心理科学进展 ›› 2022, Vol. 30 ›› Issue (10): 2206-2218.doi: 10.3724/SP.J.1042.2022.02206
收稿日期:
2021-10-15
出版日期:
2022-10-15
发布日期:
2022-08-24
通讯作者:
张琪
E-mail:zq1892@mnnu.edu.cn
Received:
2021-10-15
Online:
2022-10-15
Published:
2022-08-24
Contact:
ZHANG Qi
E-mail:zq1892@mnnu.edu.cn
摘要:
生物的视觉搜索能力对适应外部复杂环境具有非常重要的生存意义。注意模板可以在搜索任务的过程中增强相关信息和抑制无关信息, 从而快速找到目标。总结近期研究结果主要有以下发现:在建立注意模板的过程中并不能明确是基于语义信息还是视觉特征信息; 注意模板不仅可以存储在工作记忆中, 也可以存储在长时记忆中; 不同类型注意模板的神经机制存在差异。未来的研究应关注注意模板在建立过程中内部信息如何传递, 并关注不同人群注意模板的神经机制, 以及解决拒绝模板抑制机制的理论争议。
中图分类号:
王紫乐, 张琪. (2022). 视觉搜索中注意模板促进搜索的内在机制. 心理科学进展 , 30(10), 2206-2218.
WANG Zile, ZHANG Qi. (2022). The internal mechanisms of attentional templates in facilitating visual search. Advances in Psychological Science, 30(10), 2206-2218.
[1] | 车晓玮, 王凯旋, 上官梦麒, 李寿欣. (2020). 视觉工作记忆中注意模板的表征--来自EROS的证据. 心理与行为研究, 18(3), 297-303. |
[2] | 彭晓玲, 黄丹. (2018). 任务难度对自闭症儿童视觉搜索优势显现的影响. 心理科学, 41(2), 498-503. |
[3] | 张豹, 黄赛, 祁禄. (2013). 工作记忆表征引导视觉注意选择的眼动研究. 心理学报, 45(2), 139-148. |
[4] | Alfandari, D., Belopolsky, A. V., & Olivers, C. N. L. (2019). Eye movements reveal learning and information-seeking in attentional template acquisition. Visual Cognition, 27(5-8), 467-486. |
[5] |
Anderson, B. A. (2014). On the precision of goal-directed attentional selection. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1755-1762.
doi: 10.1037/a0037685 URL |
[6] |
Ansorge, U., & Horstmann, G. (2007). Preemptive control of attentional capture by colour: Evidence from trial-by-trial analyses and orderings of onsets of capture effects in reaction time distributions. Quarterly Journal of Experimental Psychology, 60(7), 952-975.
doi: 10.1080/17470210600822795 URL |
[7] |
Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580-584.
doi: 10.1037/a0027885 URL |
[8] |
Baier, D., & Ansorge, U. (2019). Investigating the role of verbal templates in contingent capture by color. Attention, Perception, & Psychophysics, 81(6), 1846-1879.
doi: 10.3758/s13414-019-01701-y URL |
[9] |
Balani, A. B., Soto, D., & Humphreys, G. W. (2010). Working memory and target-related distractor effects on visual search. Memory and Cognition, 38(8), 1058-1076.
doi: 10.3758/MC.38.8.1058 pmid: 21156870 |
[10] |
Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1190-1196.
doi: 10.1037/xhp0000109 URL |
[11] |
Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230.
doi: 10.1037/xhp0000306 URL |
[12] |
Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898.
doi: 10.1177/0956797612439068 pmid: 22760886 |
[13] |
Beck, V. M., Luck, S. J., & Hollingworth, A. (2018). Whatever you do, don’t look at the …: Evaluating guidance by an exclusionary attentional template. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 645-662.
doi: 10.1037/xhp0000485 URL |
[14] |
Berggren, N, & Eimer, M. (2018a). Visual working memory load disrupts template-guided attentional selection during visual search. Journal of Cognitive Neuroscience, 30(12), 1902-1915.
doi: 10.1162/jocn_a_01324 URL |
[15] |
Berggren, N., & Eimer, M. (2018b). Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 120(2018), 75-85.
doi: 10.1016/j.neuropsychologia.2018.10.016 URL |
[16] |
Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50(5), 422-430.
