心理科学进展 ›› 2025, Vol. 33 ›› Issue (3): 425-438.doi: 10.3724/SP.J.1042.2025.0425 cstr: 32111.14.2025.0425
收稿日期:
2024-07-26
出版日期:
2025-03-15
发布日期:
2025-01-24
通讯作者:
范炤, E-mail: z.fan@ccnu.edu.cn作者简介:
第一联系人:†程晓荣和仇式明为本文共同第一作者
基金资助:
CHENG Xiaorong,†, QIU Shiming,†, DING Xianfeng, FAN Zhao()
Received:
2024-07-26
Online:
2025-03-15
Published:
2025-01-24
摘要:
动作与元认知是认知加工的重要环节。元认知体现个体对认知过程的表征、监控与调控; 动作则是输出内部认知加工, 尤其是决策信息的重要手段。研究表明, 动作的各个方面(如反应速度、反应强度、反应顺序、反应冲突及反应观察等)均影响元认知。从认知模型角度, 元认知的决策后模型较好地适用于解释动作影响元认知的相关实验证据。该类模型认为用于元认知评估的信息(元认知证据)与用于知觉判断的信息(知觉证据)不同但相关, 并分别侧重于层级加工、贝叶斯计算、信心增效等方面。从神经机制角度, 动作与知觉信息可能通过以额叶皮层为核心的脑网络整合, 依托β振荡和α抑制等电生理机制, 在注意调控下形成元认知。未来研究可以进一步探讨动作改变元认知的边界条件、信心反映的真实含义, 以及特殊人群的元认知表现等。
中图分类号:
程晓荣, 仇式明, 定险峰, 范炤. (2025). 动作如何影响元认知?——基于认知模型和神经机制的探讨. 心理科学进展 , 33(3), 425-438.
CHENG Xiaorong, QIU Shiming, DING Xianfeng, FAN Zhao. (2025). How does action influence metacognition? — An exploration based on cognitive models and neural mechanisms. Advances in Psychological Science, 33(3), 425-438.
[1] |
Al-Maghrabi M., Mamede S., Schmidt H. G., Omair A., Al-Nasser S., & Magzoub M. E. M. A. (2024). Overconfidence, time-on-task, and medical errors: Is there a relationship? Advances in Medical Education and Practice, 15, 133-140. https://doi.org/10.2147/AMEP.S442689
doi: 10.2147/AMEP.S442689 URL pmid: 38410282 |
[2] | Baird B., Smallwood J., Gorgolewski K. J., & Margulies D. S. (2013). Medial and lateral networks in anterior prefrontal cortex support meta-cognitive ability for memory and perception. Journal of Neuroscience, 33(42), 16657-16665. https://doi.org/10.1523/JNEUROSCI.0786-13.2013 |
[3] |
Boldt A., & Gilbert S. J. (2022). Partially overlapping neural correlates of metacognitive monitoring and metacognitive control. Journal of Neuroscience, 42(17), 3622-3635. https://doi.org/10.1523/JNEUROSCI.1326-21.2022
doi: 10.1523/JNEUROSCI.1326-21.2022 URL pmid: 35304428 |
[4] |
Boldt A., & Yeung N. (2015). Shared neural markers of decision confidence and error detection. Journal of Neuroscience, 35(8), 3478-3484. https://doi.org/10.1523/JNEUROSCI.0797-14.2015
doi: 10.1523/JNEUROSCI.0797-14.2015 URL pmid: 25716847 |
[5] | Brouillet D., Brouillet T., & Versace R. (2023). Motor fluency makes it possible to integrate the components of the trace in memory and facilitates its re-construction. Memory & Cognition, 51(2), 336-348. https://doi.org/10.3758/s13421-022-01350-x |
[6] | Cardellicchio P., Dolfini E., Hilt P. M., Fadiga L., & D’Ausilio A. (2020). Motor cortical inhibition during concurrent action execution and action observation. NeuroImage, 208, 116445. https://doi.org/10.1016/j.neuroimage.2019.116445 |
[7] |
Carter C. S., Braver T. S., Barch D. M., Botvinick M. M., Noll D., & Cohen J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747-749. https://doi.org/10.1126/science.280.5364.747
doi: 10.1126/science.280.5364.747 URL pmid: 9563953 |
[8] | Charles L., Chardin C., & Haggard P. (2020). Evidence for metacognitive bias in perception of voluntary action. Cognition, 194, 104041. https://doi.org/10.1016/j.cognition.2019.104041 |
[9] | Chye S., Valappil A. C., Wright D. J., Frank C., Shearer D. A., Tyler C. J., ... Bruton A. M. (2022). The effects of combined action observation and motor imagery on corticospinal excitability and movement outcomes: Two meta-analyses. Neuroscience and Biobehavioral Reviews, 143, 104911. https://doi.org/10.1016/j.neubiorev.2022.104911 |
