣赏音乐美感、体验音乐情绪以及理解音乐意义的前提。在预期编码理论的框架下, 本文拟围绕节拍结构的预期与整合两方面, 通过行为实验和脑电技术, 探查音乐节拍结构的认知神经基础。具体包括以下4个方面研究:(1)考察在节奏序列展开过程中, 听者构建节拍结构心理表征从而建立预期的动态神经响应; (2)考察听者通过预期错误实现节拍结构预期更新的神经机制; (3)以乐句为结构单元, 考察听者在小时间尺度上整合多层级节拍结构的认知神经机制; (4)在乐段水平上, 考察听者如何依据远距离依存关系整合嵌套节拍结构。以上研究将有利于揭示音乐结构认知的一般机制, 为音乐认知神经模型的构建奠定基础。同时, 相关研究结论还将为音乐鉴赏活动与音乐美学研究提供客观依据, 在音乐学领域具有潜在的应用前景。
中图分类号:
孙丽君, 杨玉芳. (2024). 预期视角下音乐节拍结构的认知与神经机制. 心理科学进展 , 32(10), 1567-1577.
SUN Lijun, YANG Yufang. (2024). The cognitive and neural mechanisms of metric structure in music: A predictive perspective. Advances in Psychological Science, 32(10), 1567-1577.
[1] | 蒋存梅. (2016). 音乐心理学. 上海: 华东师范大学出版社. |
[2] |
江俊, 王梓梦, 万璇, 蒋存梅. (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658.
doi: 10.3724/SP.J.1042.2014.00650 |
[3] | 欧阳玥, 戴志强. (2010). 音乐节拍认知的研究评述. 心理科学进展, 18(11), 1692-1699. |
[4] | 孙丽君, 周临舒, 阎芮平, 蒋存梅. (2017). 旋律语调疗法及其对失语症的临床应用. 心理科学, 40(1), 231-237. |
[5] |
张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. (2020). 音乐句法加工的认知机制与音乐结构的影响模式. 心理科学进展, 28(6), 883-892.
doi: 10.3724/SP.J.1042.2020.00883 |
[6] | 张巍. (2019). 20世纪音乐节奏的研究——若干问题及分析. 音乐艺术(上海音乐学院学报), (1), 74-89. |
[7] | 张雪, 袁佩君, 王莹, 蒋毅. (2016). 知觉相关的神经振荡-外界节律同步化现象. 生物化学与生物物理进展, 43(4), 308-315. |
[8] | Arnal, L. H., Doelling, K. B., & Poeppel, D. (2014). Delta-Beta coupled oscillations underlie temporal prediction accuracy. Cerebral Cortex, 25(9), 3077-3085. |
[9] | Asano, R., Boeckx, C., & Seifert, U. (2021). Hierarchical control as a shared neurocognitive mechanism for language and music. Cognition, 216, 104847. |
[10] |
Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41(3), 254-311.
doi: 10.1006/cogp.2000.0738 pmid: 11032658 |
[11] |
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009 pmid: 15102499 |
[12] | Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences of the United States of America, 112(45), E6233-E6242. |
[13] |
Fitch, W. T. (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68.
doi: 10.3389/fnsys.2013.00068 pmid: 24198765 |
[14] | Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of The Royal Society B Biological Sciences, 364(1521), 1211-1221. |
[15] |
Fujioka, T., Ross, B., & Trainor, L. J. (2015). Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. Journal of Neuroscience, 35(45), 15187-15198.
doi: 10.1523/JNEUROSCI.2397-15.2015 pmid: 26558788 |
[16] |
Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32(5), 1791-1802.
doi: 10.1523/JNEUROSCI.4107-11.2012 pmid: 22302818 |
[17] |
Geiser, E., Notter, M., & Gabrieli, J. D. (2012). A corticostriatal neural system enhances auditory perception through temporal context processing. Journal of Neuroscience, 32(18), 6177-6182.
doi: 10.1523/JNEUROSCI.5153-11.2012 pmid: 22553024 |
[18] | Geiser, E., Sandmann, P., Jäncke, L., & Meyer, M. (2010). Refinement of metre perception-training increases hierarchical metre processing. European Journal of Neuroscience, 32(11), 1979-1985. |
[19] |
Geiser, E., Ziegler, E., Jäncke, L., & Meyer, M. (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102.
doi: 10.1016/j.cortex.2007.09.010 pmid: 19100973 |
[20] |
Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893-906.
doi: 10.1162/jocn.2007.19.5.893 pmid: 17488212 |
[21] | Habibi, A., Wirantana, V., & Starr, A. (2014). Cortical activity during perception of musical rhythm: Comparing musicians and non-musicians. Psychomusicology: Music, Mind, and Brain, 24( 2), 125-135. |
[22] | Hannon, E. E., Snyder, J. S., Eerola, T., & Krumhansl, C. L. (2004). The role of melodic and temporal cues in perceiving musical meter. Journal of Experimental Psychology: Human Perception and Performance, 30(5), 956-974. |
[23] |
Harding, E. E., Sammler, D., Henry, M. J., Large, E. W., & Kotz, S. A. (2019). Cortical tracking of rhythm in music and speech. NeuroImage, 185, 96-101.