doi: 10.1111/psyp.12019 pmid: 23418888 |
[17] |
Burra, N., & Kerzel, D. (2014). The distractor positivity (Pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685-696.
doi: 10.1111/psyp.12215 pmid: 24707976 |
[18] |
Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31(25), 9315-9322.
doi: 10.1523/JNEUROSCI.1097-11.2011 pmid: 21697381 |
[19] | Carlisle, N. B., & Nitka, A. W. (2019). Location-based explanations do not account for active attentional suppression. Visual Cognition, 27(3-4), 305-316. |
[20] |
Carlisle, N. B., & Woodman, G. F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137(2), 217-225.
doi: 10.1016/j.actpsy.2010.06.012 pmid: 20643386 |
[21] | Chang, S., Cunningham, C. A., & Egeth, H. E. (2019). The power of negative thinking: Paradoxical but effective ignoring of salient-but-irrelevant stimuli with a spatial cue. Visual Cognition, 27(3-4), 199-213. |
[22] |
Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918-2940.
pmid: 9862896 |
[23] |
Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how, and where. Current Opinion in Psychology, 29, 135-147.
doi: S2352-250X(18)30185-4 pmid: 30856512 |
[24] | Chen, S., Schnabl, L., Müller, H. J., & Conci, M. (2018). Amodal completion of a target template enhances attentional guidance in visual search. I-Perception, 9(4), 1-10. |
[25] | Cowan, N. (1995). Attention and memory: An integrated framework. New York, NY: Oxford University Press. |
[26] |
Cunningham, C. A., & Egeth, H. E. (2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27(4), 476-485.
doi: 10.1177/0956797615626564 pmid: 26893292 |
[27] |
Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. Journal of Experimental Psychology: General, 143(4), 1585-1599.
doi: 10.1037/a0036313 URL |
[28] |
Daffron, J. L., & Davis, G. (2015). Templates for rejection can specify semantic properties of nontargets in natural scenes. Journal of Vision, 15(15), 16.
doi: 10.1167/15.15.16 pmid: 26605845 |
[29] |
Daffron, J. L., & Davis, G. (2016). Target templates specify visual, not semantic, features to guide search: A marked asymmetry between seeking and ignoring. Attention, Perception, and Psychophysics, 78(7), 2049-2065.
doi: 10.3758/s13414-016-1094-7 URL |
[30] |
Dark, V. J., Vochatzer, K. G., & VanVoorhis, B. A. (1996). Semantic and spatial components of selective attention. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 63-81.
doi: 10.1037/0096-1523.22.1.63 URL |
[31] |
de Groot, F., Huettig, F., & Olivers, C. N. L. (2017). Language-induced visual and semantic biases in visual search are subject to task requirements. Visual Cognition, 25(1-3), 225-240.
doi: 10.1080/13506285.2017.1354952 URL |
[32] |
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
doi: 10.1146/annurev.ne.18.030195.001205 URL |
[33] | de Tommaso, M., & Turatto, M. (2019). Learning to ignore salient distractors: Attentional set and habituation. Visual Cognition, 27(3-4), 214-226. |
[34] |
Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, and Psychophysics, 81(5), 1253-1261.
doi: 10.3758/s13414-018-01664-6 URL |
[35] |
Duncan, J., & Humphreys, G. (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 578-588.
doi: 10.1037/0096-1523.18.2.578 URL |
[36] |
Duncan, J., & Humphrey, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
pmid: 2756067 |
[37] |
Evans, K. K., Horowitz, T. S., Howe, P., Pedersini, R., Reijnen, E., Pinto, Y., Kuzmova, Y., & Wolfe, J. M. (2011). Visual attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 503-514.
doi: 10.1002/wcs.127 URL |
[38] |
Ferrante, O., Patacca, A., di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67-95.
doi: 10.1016/j.cortex.2017.09.027 URL |
[39] |
Frătescu, M., van Moorselaar, D., & Mathôt, S. (2020). Correction to: Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes, and Olivers (2014) and Hollingworth and Beck (2016). Attention, Perception, & Psychophysics, 82(3), 1536.
