心理科学进展 ›› 2024, Vol. 32 ›› Issue (10): 1578-1592.doi: 10.3724/SP.J.1042.2024.01578
田媛1,2,3(), 聂昕晓1,2,3, 刘海诺1,2,3, 刘忠健1,2,3, 房敏1,2,3, 张琪1,2,3
收稿日期:
2024-04-18
出版日期:
2024-10-15
发布日期:
2024-08-13
通讯作者:
田媛, E-mail: tiany@ccnu.edu.cn基金资助:
TIAN Yuan1,2,3(), NIE Xinxiao1,2,3, LIU Hainuo1,2,3, LIU Zhongjian1,2,3, FANG Min1,2,3, ZHANG Qi1,2,3
Received:
2024-04-18
Online:
2024-10-15
Published:
2024-08-13
摘要:
认知投入是指学习者的心理努力程度和认知策略应用程度, 是影响混合式教学中学习效果的关键因素, 但以往对学生认知投入的评估存在主观性强、模态单一等问题, 难以明晰混合课堂学生的认知投入水平, 制约混合课堂教学效果的改善。本研究拟结合数学建模、实验室实验与教学追踪准实验探究混合课堂认知投入的量化及干预。本研究将建立混合课堂认知投入的多模态量化表征模型以及认知投入提升策略, 形成面向高等教育的混合式教学方案并研制认知投入识别与干预的教研一体化工具, 为实现混合式教学提质增效提供理论与实践支持。
中图分类号:
田媛, 聂昕晓, 刘海诺, 刘忠健, 房敏, 张琪. (2024). 混合课堂学生认知投入的多模态量化机制与干预. 心理科学进展 , 32(10), 1578-1592.
TIAN Yuan, NIE Xinxiao, LIU Hainuo, LIU Zhongjian, FANG Min, ZHANG Qi. (2024). Multi-modal quantitative assessment mechanism and intervention of learners’ cognitive engagement in blended classroom. Advances in Psychological Science, 32(10), 1578-1592.
维度 | 指标 | 编码 | 具体观测度量 |
---|---|---|---|
行为参与 | 平均学习时长(线上、线下) | DT | |
登录次数(抬头次数) | GT | 学习平台统计频次(课程录像频次) | |
参与答题率(主动、被动回答) | AR | ||
认知建构 | 发帖质量 | PQ | 1~5计分 |
回帖质量(答题质量) | RQ | 1~5计分 | |
自我解释回答 | SR | 1~5计分 | |
眼动指标 | FD | 注视时长 | |
SC | 扫视次数 | ||
PD | 瞳孔直径差 | ||
社会互动 | 点出度 | OD | |
点入度 | ID | ||
点度中心性 | DC |
表1 混合课堂学习者认知投入量化指标
维度 | 指标 | 编码 | 具体观测度量 |
---|---|---|---|
行为参与 | 平均学习时长(线上、线下) | DT | |
登录次数(抬头次数) | GT | 学习平台统计频次(课程录像频次) | |
参与答题率(主动、被动回答) | AR | ||
认知建构 | 发帖质量 | PQ | 1~5计分 |
回帖质量(答题质量) | RQ | 1~5计分 | |
自我解释回答 | SR | 1~5计分 | |
眼动指标 | FD | 注视时长 | |
SC | 扫视次数 | ||
PD | 瞳孔直径差 | ||
社会互动 | 点出度 | OD | |
点入度 | ID | ||
点度中心性 | DC |
认知活动类型 | 学习行为 | 具体表现(标签) | 取得的认知和学习效果 |
---|---|---|---|
被动 | 被动接受知识 | 无目的朗读复述, 被动听其他人讲话, 看学习材料 | 回忆, 获得浅层的理解 |
主动 | 主动进行认知操作 | 对某个知识点进行要有目的地注意和重复; 对视频暂停或快进; 对教师讲解重点记笔记 | 整合新旧知识, 中层理解 |
建构 | 产出学习材料以外的新知识 | 生成性学习, 自我解释、绘图、测试 | 深层理解、迁移, 在新情境中应用 |
互动 | 与同伴进行对话 | 团队争辩、相互问答 | 创新, 有创造新知识的潜力 |
表2 认知投入状态和外显行为对应编码表
认知活动类型 | 学习行为 | 具体表现(标签) | 取得的认知和学习效果 |
---|---|---|---|
被动 | 被动接受知识 | 无目的朗读复述, 被动听其他人讲话, 看学习材料 | 回忆, 获得浅层的理解 |
主动 | 主动进行认知操作 | 对某个知识点进行要有目的地注意和重复; 对视频暂停或快进; 对教师讲解重点记笔记 | 整合新旧知识, 中层理解 |
建构 | 产出学习材料以外的新知识 | 生成性学习, 自我解释、绘图、测试 | 深层理解、迁移, 在新情境中应用 |
互动 | 与同伴进行对话 | 团队争辩、相互问答 | 创新, 有创造新知识的潜力 |
[1] | 卜彩丽, 李飒, 王静, 张思, 董乐. (2022). 为深度学习而思:反思日志促进大学生元认知发展的实证研究. 现代教育技术, 32(9), 73-81. |
[2] | 曹梅, 马悦. (2020). 翻转课堂课前深层次学习的问题生成策略研究. 电化教育研究, 41(11), 101-107. |
[3] | 郝祥军, 王帆, 汪云华. (2019). 问题支架促进在线知识交互的途径假设与验证. 中国远程教育, 3, 34-42+92-93. |