doi: S1053-8119(18)32009-3 pmid: 30336253 |
[24] | Huron, D. B. (2008). Sweet anticipation: Music and the psychology of expectation. MIT Press. |
[25] |
Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11(7), 267-269.
doi: 10.1016/j.tics.2007.05.003 pmid: 17548233 |
[26] | Jia, H. (2019). Microstate Analysis. In L. Hu, & Z. Zhang (Eds.), EEG signal processing and feature extraction. (pp.141-158). Springer Nature Singapore Pte Ltd. |
[27] |
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355.
pmid: 794904 |
[28] |
Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491.
doi: 10.1037/0033-295x.96.3.459 pmid: 2756068 |
[29] |
Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235-266.
doi: 10.1016/j.plrev.2013.05.008 pmid: 23769678 |
[30] | Koelsch, S. (2012). Brain and music. Wiley-Blackwell. |
[31] |
Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541.
pmid: 10931776 |
[32] |
Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15443-15448.
doi: 10.1073/pnas.1300272110 pmid: 24003165 |
[33] |
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
doi: S1364-6613(18)30254-7 pmid: 30471869 |
[34] |
Kuperberg, G. R., Brothers, T., & Wlotko, E. W. (2020). A tale of two positivities and the N400: Distinct neural signatures are evoked by confirmed and violated predictions at different levels of representation. Journal of Cognitive Neuroscience, 32(1), 12-35.
doi: 10.1162/jocn_a_01465 pmid: 31479347 |
[35] | Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905. |
[36] |
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904-1911.
doi: 10.1152/jn.00263.2005 pmid: 15901760 |
[37] | Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119-159. |
[38] | Large, E. W., & Snyder, J. S. (2009). Pulse and meter as neural resonance. Annals of the New York Academy of Sciences, 1169(1), 46-57. |
[39] | Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. MIT Press. |
[40] |
Li, Q., Liu, G., Wei, D., Liu, Y., Yuan, G., & Wang, G. (2019). Distinct neuronal entrainment to beat and meter: Revealed by simultaneous EEG-fMRI. NeuroImage, 194, 128-135.
doi: S1053-8119(19)30228-9 pmid: 30914384 |
[41] |
Li, X., Zhang, Y., Xia, J., & Swaab, T. Y. (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81.
doi: S0028-3932(17)30184-7 pmid: 28522331 |
[42] | Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121(10), 1853-1867. |
[43] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F. (2018). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
doi: 10.3389/fnhum.2018.00425 pmid: 30405379 |
[44] | Margulis, E. H. (2005). A model of melodic expectation. Music Perception: An Interdisciplinary Journal, 22(4), 663-714. |
[45] | Nave-Blodgett, J. E., Snyder, J. S., & Hannon, E. E. (2021). Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training. Journal of Experimental Psychology: General, 150(2), 314-339. |
[46] |
Nozaradan, S., Peretz, I., & Mouraux, A. (2012). Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. Journal of Neuroscience, 32(49), 17572-17581.
doi: 10.1523/JNEUROSCI.3203-12.2012 pmid: 23223281 |
[47] |
Nozaradan, S., Schönwiesner, M., Keller, P. E., Lenc, T., & Lehmann, A. (2018). Neural bases of rhythmic entrainment in humans: Critical transformation between cortical and lower-level representations of auditory rhythm. European Journal of Neuroscience, 47(4), 321-332.
doi: 10.1111/ejn.13826 pmid: 29356161 |
[48] |
Overy, K., & Turner, R. (2009). The rhythmic brain. Cortex, 45(1), 1-3.
doi: 10.1016/j.cortex.2008.11.002 pmid: 19095231 |
[49] | Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition:Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378-395. |
[50] |
Phillips, C., Kazanina, N., & Abada, S. H. (2005). ERP effects of the processing of syntactic long-distance dependencies. Cognitive Brain Research, 22(3), 407-428.
pmid: 15722211 |
[51] | Rankin, S. K., Large, E. W., & Fink, P. W. (2009). Fractal tempo fluctuation and pulse prediction. Music Perception: An Interdisciplinary Journal, 26(5), 401-413. |
[52] |
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317-323.
pmid: 11224550 |
[53] | Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006-2012). Psychonomic Bulletin & Review, 20(3), 403-452. |
[54] |
Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83(2), 164-175.
doi: 10.1016/j.ijpsycho.2011.12.010 pmid: 22245599 |
[55] |
Sun, L., Feng, C., & Yang, Y. (2020). Tension experience induced by nested structures in music. Frontiers in Human Neuroscience, 14, 210.