doi: 10.3758/s13414-019-01950-x URL |
[40] |
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014 pmid: 24741056 |
[41] |
Gaspar, J. M., & McDonald, J. J. (2018). High level of trait anxiety leads to salience-driven distraction and compensation. Psychological Science, 29(12), 2020-2030.
doi: 10.1177/0956797618807166 URL |
[42] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913 pmid: 26420441 |
[43] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, and Psychophysics, 79(1), 45-62.
doi: 10.3758/s13414-016-1209-1 URL |
[44] |
Gaspelin, N., & Luck, S. J. (2018). Distinguishing among potential mechanisms of singleton suppression. Human Perception and Performance, 44(4), 626-644.
doi: 10.1037/xhp0000484 URL |
[45] |
Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12-18.
doi: S2352-250X(18)30177-5 pmid: 30415087 |
[46] |
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
doi: 10.1177/0963721414525780 URL |
[47] |
Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993-2007.
doi: 10.1037/xhp0000430 URL |
[48] |
Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 29, 119-125.
doi: S2352-250X(18)30199-4 pmid: 30743200 |
[49] | Graves, T., & Egeth, H. E. (2015). When does feature search fail to protect against attentional capture? Visual Cognition, 23(9-10), 1098-1123. |
[50] |
Grubert, A., Carlisle, N., & Eimer, M. (2016). The control of single-color and multiple-color visual search by attentional templates in working memory and in long-term memory. Journal of Cognitive Neuroscience, 28(12), 1947-1963.
pmid: 27458746 |
[51] |
Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology. Human Perception and Performance, 41(1), 86-101.
doi: 10.1037/xhp0000019 URL |
[52] |
Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32(8), 1525-1535.
doi: 10.1162/jocn_a_01565 pmid: 32319869 |
[53] |
Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60(1), 29-38.
doi: 10.1016/j.neuropsychologia.2014.05.012 URL |
[54] |
Hessels, R. S., Hooge, I. T. C., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44(2), 443-451.
doi: 10.1007/s10803-013-1886-8 pmid: 23838729 |
[55] |
Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917.
doi: 10.1037/xhp0000230 URL |
[56] | Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), Article 20130061. http://dx.doi.org/10.1098/rstb.2013.0061 |
[57] |
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128-149.
doi: 10.3758/s13414-014-0764-6 URL |
[58] |
Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73(3), 317-326.
doi: 10.1007/s00426-008-0157-3 pmid: 18665392 |
[59] |
Hwang, A. D., Wang, H. C., & Pomplun, M. (2011). Semantic guidance of eye movements in real-world scenes. Vision Research, 51(10), 1192-1205.
doi: 10.1016/j.visres.2011.03.010 pmid: 21426914 |
[60] |
Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 758-775.
doi: 10.1037/a0026578 URL |
[61] |
Keehn, B., Shih, P., Brenner, L. A., Townsend, J., & Müller, R. A. (2012). Functional connectivity for an “island of sparing” in autism spectrum disorder: An fMRI study of visual search. Human Brain Mapping, 34(10), 2524-2537.
doi: 10.1002/hbm.22084 URL |
[62] |
Kerzel, D. (2019). The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 186, 20-31.
doi: S0010-0277(19)30027-7 pmid: 30739056 |
[63] |
Kerzel, D., & Cong, S. H. (2021). Attentional templates are sharpened through differential signal enhancement, not differential allocation of attention. Journal of Cognitive Neuroscience, 33(4), 594-610.
doi: 10.1162/jocn_a_01677 pmid: 33464161 |
[64] |
Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658.
doi: 10.1037/xhp0000637 URL |
[65] |
Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749-759.
doi: 10.1162/jocn_a_00127 pmid: 21861683 |
[66] | Kong, G., Meehan, J., & Fougnie, D. (2020). Working memory is corrupted by strategic changes in search templates. Journal of Vision, 20(8), 1-10. |
[67] | Kugler, G., ’T Hart, B. M., Kohlbecher, S., Einhäuser, W., & Schneider, E. (2015). Gaze in visual search is guided more efficiently by positive cues than by negative cues. PLoS ONE, 10(12), Article e0145910. http://dx.doi.org/10.6084/m9.figshare.1276159 |
[68] |
Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
pmid: 8008793 |
[69] |
Lupyan, G. (2008). The conceptual grouping effect: Categories matter (and named categories matter more). Cognition, 108(2), 566-577.