[4] | 姜强, 潘星竹, 赵蔚, 刘红霞. (2018). 网络学习空间中教师激励风格对学习投入的影响研究——SDT中内部动机的中介效应. 中国电化教育, 380, 7-16. |
[5] | 李克东, 赵建华. (2004). 混合学习的原理与应用模式. 电化教育研究, 135, 1-6. |
[6] | 李卢一, 许蓉, 郑燕林. (2013). ARCS模型视角下网络学习反馈设计. 现代远距离教育, 147, 66-71. |
[7] | 刘玲, 汪琼. (2021). 混合教学模式下学生学习投入的特点及影响因素研究. 现代教育技术, 31(11), 80-86. |
[8] | 卢国庆, 刘清堂, 郑清, 谢魁. (2021). 智能教室中环境感知及自我效能感对个体认知投入的影响研究. 远程教育杂志, 39(3), 84-93. |
[9] | 马志强, 岳芸竹. (2020). 面向即时数据采集与分析的学习投入纵向研究——基于经验取样法与交叉滞后分析的综合应用. 电化教育研究, 41(4), 71-77. |
[10] | 皮忠玲, 章仪, 杨九民. (2019). 教师手势对视频学习的影响及其认知神经机制. 中国电化教育, 387, 103-110+129. |
[11] | 钱研, 陈晓慧. (2015). 南加州大学翻转课堂设计原则及其启示. 中国电化教育, 341, 99-103. |
[12] | 沈霞娟, 张宝辉, 冯锐. (2022). 混合学习环境下的深度学习活动研究: 设计、实施与评价的三重奏. 电化教育研究, 43(1), 106-112. |
[13] | 师亚飞, 童名文, 王建虎, 孙佳, 戴红斌, 魏艳涛. (2021). 混合同步学习: 演进, 价值与未来议题. 电化教育研究, 42(12), 100-107. |
[14] | 田浩, 武法提. (2022). 混合场景下协作认知投入的多模态表征与分析路径研究. 远程教育杂志, 40(4), 35-44. |
[15] | 田阳, 陈鹏, 黄荣怀, 曾海军. (2019). 面向混合学习的多模态交互分析机制及优化策略. 电化教育研究, 40(9), 67-74. |
[16] | 田媛, 亓栀, 黄湘琳, 向虹钰, 汪颖. (2021). 社会线索促进在线学习的认知神经机制. 电化教育研究, 42(2), 63-69. |
[17] | 田媛, 席玉婷. (2020). 高校混合课堂教学模式的应用研究. 中国大学教学, 8, 78-86. |
[18] | 王雪, 高泽红, 徐文文, 张蕾. (2021a). 反馈的情绪设计对视频学习的影响机制研究. 电化教育研究, 42(3), 69-74. |
[19] | 王雪, 张蕾, 杨文亚, 卢鑫, 徐文文, 高泽红. (2021b). 在线学习资源如何影响学业情绪和学习效果——基于控制—价值理论的元分析. 现代远程教育研究, 33(5), 82-93+ 102. |
[20] | 王志军, 杨阳. (2019). 认知网络分析法及其应用案例分析. 电化教育研究, 40(6), 27-34. |
[21] | 温慧群, 穆肃. (2023). 殊途如何同归?——不同复杂度混合教学实践效果的分析. 中国远程教育, 43(2), 64-72. |
[22] | 伍绍杨, 彭正梅. (2021). 迈向更有效的反馈: 哈蒂“可见的学习”的模式. 开放教育研究, 27(4), 27-40. |
[23] | 吴忭, 王戈, 盛海曦. (2018). 认知网络分析法: STEM教育中的学习评价新思路. 远程教育杂志, 36(6), 3-10. |
[24] | 杨九民, 张锐, 蒋玲, 黄磊. (2011). 基于博客提升师范生反思能力的策略及其研究. 中国电化教育, 298, 62-66. |
[25] | 杨九民, 章仪, 徐珂, 皮忠玲. (2021). 学习策略对视频学习的影响: 想象、绘图和自我解释策略. 电化教育研究, 42(10), 40-47. |
[26] | 张利钊, 杜旭, 李浩, 谢艺乾, 唐野野. (2022). 基于多模态数据的学习投入评估方法分析. 电化教育研究, 43(10), 72-78. |
[27] | 张思, 何晶铭, 上超望, 夏丹, 胡泉. (2020). 面向在线学习协同知识建构的认知投入分析模型及应用. 远程教育杂志, 38(4), 95-104. |
[28] | 赵国庆, 杨宣洋, 熊雅雯. (2019). 论思维可视化工具教学应用的原则和着力点. 电化教育研究, 40(9), 59-66+82. |
[29] | 周媛, 韩彦凤. (2018). 混合学习活动中学习者学习投入的研究. 电化教育研究, 39(11), 99-105. |
[30] | Anthonysamy, L., Koo, A. C., & Hew, S. H. (2020). Self- regulated learning strategies and non-academic outcomes in higher education blended learning environments: A one decade review. Education and Information Technologies, 25, 3677-3704. https://doi.org/10.1007/s10639-020-10134-2 |
[31] | Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44(5), 427-445. https://doi.org/10.1016/j.jsp.2006.04.002 |