doi: 10.3389/fnhum.2020.00210 pmid: 32670037 |
[56] | Sun, L., Hu, L., Ren, G., & Yang, Y. (2020). Musical tension associated with violations of hierarchical structure. Frontiers in Human Neuroscience, 14, 578112. |
[57] | Sun, L., Liu, F., Zhou, L., & Jiang, C. (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983. |
[58] | Sun, L., Thompson, W. F., Liu, F., Zhou, L., & Jiang, C. (2020). The human brain processes hierarchical structures of meter and harmony differently: Evidence from musicians and nonmusicians. Psychophysiology, 57(9), e13598. |
[59] |
Thaut, M. H., Trimarchi, P., & Parsons, L. (2014). Human brain basis of musical rhythm perception: Common and distinct neural substrates for meter, tempo, and pattern. Brain Sciences, 4(2), 428-452.
doi: 10.3390/brainsci4020428 pmid: 24961770 |
[60] |
Trost, W. J., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96-110.
doi: S0028-3932(17)30003-9 pmid: 28069444 |
[61] | Trost, W., & Vuilleumier, P. (2013). ‘Rhythmic entrainment’ as a mechanism for emotion induction by music:A neurophysiological perspective. In T. Cochrane, B. Fantini & K. R. Scherer (Eds.), The emotional power of music (pp. 213-225). Oxford University Press. |
[62] |
Van der Steen, M. C., & Keller, P. E. (2013). The Adaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 253.
doi: 10.3389/fnhum.2013.00253 pmid: 23772211 |
[63] |
Vuust, P., Gebauer, L. K., & Witek, M. A. (2014). Neural underpinnings of music: The polyrhythmic brain. Advances in Experimental Medicine and Biology, 829, 339-356.
doi: 10.1007/978-1-4939-1782-2_18 pmid: 25358719 |
[64] | Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), 287-305. |
[65] | Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of music-brain responses to rhythmic incongruity. Cortex, 45(1), 80-92. |
[66] | Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roepstorff, A., & Ostergaard, L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 24(2), 560-564. |
[67] |
Wolff, A., Berberian, N., Golesorkhi, M., Gomez-Pilar, J., Zilio, F., & Northoff, G. (2022). Intrinsic neural timescales: Temporal integration and segregation. Trends in Cognitive Sciences, 26(2), 159-173.
doi: 10.1016/j.tics.2021.11.007 pmid: 34991988 |
[68] | Wu, Q., Sun, L., Ding, N., & Yang, Y. (2024). Musical tension is affected by metrical structure dynamically and hierarchically. Cognitive Neurodynamics, 1-22. |
[69] | You, S., Sun, L., Li, X., & Yang, Y. (2021). Contextual prediction modulates musical tension: Evidence from behavioral and neural responses. Brain and Cognition, 152, 105771. |
[70] |
You, S., Sun, L., & Yang, Y. (2023). The effects of contextual certainty on tension induction and resolution. Cognitive Neurodynamics, 17(1), 191-201.
doi: 10.1007/s11571-022-09810-5 pmid: 36704622 |
[71] |
Zendel, B. R., Lagrois, M.-É., Robitaille, N., & Peretz, I. (2015). Attending to pitch information inhibits processing of pitch information: The curious case of amusia. Journal of Neuroscience, 35(9), 3815-3824.
doi: 10.1523/JNEUROSCI.3766-14.2015 pmid: 25740512 |
[72] | Zhou, L., Liu, F., Jiang, J., & Jiang, C. (2019). Impaired emotional processing of chords in congenital amusia: Electrophysiological and behavioral evidence. Brain and Cognition, 135, 103577. |
[1] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
[2] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
[3] | 丁颖, 汪紫滢, 李卫东. 抑郁症疼痛加工的行为特点及神经机制[J]. 心理科学进展, 2024, 32(8): 1315-1327. |
[4] | 曾庆贺, 崔晓宇, 唐为, 李娟. 记忆辨别力受老化影响的认知神经机制及其应用[J]. 心理科学进展, 2024, 32(7): 1138-1151. |
[5] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
[6] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
[7] | 车强燕, 孙韵琳, 靳佳, 朱春燕, 汪凯, 叶榕, 余凤琼. 神经反馈增强积极情绪在抑郁症治疗中的应用[J]. 心理科学进展, 2024, 32(2): 342-363. |
[8] | 郑好, 陈荣荣, 买晓琴. 第三方惩罚行为的认知神经机制[J]. 心理科学进展, 2024, 32(2): 398-412. |
[9] | 曹晋菁, 仇式明, 定险峰, 程晓荣, 范炤. 意识的层级性和丰富性:解读意识的两条路径[J]. 心理科学进展, 2023, 31(7): 1172-1185. |
[10] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[11] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[12] | 陈丽君, 黄美林, 蒋销柳, 汪新建. 听古典音乐真的会变聪明吗?基于广义莫扎特效应的元分析[J]. 心理科学进展, 2023, 31(12): 2232-2262. |
[13] | 邵红涛, 任桂琴, 丁晓茜, 史梦梦, 李蕊妍, 李阳. 正念冥想对走神的影响及其作用机制[J]. 心理科学进展, 2023, 31(12): 2368-2379. |
[14] | 刘永, 陈红. 超重/肥胖个体工作记忆的神经机制及干预[J]. 心理科学进展, 2023, 31(10): 1775-1784. |
[15] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||