doi: 10.1016/j.cognition.2008.03.009 pmid: 18448087 |
[70] | Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 1-13. |
[71] |
Marciano, H., Gal, E., Kimchi, R., Hedley, D., Goldfarb, Y., & Bonneh, Y. S. (2021). Visual detection and decoding skills of aerial photography by adults with autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 52(3), 1346-1360.
doi: 10.1007/s10803-021-05039-z pmid: 33948824 |
[72] |
Meyer, A. S., Belke, E., Telling, A. L., & Humphreys, G. W. (2007). Early activation of object names in visual search. Psychonomic Bulletin and Review, 14(4), 710-716.
doi: 10.3758/bf03196826 pmid: 17972738 |
[73] |
Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, and Psychophysics, 74(8), 1590-1605.
doi: 10.3758/s13414-012-0358-0 URL |
[74] |
Moores, E., Laiti, L., & Chelazzi, L. (2003). Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 6(2), 182-189.
pmid: 12514738 |
[75] |
Nako, R., Smith, T. J., & Eimer, M. (2015). Activation of new attentional templates for real-world objects in visual search. Journal of Cognitive Neuroscience, 27(5), 902-912.
doi: 10.1162/jocn_a_00747 pmid: 25321485 |
[76] |
Noonan, M. A. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797-1807.
doi: 10.1523/JNEUROSCI.2133-15.2016 pmid: 26865606 |
[77] |
Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334.
doi: 10.1016/j.tics.2011.05.004 pmid: 21665518 |
[78] |
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147.
doi: 10.1177/0956797617705667 pmid: 28661761 |
[79] |
Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460(7251), 94-97.
doi: 10.1038/nature08103 URL |
[80] |
Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12125-12130.
doi: 10.1073/pnas.1101042108 pmid: 21730192 |
[81] |
Rajsic, J., & Woodman, G. F. (2019). Do we remember templates better so that we can reject distractors better? Attention, Perception, and Psychophysics, 82(1), 269-279.
doi: 10.3758/s13414-019-01721-8 URL |
[82] |
Reeder, R. R., Olivers, C. N. L., Hanke, M., & Pollmann, S. (2018). No evidence for enhanced distractor template representation in early visual cortex. Cortex, 108, 279-282.
doi: S0010-9452(18)30255-7 pmid: 30245200 |
[83] |
Reeder, R. R., Olivers, C. N. L., & Pollmann, S. (2017). Cortical evidence for negative search templates. Visual Cognition, 25(1-3), 278-290.
doi: 10.1080/13506285.2017.1354952 URL |
[84] |
Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 13.
doi: 10.1167/13.3.13 pmid: 23750015 |
[85] |
Reeder, R. R., Perini, F., & Peelen, M. V. (2015). Preparatory activity in posterior temporal cortex causally contributes to object detection in scenes. Journal of Cognitive Neuroscience, 27(11), 2117-2125.
doi: 10.1162/jocn_a_00845 pmid: 26102225 |
[86] |
Reeder, R. R., van Zoest, W., & Peelen, M. V. (2015). Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes. Attention, Perception, and Psychophysics, 77(4), 1070-1080.
doi: 10.3758/s13414-015-0867-8 URL |
[87] |
Reinhart, R. M. G., & Woodman, G. F. (2014a). Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. Journal of Neuroscience, 34(12), 4214-4227.
doi: 10.1523/JNEUROSCI.5421-13.2014 URL |
[88] |
Reinhart, R. M. G., & Woodman, G. F. (2014b). High stakes trigger the use of multiple memories to enhance the control of attention. Cerebral Cortex, 24(8), 2022-2035.
doi: 10.1093/cercor/bht057 URL |
[89] |
Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 625-630.
doi: 10.1073/pnas.1417259112 pmid: 25548192 |
[90] | Salahub, C., & Emrich, S. M. (2021). Drawn to distraction: Anxiety impairs neural suppression of known distractor features in visual search. Journal of Cognitive Neuroscience, 33(8), 1506-1516. |
[91] |
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012 pmid: 22855820 |
[92] |
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Atten Percept Psychophys, 72(6), 1455-1470.