[32] | Baceviciute, S., Lucas, G., Terkildsen, T., & Makransky, G. (2022). Investigating the redundancy principle in immersive virtual reality environments: An eye-tracking and EEG study. Journal of Computer Assisted Learning, 38(1), 120-136. https://doi.org/10.1111/jcal.12595 |
[33] | Bredow, C. A., Roehling, P. V., Knorp, A. J., & Sweet, A. M. (2021). To flip or not to flip? A meta-analysis of the efficacy of flipped learning in higher education. Review of Educational Research, 91(6), 878-918. https://doi.org/10.3102/00346543211019122 |
[34] | Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219-243. https://doi.org/10.1080/00461520.2014.965823 |
[35] | Dubovi, I. (2022). Cognitive and emotional engagement while learning with VR: The perspective of multimodal methodology. Computers & Education, 183, Article 104495. https://doi.org/10.1016/j.compedu.2022.104495 |
[36] | Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. Cambridge University Press. https://doi.org/10.1017/CBO9781107707085 |
[37] | Fyfe, E. R., Rittle-Johnson, B., & DeCaro, M. S. (2012). The effects of feedback during exploratory mathematics problem solving: Prior knowledge matters. Journal of Educational Psychology, 104(4), 1094-1108. https://doi.org/10.1037/a0028389 |
[38] | Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95-105. https://doi.org/10.1016/j.iheduc.2004.02.001 |
[39] | Gašević, D., Adesope, O., Joksimović, S., & Kovanović, V. (2015). Externally-facilitated regulation scaffolding and role assignment to develop cognitive presence in asynchronous online discussions. The Internet and Higher Education, 24, 53-65. https://doi.org/10.1016/j.iheduc.2014.09.006 |
[40] | Ge, X., & Er, N. (2005). An online support system to scaffold real-world problem solving. Interactive Learning Environments, 13(3), 139-157. https://doi.org/10.1080/10494820500382893 |
[41] | Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14-30. https://doi.org/10.1080/00461520.2014.989230 |
[42] | Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/10.3102/003465430298487 |
[43] | Jusoff, K., & Khodabandelou, R. (2009). Preliminary study on the role of social presence in blended learning environment in higher education. International Education Studies, 2(4), 79-83. https://doi.org/10.5539/ies.v2n4p79 |
[44] | Krause, K. L., & Coates, H. (2008). Students’ engagement in first-year university. Assessment & Evaluation in Higher Education, 33(5), 493-505. https://doi.org/10.1080/02602930701698892 |
[45] | Lee, C. (2020). A study of adolescent English learners’ cognitive engagement in writing while using an automated content feedback system. Computer Assisted Language Learning, 33(1-2), 26-57. https://doi.org/10.1080/09588221.2018.1544152 |