[10] | Cook J. (2016). From movement kinematics to social cognition: The case of autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150372. https://doi.org/10.1098/rstb.2015.0372 |
[11] | Desender K., Donner T. H., & Verguts T. (2021). Dynamic expressions of confidence within an evidence accumulation framework. Cognition, 207, 104522. https://doi.org/10.1016/j.cognition.2020.104522 |
[12] | Dhingra B., & Yadav M. (2024). An empirical analysis of overconfidence behaviour in the Indian ETF market. International Journal of Revenue Management, 14(1), 72-94. https://doi.org/10.1504/IJRM.2024.135964 |
[13] | Di Gregorio F., Trajkovic J., Roperti C., Marcantoni E., Di Luzio P., Avenanti A., ... Romei V. (2022). Tuning alpha rhythms to shape conscious visual perception. Current Biology, 32(5), 988-998. https://doi.org/10.1016/j.cub.2022.01.003 |
[14] | Di Luzio P., Tarasi L., Silvanto J., Avenanti A., & Romei V. (2022). Human perceptual and metacognitive decision- making rely on distinct brain networks. PLoS Biology, 20(8), e3001750. https://doi.org/10.1371/journal.pbio.3001750 |
[15] |
Donner T. H., Siegel M., Fries P., & Engel A. K. (2009). Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Current Biology, 19(18), 1581-1585. https://doi.org/10.1016/j.cub.2009.07.066
doi: 10.1016/j.cub.2009.07.066 URL pmid: 19747828 |
[16] | Engel A. K., & Fries P. (2010). Beta-band oscillations — Signalling the status quo. Current Opinion in Neurobiology, 20(2), 156-165. https://doi.org/10.1016/j.conb.2010.02.015 |
[17] |
Faivre N., Filevich E., Solovey G., Kühn S., & Blanke O. (2018). Behavioral, modeling, and electrophysiological evidence for supramodality in human metacognition. Journal of Neuroscience, 38(2), 263-277. https://doi.org/10.1523/JNEUROSCI.0322-17.2017
doi: 10.1523/JNEUROSCI.0322-17.2017 URL pmid: 28916521 |
[18] |
Faivre N., Vuillaume L., Bernasconi F., Salomon R., Blanke O., & Cleeremans A. (2020). Sensorimotor conflicts alter metacognitive and action monitoring. Cortex, 124, 224-234. https://doi.org/10.1016/j.cortex.2019.12.001
doi: S0010-9452(19)30401-0 URL pmid: 31927241 |
[19] | Feuerriegel D., Murphy M., Konski A., Mepani V., Sun J., Hester R., & Bode S. (2022). Electrophysiological correlates of confidence differ across correct and erroneous perceptual decisions. NeuroImage, 259, 119447. https://doi.org/10.1016/j.neuroimage.2022.119447 |
[20] | Filevich E., Koß C., & Faivre N. (2020). Response-related signals increase confidence but not metacognitive performance. Eneuro, 7(3), 1-14. https://doi.org/10.1523/ENEURO.0326-19.2020 |
[21] | Fleming S. M. (2024). Metacognition and confidence: A review and synthesis. Annual Review of Psychology, 75, 241-268. https://doi.org/10.1146/annurev-psych-022423-032425 |
[22] |
Fleming S. M., & Daw N. D. (2017). Self-evaluation of decision-making: A general bayesian framework for metacognitive computation. Psychological Review, 124(1), 91-114. https://doi.org/10.1037/rev0000045
doi: 10.1037/rev0000045 URL pmid: 28004960 |
[23] |
Fleming S. M., & Lau H. (2014). How to measure metacognition. Frontiers in Human Neuroscience, 8, 443. https://doi.org/10.3389/fnhum.2014.00443
doi: 10.3389/fnhum.2014.00443 URL pmid: 25076880 |
[24] |