doi: 10.3758/APP.72.6.1455 pmid: 20675793 |
[93] |
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
pmid: 22053147 |
[94] |
Schönhammer, J. G., Becker, S. I., & Kerzel, D. (2020). Attentional capture by context cues, not inhibition of cue singletons, explains same location costs. Journal of Experimental Psychology: Human Perception and Performance, 46(6), 610-628.
doi: 10.1037/xhp0000735 URL |
[95] |
Shirama, A., Kato, N., & Kashino, M. (2017). When do individuals with autism spectrum disorder show superiority in visual search? Autism, 21(8), 942-951.
doi: 10.1177/1362361316656943 pmid: 27899713 |
[96] |
Soto, D., Greene, C. M., Chaudhary, A., & Rotshtein, P. (2012). Competition in working memory reduces frontal guidance of visual selection. Cerebral Cortex, 22(5), 1159-1169.
doi: 10.1093/cercor/bhr190 URL |
[97] |
Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348.
doi: 10.1016/j.tics.2008.05.007 pmid: 18693131 |
[98] |
Sun, S. Z., Shen, J., Shaw, M., Cant, J. S., & Ferber, S. (2015). Automatic capture of attention by conceptually generated working memory templates. Attention, Perception, and Psychophysics, 77(6), 1841-1847.
doi: 10.3758/s13414-015-0918-1 URL |
[99] |
Suzuki, M., & Gottlieb, J. (2012). Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nature Neuroscience, 16(1), 98-104.
doi: 10.1038/nn.3282 URL |
[100] |
Tanda, T., & Kawahara, J. (2020). An object-based template for rejection effect. Visual Cognition, 28(2), 87-96.
doi: 10.1080/13506285.2020.1722774 URL |
[101] |
Tanda, T., & Kawahara, J. I. (2019). Association between cue lead time and template-for-rejection effect. Attention, Perception, and Psychophysics, 81(6), 1880-1889.
doi: 10.3758/s13414-019-01761-0 |
[102] |
Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2010). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience, 22(10), 2212-2225.
doi: 10.1162/jocn.2009.21348 pmid: 19803680 |
[103] |
Theeuwes, J., Kramer, A. F., & Atchley, P. (1998). Visual marking of old objects. Psychonomic Bulletin and Review, 5(1), 130-134.
doi: 10.3758/BF03209468 URL |
[104] |
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
pmid: 7351125 |
[105] |
Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459-478.
doi: 10.1037/0096-1523.16.3.459 URL |
[106] |
Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain. Journal of Experimental Psychology: General, 147(12), 1827-1850.
doi: 10.1037/xge0000503 URL |
[107] |
van Diepen, R. M., Foxe, J. J., & Mazaheri, A. (2019). The functional role of alpha-band activity in attentional processing: The current zeitgeist and future outlook. Current Opinion in Psychology, 29, 229-238.
doi: S2352-250X(18)30229-X pmid: 31100655 |
[108] |
van Loon, A. M., Olmos-Solis, K., & Olivers, C. N. L. (2017). Subtle eye movement metrics reveal task-relevant representations prior to visual search. Journal of Vision, 17(6), 13.
doi: 10.1167/17.6.13 pmid: 28637052 |
[109] |
van Moorselaar, D., Olivers, C. N. L., Theeuwes, J., Lamme, V. A. F., & Sligte, I. G. (2015). Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory. Journal of Experimental Psychology: Learning Memory and Cognition, 41(6), 1755-1763.
doi: 10.1037/xlm0000124 URL |
[110] |
van Moorselaar, D., Theeuwes, J., & Olivers, C. N. (2014). In competition for the attentional template: Only a single item in visual working memory can guide attention. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450.
doi: 10.1037/a0036229 URL |
[111] |
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin and Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4 pmid: 22696250 |
[112] |
Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 81-92.
pmid: 15831069 |
[113] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
doi: 10.1038/nature02447 URL |
[114] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503.
doi: 10.1038/nature04171 URL |
[115] |
Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80(4), 860-870.
doi: 10.3758/s13414-018-1493-z URL |
[116] |
Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13-17.
doi: 10.1037/xhp0000472 URL |
[117] |
Watson, G. D., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90-122.