[46] | Lee, V. R., Fischback, L., & Cain, R. (2019). A wearables- based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 59, Article 101789. https://doi.org/10.1016/j.cedpsych.2019.101789 |
[47] | Li, S., Lajoie, S. P., Zheng, J., Wu, H., & Cheng, H. (2021). Automated detection of cognitive engagement to inform the art of staying engaged in problem-solving. Computers & Education, 163, Article 104114. https://doi.org/10.1016/j.compedu.2020.104114 |
[48] | Liao, C. H., & Wu, J. Y. (2022). Deploying multimodal learning analytics models to explore the impact of digital distraction and peer learning on student performance. Computers & Education, 190, Article 104599. https://doi.org/10.1016/j.compedu.2022.104599 |
[49] | Lightner, C. A., & Lightner-Laws, C. A. (2016). A blended model: Simultaneously teaching a quantitative course traditionally, online, and remotely. Interactive Learning Environments, 24(1), 224-238. https://doi.org/10.1080/10494820.2013.841262 |
[50] | Liu, S., Liu, S., Liu, Z., Peng, X., & Yang, Z. (2022). Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement. Computers & Education, 181, Article 104461. https://doi.org/10.1016/j.compedu.2022.104461 |
[51] | Miller, B. W. (2015). Using reading times and eye-movements to measure cognitive engagement. Educational Psychologist, 50(1), 31-42. https://doi.org/10.1080/00461520.2015.1004068 |
[52] | Müller, C., & Mildenberger, T. (2021). Facilitating flexible learning by replacing classroom time with an online learning environment: A systematic review of blended learning in higher education. Educational Research Review, 34, Article 100394. https://doi.org/10.1016/j.edurev.2021.100394 |
[53] | Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. https://doi.org/10.1016/j.compedu.2014.02.011 |
[54] | Rotgans, J. I., & Schmidt, H. G. (2011). Cognitive engagement in the problem-based learning classroom. Advances in Health Sciences Education, 16(4), 465-479. https://doi.org/10.1007/s10459-011-9272-9 |
[55] | Sharma, K., & Giannakos, M. (2020). Multimodal data capabilities for learning: What can multimodal data tell us about learning? British Journal of Educational Technology, 51(5), 1450-1484. https://doi.org/10.1111/bjet.12993 |
[56] | Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153-189. https://doi.org/10.3102/0034654307313795 |
