心理科学进展 ›› 2023, Vol. 31 ›› Issue (4): 608-621.doi: 10.3724/SP.J.1042.2023.00608
王勇丽1, 葛胜男2, Lancy Lantin Huang3, 万勤1, 卢海丹1
收稿日期:
2022-06-14
出版日期:
2023-04-15
发布日期:
2022-12-30
通讯作者:
王勇丽, E-mail: wylkangfu@126.com
基金资助:
WANG Yongli1, GE Shengnan2, Lancy Lantin Huang3, WAN Qin1, LU Haidan1
Received:
2022-06-14
Online:
2023-04-15
Published:
2022-12-30
摘要: 言语想象不仅在大脑预处理机制方面起到重要的作用, 还是目前脑机接口领域研究的热点。与正常言语产生过程相比, 言语想象的理论模型、激活脑区、神经传导路径等均与其有较多相似之处。而言语障碍群体的言语想象、想象有意义的词语和句子时的脑神经机制与正常言语产生存在差异。鉴于人类言语系统的复杂性, 言语想象的神经机制研究还面临一系列挑战, 未来研究可在言语想象质量评价工具及神经解码范式、脑控制回路、激活通路、言语障碍群体的言语想象机制、词语和句子想象的脑神经信号等方面进一步探索, 为有效提高脑机接口的识别率提供依据, 为言语障碍群体的沟通提供便利。
中图分类号:
王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. (2023). 言语想象的神经机制. 心理科学进展 , 31(4), 608-621.
WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. (2023). Neural mechanism of speech imagery. Advances in Psychological Science, 31(4), 608-621.
[1] 安娟, 牟海荣. (2019). 基于EEG和fNIRS的多模态脑机接口运动想象参数研究. [2] 白学军, 张琪涵, 章鹏, 周菘, 刘颖, 宋星, 彭国慧. (2016). 基于fNIRS的运动执行与运动想象脑激活模式比较. [3] 蔡笑, 张清芳. (2020). 言语运动系统中前馈和反馈控制整合加工的作用机制. [4] 陈霏, 潘昌杰. (2020). 基于发音想象的脑机接口的研究综述. [5] 窦智, 肖凯龙, 陈颖, 邓泽华. (2021). 运动想象疗法联合语言训练对脑卒中后失语症患者语言功能的影响. [6] 高晨阳, 修嘉, 李婷. (2022). 运动想象任务下近红外光谱脑激活程度适应性研究. [7] 高晴, 陈华富. (2010). 基于动态因果模型的运动执行和运动想象脑网络研究. [8] 郭苗苗, 齐志光, 王磊, 徐桂芝. (2018). 语言脑机接口康复系统中的参数优化研究. [9] 刘华, 周军, 杨少峰, 史清钊, 程钰琦, 李洋, ... 张通. (2017). 中文版运动觉-视觉想象问卷在脑卒中患者中的信度. [10] 刘艳鹏, 龚安民, 丁鹏, 赵磊, 钱谦, 周建华, ...伏云发. (2022). 基于言语想象的脑机交互关键技术. [11] 吴金香. (2019). 运动想象在脑卒中运动性失语患者中的应用研究. [12] 吴拾瑶, 随力, 杨兰, 刘亮. (2021). 运动想象重塑脑功能的研究进展. [13] 杨帆, 桑德春, 张晓钰, 卢利萍, 褚宏宇. (2017). 运动想象疗法对脑卒中患者运动功能康复的效果. [14] 杨晓芳, 江铭虎. (2014). 基于汉语音位发音想象的脑机接口研究. [15] 姚婧璠, 徐成, 陈红燕, 王铄, 张玉梅. (2021). 卒中后失语语言和非语言认知功能相关的静息态功能磁共振成像研究. [16] 张清芳, 钱宗愉, 朱雪冰. (2021). 汉语口语词汇产生中的多重音韵激活: 单词翻译任务的ERP研究. [17] 张清芳, 杨玉芳. (2003). 言语产生中的词汇通达理论. [18] Ackermann H.,& Hertrich I. (2003). Cerebellar contributions to speech motor control and auditory verbal imagery: Acoustic / kinematic analyses of ataxic dysarthria and functional magnetic resonance imaging in healthy subjects. In: Solé M. J., Recasens D., & Romero J. (Eds), Proceedings of the 15th International Congress of Phonetic Sciences (volume 1, pp. 163-167). Causal Productions, Adelaide. [19] Alderson-Day, B., & Fernyhough, C. (2015). Inner speech: Development, cognitive functions, phenomenology, and neurobiology.Psychological Bulletin, 141(5), 931-965. [20] André A., Elia F., Heidi K., Peter H., Haan E. H. F. D., & Kahn R. S. (2005). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words.Cerebral Cortex, 15(2), 221-228. [21] Arongna, Sakai N., Yasu K., & Mori K. (2020). Disfluencies and strategies used by people who stutter during a working memory task.Journal of Speech, Language, and Hearing Research, 63(3), 688-701. [22] Barrows P. D., Thomas S. A., & Gordon W. V. (2021). Assessing self-reported mood in aphasia following stroke: Challenges, innovations and future directions.Journal of Stroke and Cerebrovascular Diseases, 30(1), 105425-105425. [23] Birn R. M., Bandettini P. A., Cox R. W., & Shaker R. (1999). Event-related fMRI of tasks involving brief motion.Human Brain Mapping, 7(2), 106-114. [24] Bohland, J. W., & Guenther, F. H. (2006). An fMRI investigation of syllable sequence production.NeuroImage, 32(2), 821-841. [25] Bruno V., Fossataro C., & Garbarini F. (2018). Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery.Neuropsychologia, 111, 360-368. [26] Chengaiyan S., Retnapandian A. S., & Anandan K. (2020). Identification of vowels in consonant-vowel-consonant words from speech imagery based EEG signals.Cognitive Neurodynamics, 14(1), 1-19. [27] Cooney C., Folli R., & Coyle D. (2018). Neurolinguistics research advancing development of a direct-speech brain- computer interface.iScience, 8, 103-125. [28] Courson, M., & Tremblay, P. (2020). Neural correlates of manual action language: Comparative review, ALE meta- analysis and ROI meta-analysis.Neuroscience & Biobehavioral Reviews, 116, 221-238. [29] DaSalla C. S., Kambara H., Sato M., & Koike Y. (2009). Single-trial classification of vowel speech imagery using common spatial patterns.Neural networks, 22(9), 1334-1339. [30] Dash D., Paul F., & Wang J. (2020). Decoding imagined and spoken phrases from non-invasive neural (MEG) signals.Frontiers in Neuroscience, 14, 290-304. [31] Djordjevic J., Zatorre R. J., Petrides M., Boyle J. A., & Jones-Gotman M. (2005). Functional neuroimaging of odor imagery.NeuroImage, 24(3), 791-801. [32] Duffy, J. R. (2013). [33] Durand E., Berroir P., & Ansaldo A. I. (2018). The neural and behavioral correlates of anomia recovery following personalized observation, execution, and mental imagery therapy: A proof of concept. [34] Ehrsson H. H., Geyer S., & Naito E. (2003). Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations.Journal of Neurophysiology, 90(5), 3304-3316. [35] Fama M. E., Hayward W., Snider S. F., Friedman R. B., & Turkeltaub P. E. (2017). Subjective experience of inner speech in aphasia: Preliminary behavioral relationships and neural correlates.Brain and Language, 164, 32-42. [36] Fama M. E., Snider S. F., Henderson M. P., Hayward W., Friedman R. B., & Turkeltaub P. E. (2019). The subjective experience of inner speech in aphasia is a meaningful reflection of lexical retrieval.Journal of Speech, Language, and Hearing Research, 62(1), 106-122. [37] Fyshe, A. (2020). Studying language in context using the temporal generalization method.Philosophical Transactions of the Royal Society B, 375(1791), 20180531. [38] Gajardo-Vidal A., Lorca-Puls D., Team P., Warner H., Pshdary B., Crinion J., ... Price C. (2021). Damage to Broca's area does not contribute to long-term speech production outcome after stroke.Brain, 144(3), 817-832. [39] Geva S., Jones P. S., Crinion J. T., Price C. J., Baron J. -C., & Warburton E. A. (2011). The neural correlates of inner speech defined by voxel-based lesion-symptom mapping.Brain, 134(10), 3071-3082. [40] Gu J., Zhang H., Liu B., Li X., Wang P., & Wang B. (2019). An investigation of the neural association between auditory imagery and perception of complex sounds.Brain Structure and Function, 224(8), 2925-2937. [41] Guenther, F. H. (1994). A neural network model of speech acquisition and motor equivalent speech production.Biological Cybernetics, 72(1), 43-53. [42] Guenther, F. H. (1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production.Psychological Review, 102(3), 594-621. [43] Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds.Journal of Communication Disorders, 39(5), 350-365. [44] Guenther F. H., Brumberg J. S., Wright E. J., Nieto- Castanon A., Tourville J. A., Panko M., ... Kennedy P. R. (2009). A wireless brain-machine interface for real-time speech synthesis.PLoS One, 4(12), e8218. [45] Guenther F. H., Ghosh S. S., & Tourville J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production.Brain and Language, 96(3), 280-301. [46] Guenther, F. H., & Vladusich, T. (2012). A neural theory of speech acquisition and production.Journal of Neurolinguistics, 25(5), 408-422. [47] Haire C. M., Tremblay L., Vuong V., Patterson K. K., Chen J. L., Burdette J. H., ... Thaut M. H. (2021). Therapeutic instrumental music training and motor imagery in post-stroke upper-extremity rehabilitation: A randomized-controlled pilot study.Archives of Rehabilitation Research and Clinical