pmid: 9009881 |
[118] |
Wei, P., Müller, H. J., Pollmann, S., & Zhou, X. (2009). Neural basis of interaction between target presence and display homogeneity in visual search: An fMRI study. NeuroImage, 45(3), 993-1001.
doi: 10.1016/j.neuroimage.2008.12.053 pmid: 19166947 |
[119] | Witkowski, P., & Geng, J. J. (2019). Learned feature variance is encoded in the target template and drives visual search. Visual Cognition, 27(5-8), 487-501. |
[120] |
Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698-703.
doi: 10.1177/0956797612443968 pmid: 22623508 |
[121] | Wolfe, J. M. (2020a). Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of Anne Treisman. Attention, Perception, and Psychophysics, 82(1), 1-6. |
[122] |
Wolfe, J. M. (2020b). Visual search: How do we find what we are looking for? Annual Review of Vision Science, 6, 539-562.
doi: 10.1146/annurev-vision-091718-015048 URL |
[123] |
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501.
pmid: 15152199 |
[124] |
Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128-1141.
doi: 10.1037/xhp0000521 URL |
[125] |
Won, B. Y., Haberman, J., Bliss-Moreau, E., & Geng, J. J. (2020). Flexible target templates improve visual search accuracy for faces depicting emotion. Attention, Perception, and Psychophysics, 82(6), 2909-2923.
doi: 10.3758/s13414-019-01965-4 URL |
[126] |
Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215.
doi: 10.1177/0956797610395395 pmid: 21193780 |
[127] | Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1-17. |
[128] | Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(Suppl. 1), 118-124. |
[129] |
Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219-224.
pmid: 11437304 |
[130] |
Worschech, F., & Ansorge, U. (2012). Top-down search for color prevents voluntary directing of attention to informative singleton cues. Experimental Psychology, 59(3), 153-162.
doi: 10.1027/1618-3169/a000138 pmid: 22246061 |
[131] |
Wurth, M., & Reeder, R. R. (2019). Diagnostic parts are not exclusive in the search template for real-world object categories. Acta Psychologica, 196(March),11-17.
doi: S0001-6918(18)30553-5 pmid: 30939331 |
[132] |
Yu, X., Hanks, T. D., & Geng, J. J. (2022). Attentional guidance and match decisions rely on different template information during visual search. Psychological Science, 33(1), 105-120.
doi: 10.1177/09567976211032225 URL |
[133] | Zhang, J., Ye, C., Sun, H.-J., Zhou, J., Liang, T., Li, Y., & Liu, Q. (2021). The Passive State: A Protective Mechanism for Information in Working Memory Tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. https://doi.org/10.1037/xlm0001092 |
[134] |
Zhang, Q., & Li, S. (2020). The roles of spatial frequency in category-level visual search of real-world scenes. PsyCh Journal, 9(1), 44-55.
doi: 10.1002/pchj.294 pmid: 31155857 |
[135] |
Zhang, Z., Gapelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, and Psychophysics, 82(3), 1166-1175.
doi: 10.3758/s13414-019-01864-8 |
[136] |
Zhou, C., Lorist, M. M., & Mathôt, S. (2020). Concurrent guidance of attention by multiple working memory items: Behavioral and computational evidence. Attention, Perception, and Psychophysics, 82(6), 2950-2962.
doi: 10.3758/s13414-020-02048-5 URL |
[1] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
[4] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[5] | 赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. 智力运动专家领域内知觉与记忆的加工特点及其机制[J]. 心理科学进展, 2022, 30(9): 1993-2003. |
[6] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[7] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[8] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[9] | 李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. 预期错误在恐惧记忆更新中的作用与机制[J]. 心理科学进展, 2022, 30(4): 834-850. |
[10] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[11] | 陈幸明, 付彤, 刘昌, 张宾, 伏云发, 李恩泽, ZHANG Jian, 陈盛强, 党彩萍. 工作记忆训练诱发的神经可塑性——基于系列fMRI实验的脑区分布递减时空模型[J]. 心理科学进展, 2022, 30(2): 255-274. |
[12] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[13] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[14] | 胡佳宝, 雷扬, 定险峰, 程晓荣, 范炤. 大众与个人审美品位的认知与神经机制[J]. 心理科学进展, 2022, 30(2): 354-364. |
[15] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||