[57] | Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring student engagement in science. Educational Psychologist, 50(1), 1-13. https://doi.org/10.1080/00461520.2014.1002924 |
[58] | Walker, C. O., Greene, B. A., & Mansell, R. A. (2006). Identification with academics, intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive engagement. Learning and Individual Differences, 16(1), 1-12. https://doi.org/10.1016/j.lindif.2005.06.004 |
[59] | Wang, S. L., & Wu, P. Y. (2008). The role of feedback and self-efficacy on web-based learning: The social cognitive perspective. Computers & Education, 51(4), 1589-1598. https://doi.org/10.1016/j.compedu.2008.03.004 |
[60] | Xie, K., Vongkulluksn, V. W., Lu, L., & Cheng, S. L. (2020). A person-centered approach to examining high-school students’ motivation, engagement and academic performance. Contemporary Educational Psychology, 62, Article 101877. https://doi.org/10.1016/j.cedpsych.2020.101877 |
[61] | Xu, B., Chen, N. S., & Chen, G. (2020). Effects of teacher role on student engagement in WeChat-Based online discussion learning. Computers & Education, 157, Article 103956. https://doi.org/10.1016/j.compedu.2020.103956 |
[62] | Xu, X., Shi, Z., Bos, N. A., & Wu, H. (2023). Student engagement and learning outcomes: An empirical study applying a four-dimensional framework. Medical Education Online, 28(1), Article 2268347. https://doi.org/10.1080/10872981.2023.2268347 |
[63] | Yu, F. Y., & Kuo, C. W. (2024). A systematic review of published student question-generation systems: Supporting functionalities and design features. Journal of Research on Technology in Education, 56(2), 172-195. https://doi.org/10.1080/15391523.2022.2119448 |
[1] | 刘红艳, 周泳含, 陈艳霞. 次优食品营销干预策略的有效性探究:来自元分析的证据[J]. 心理科学进展, 2024, 32(10): 1640-1658. |
[2] | 郭静, 刘笑晗, 黄宁. 基于长尾效应的儿童创伤后应激障碍转归机制及干预策略[J]. 心理科学进展, 2022, 30(10): 2154-2163. |
[3] | 段文杰, 李玉梅, 何啊龙, 吴桐. 基于未感染者与感染者双重视角的艾滋病污名[J]. 心理科学进展, 2021, 29(2): 323-337. |
[4] | 孙琳, 段涛, 陈宁. 情绪预测偏差的成因及干预[J]. 心理科学进展, 2020, 28(12): 2018-2026. |
[5] | 李佳洁, 于彤彤. 基于助推的健康饮食行为干预策略[J]. 心理科学进展, 2020, 28(12): 2052-2063. |
[6] | 段文杰, 卜禾. 积极心理干预是“新瓶装旧酒”吗?[J]. 心理科学进展, 2018, 26(10): 1831-1843. |
[7] | 杨廙;胡金生. 内隐种族偏见的干预策略[J]. 心理科学进展, 2013, 21(11): 2064-2072. |
[8] | 庞小佳;张大均;王鑫强;王金良. 刻板印象干预策略研究述评[J]. 心理科学进展, 2011, 19(2): 243-250. |
[9] | 喻承甫;张卫;李董平;肖婕婷. 感恩及其与幸福感的关系[J]. 心理科学进展, 2010, 18(7): 1110-1121. |
[10] | 扶长青;张大均;刘衍玲. 儿童心理危机的干预策略[J]. 心理科学进展, 2009, 17(3): 521-523. |
[11] | 罗耀平;范会勇;张进辅. 工作-家庭冲突的前因、后果及干预策略[J]. 心理科学进展, 2007, 15(6): 930-937. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||