Translation, 3(4), 100162. [48] Heremans E., Feys P., Nieuwboer A., Vercruysse S., Vandenberghe W., Sharma N., & Helsen W. (2011). Motor imagery ability in patients with early- and mid-stage Parkinson disease.Neurorehabil Neural Repair, 25(2), 168-177. [49] Hickok, G. (2012). Computational neuroanatomy of speech production.Nature Reviews Neuroence, 13(2), 135-145. [50] Hickok G., Houde J., & Rong F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization.Neuron, 69(3), 407-422. [51] Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback control.Frontiers in Human Neuroscience, 5, 82-95. [52] Hurlburt R. T., Alderson-Day B., Kühn S., & Fernyhough C. (2016). Exploring the ecological validity of thinking on demand: Neural correlates of elicited vs. spontaneously occurring inner speech.PLoS One, 11(2), e0147932. [53] Jahangiri, A., & Sepulveda, F. (2017). The contribution of different frequency bands in class separability of covert speech tasks for BCIs. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2093-2096. [54] Jahangiri, A., & Sepulveda, F. (2018). The relative contribution of high-gamma linguistic processing stages of word production, and motor imagery of articulation in class separability of covert speech tasks in EEG data.Journal of Medical Systems, 43(2), 20-28. [55] Jones, S. R., & Fernyhough, C. (2007). Thought as action: Inner speech, self-monitoring, and auditory verbal hallucinations.Consciousness Cognition, 16(2), 391-399. [56] Kearney, E., & Guenther, F. H. (2019). Articulating: The neural mechanisms of speech production.Language, Cognition and Neuroscience, 34(9), 1214-1229. [57] Keller, G. B., & Mrsic-Flogel, T. D. (2018). Predictive processing: A canonical cortical computation.Neuron, 100(2), 424-435. [58] Kilteni K., Andersson B. J., Houborg C., & Ehrsson H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement.Nature Communnications, 9(1), 1617-1625. [59] Klingbeil J., Wawrzyniak M., Stockert A., & Saur D. (2019). Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia.Brain and Cognition, 131, 22-33. [60] Langland-Hassan P., Faries F. R., Richardson M. J., & Dietz A. (2015). Inner speech deficits in people with aphasia.Frontiers in Psychology, 6, 528. [61] Laures-Gore J., Stache M., Moore E., & Tullis C. (2021). App-based data collection, mental imagery, and naming performance in adults with aphasia.Complementary Therapies in Clinical Practice, 44, 101422. [62] Lebon F., Rouffet D., Collet C., & Guillot A. (2008). Modulation of EMG power spectrum frequency during motor imagery.Neuroscience Letters, 435(3), 181-185. [63] Lee S. H., Lee M., Jeong J. H., & Lee S. W. (2019). Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery. Paper presented at the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy. [64] Li F., Zhang T., Li B. J., Zhang W., Zhao J., & Song L. P. (2018). Motor imagery training induces changes in brain neural networks in stroke patients.Neural Regeneration Research, 13(10), 1771-1781. [65] Lust J. M., Wilson P. H., & Steenbergen B. (2016). Motor imagery difficulties in children with cerebral palsy: A specific or general deficit? Research in Developmental Disabilities, 57, 102-111. [66] Ma S. Y., Jin D. T., Zhang M., Zhang B. X., Wang Y., Li G., & Yang M. (2019). [67] MacKay, D. G. (1992). Auditory imagery. New York: Psychology Press. https://doi.org/10.4324/9781315807621. [68] Martin S., Iturrate I., Millán J. D. R., Knight R. T., & Pasley B. N. (2018). Decoding inner speech using electrocorticography: Progress and challenges toward a speech prosthesis.Frontiers in Neuroscience, 12, 422-422. [69] Naito E., Kochiyama T., Kitada R., Nakamura S., Matsumura M., Yonekura Y., & Sadato N. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum.Journal of Neuroscience, 22(9), 3683-3691. [70] Neef N. E., Anwander A., Bütfering C., Schmidt-Samoa C., Friederici A. D., Paulus W., & Sommer M. (2018). Structural connectivity of right frontal hyperactive areas scales with stuttering severity.Brain, 141(1), 191-204. [71] Neef N. E., Bütfering C., Anwander A., Friederici A. D., Paulus W., & Sommer M. (2016). Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.NeuroImage, 142, 628-644. [72] Netsell, R., & Bakker, K. (2017). [73] Nguyen C. H., Karavas G. K., & Artemiadis P. (2017). Inferring imagined speech using EEG signals: A new approach using Riemannian manifold features.Journal of Neural Engineering, 15(1), 016002. [74] Oppenheim, G. M., & Dell, G. S. (2010). Motor movement matters: The flexible abstractness of inner speech.Memory & Cognition, 38(8), 1147-1160. [75] Orpella J., Mantegna F., Assaneo M. F., & Poeppel D. (2022). Speech imagery decoding as a window to speech planning and production.BioRxiv, 494046. [76] Orpella J., Mas-Herrero E., Ripollés P., Marco-Pallarés J., & de Diego-Balaguer R. (2021). Statistical learning as reinforcement learning phenomena.PLoS Biology, 19(9), e3001119. [77] Palmer E. D., Rosen H. J., Ojemann J. G., Buckner R. L., Kelley W. M., & Petersen S. E. (2001). An event-related fMRI study of overt and covert word stem completion.NeuroImage, 14(1), 182-193. [78] Parrell B., Agnew Z., Nagarajan S., Houde J., & Ivry R. B. (2017). Impaired feedforward control and enhanced feedback control of speech in patients with cerebellar degeneration.Journal of Neuroscience, 37(38), 9249-9258. [79] Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery.Nature Reviews Neuroscience, 20(10), 624-634. [80] Pei X. M., Leuthardt E. C., Gaona C. M., Brunner P., Wolpaw J. R., & Schalk G. (2011). Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition.NeuroImage, 54(4), 2960-2972. [81] Perrone-Bertolotti M., Rapin L., Lachaux J. P., Baciu M., & Lœvenbruck H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring.Behavioural Brain Research, 261, 220-239. [82] Proix T., Delgado S J., Christen A., Martin S., Pasley B., Knight R., ... (2021). [83] Ramirez-Quintana J. A., Macias-Macias J. M., Ramirez- Alonso G., Chacon-Murguia M. I., & Corral-Martinez L. F. (2021). A novel deep capsule neural network for vowel imagery patterns from EEG signals. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3991518 [84] Riaz A., Akhtar S., Iftikhar S., Khan A., & Salman A. (2015). Inter comparison of classification techniques for vowel speech imagery using EEG sensors. The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014), Shanghai, China. [85] Sandhya C., Srinidhi G., Vaishali R., Visali M., & Kavitha A. (2015. Analysis of speech imagery using brain connectivity estimators. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). 2015). Analysis of speech imagery using brain connectivity estimators. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). http://dx.doi.org/10.1109/ICCI-CC.2015.7259410. [86] Schumacher R., Halai A. D., & Lambon Ralph, M. A. (2019). Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia.Brain, 142(10), 3202-3216. [87] Scott M., Yeung H. H., Gick B., & Werker J. F. (2013). Inner speech captures the perception of external speech. The Journal of the Acoustical Society of America, 133(4), EL286-EL292. [88] Sereshkeh A. R., Yousefi R., Wong A. T., & Chau T. (2018). Online classification of imagined speech using functional near-infrared spectroscopy signals.Journal of Neural Engineering, 16(1), 016005. [89] Shergill S. S., Bullmore E. T., Brammer M. J., Williams S. C., Murray R. M., & McGuire P. K. (2001). A functional study of auditory verbal imagery.Psychological Medicine, 31(2), 241-253. [90] Solms, M. (2000). Dreaming and REM sleep are controlled by different brain mechanisms.Behavioral and Brain Sciences, 23(6), 843-850. [91] Souto D. O., Cruz T., Fontes P., & Haase V. G. (2020). Motor imagery in children with unilateral cerebral palsy: A case-control study.Developmental Medicine & Child Neurology, 62(12), 1396-1405. [92] Stark B. C., Geva S., & Warburton E. A. (2017). Inner speech's relationship with overt speech in poststroke aphasia.Journal of Speech, Language, and Hearing Research, 60(9), 2406-2415. [93] Tak S., Kempny A. M., Friston K. J., Leff A. P., & Penny W. D. (2015). Dynamic causal modelling for functional near-infrared spectroscopy.NeuroImage, 111, 338-349. [94] Tian, X., & Poeppel, D. (2010). Mental imagery of speech and movement implicates the dynamics of internal forward models.Frontiers in Psychology, 1, 166-188. [95] Tian, X., & Poeppel, D. (2012). Mental imagery of speech: Linking motor and perceptual systems through internal simulation and estimation.Frontiers in Human Neuroscience, 6, 314-323. [96] Tian, X., & Poeppel, D. (2015). Dynamics of self-monitoring and error detection in speech production: Evidence from mental imagery and MEG.Journal of Cognitive Neuroscience, 27(2), 352-364. [97] Tian X., Zarate J. M., & Poeppel D. (2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation.Cortex, 77(7), 1-12. [98] Torres-García A. A., Reyes-García C. A., Villaseñor-Pineda L., & García-Aguilar G. (2016). Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification.Expert Systems with Applications, 59, 1-12. [99] Wang L., Zhang X., Zhong X., & Zhang Y. (2013). Analysis and classification of speech imagery EEG for BCI.Biomedical Signal Processing and Control, 8(6), 901-908. [100] Weber, R. J., & Bach, M. (1969). Visual and speech imagery.British Journal of Psychology, 60(2), 199-202. [101] Wilson G., Stavisky S., Willett F., Avansino D., Kelemen J., Hochberg L., ... Shenoy K. V. (2020). Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus.Journal of neural engineering, 17(6), 066007. [102] Yoo S. S., Freeman D. K., McCarthy J. J., & Jolesz F. A. (2003). Neural substrates of tactile imagery: A functional MRI study.Neuroreport, 14(4), 581-585. [103] Zhang X., Li H., & Chen F. (2020). EEG-based classification of imaginary Mandarin tones. Annual International Conference of the IEEE Engineering in Medicine & Biology Society , 3889-3892. |
[1] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[2] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
[3] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[4] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[5] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[6] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[7] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[8] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[9] | 胡佳宝, 雷扬, 定险峰, 程晓荣, 范炤. 大众与个人审美品位的认知与神经机制[J]. 心理科学进展, 2022, 30(2): 354-364. |
[10] | 陈群林, 丁珂. 发散思维的序列位置效应:创新想法动态产生机制的新视角[J]. 心理科学进展, 2022, 30(11): 2507-2517. |
[11] | 黄建平, 许婧娴, 宛小昂. 联想学习对消费行为的影响:基于产品搜索经验的视角[J]. 心理科学进展, 2022, 30(11): 2414-2423. |
[12] | 王紫乐, 张琪. 视觉搜索中注意模板促进搜索的内在机制[J]. 心理科学进展, 2022, 30(10): 2206-2218. |
[13] | 柳王娟, 定险峰, 程晓荣, 范炤. 序列依赖效应——一种全新的“历史效应”[J]. 心理科学进展, 2022, 30(10): 2228-2239. |
[14] | 胡小勇, 杜棠艳, 李兰玉, 王甜甜. 低社会经济地位影响自我调节的神经机制[J]. 心理科学进展, 2022, 30(10): 2278-2290. |
[15] | 干加裙, 王恩国. 自闭症谱系障碍个体的注意解离[J]. 心理科学进展, 2022, 30(1): 129-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||