Fleming S. M., Maniscalco B., Ko Y. D., Amendi N., Ro T., & Lau H. (2015). Action-specific disruption of perceptual confidence. Psychological Science, 26(1), 89-98. https://doi.org/10.1177/0956797614557697
doi: 10.1177/0956797614557697 URL pmid: 25425059 |
[25] |
Foxe J. J., Simpson G. V., & Ahlfors S. P. (1998). Parieto- occipital -10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport, 9(17), 3929-3933. https://doi.org/10.1097/00001756-199812010-00030
doi: 10.1097/00001756-199812010-00030 URL pmid: 9875731 |
[26] | Foxe J. J., & Snyder A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 10747. https://doi.org/10.3389/fpsyg.2011.00154 |
[27] | Gajdos T., Fleming S. M., Saez Garcia M., Weindel G., & Davranche K. (2019). Revealing subthreshold motor contributions to perceptual confidence. Neuroscience of Consciousness, 2019(1), niz001. https://doi.org/10.1093/nc/niz001 |
[28] | Geurts L. S., Cooke J. R., van Bergen R. S., & Jehee J. F. (2022). Subjective confidence reflects representation of Bayesian probability in cortex. Nature Human Behaviour, 6(2), 294-305. https://doi.org/10.1038/s41562-021-01247-w |
[29] |
Gherman S., & Philiastides M. G. (2015). Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage, 106, 134-143. https://doi.org/10.1016/j.neuroimage.2014.11.036
doi: 10.1016/j.neuroimage.2014.11.036 URL pmid: 25463461 |
[30] | Ghin F., Stock A. K., & Beste C. (2022). The importance of resource allocation for the interplay between automatic and cognitive control in response inhibition-An EEG source localization study. Cortex, 155, 202-217. https://doi.org/10.1016/j.cortex.2022.07.004 |
[31] |
Giarrocco F., & Averbeck B. B. (2021). Organization of parietoprefrontal and temporoprefrontal networks in the macaque. Journal of Neurophysiology, 126(4), 1289-1309. https://doi.org/10.1152/jn.00092.2021
doi: 10.1152/jn.00092.2021 URL pmid: 34379536 |
[32] |
Goodale M. A., & Milner A. D. (1992). Separate visual pathways for perception and action. Trends in neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8
doi: 10.1016/0166-2236(92)90344-8 URL pmid: 1374953 |
[33] | Grogan J. P., Rys W., Kelly S. P., & O'Connell R. G. (2023). Confidence is predicted by pre- and post-choice decision signal dynamics. Imaging Neuroscience, 1, 1-23. https://doi.org/10.1162/imag_a_00005 |
[34] | Hobot J., Koculak M., Paulewicz B., Sandberg K., & Wierzchoń M. (2020). Transcranial magnetic stimulation- induced motor cortex activity influences visual awareness judgments. Frontiers in Neuroscience, 14, 580712. https://doi.org/10.3389/fnins.2020.580712 |
[35] | Hobot J., Skora Z., Wierzchoń M., & Sandberg K. (2023). Continuous theta burst stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. NeuroImage, 272, 119991. https://doi.org/10.1016/j.neuroimage.2023.119991 |
[36] | Hoven M., Brunner G., de Boer N. S., Goudriaan A. E., Denys D., van Holst R. J., ... Lebreton M. (2022). Motivational signals disrupt metacognitive signals in the human ventromedial prefrontal cortex. Communications biology, 5(1), 244. https://doi.org/10.1038/s42003-022-03197-z |
[37] | Jaeger C., Glim S., Dimulescu C., Ries A., & Wohlschlger A. (2020). Segregated Co-activation Patterns in the Emergence of Decision Confidence During Visual Perception. Frontiers in Systems Neuroscience, 14, 557693. https://doi.org/10.3389/fnsys.2020.557693 |
[38] |
Kelly S. P., Corbett E. A., & O’Connell R. G. (2021). Neurocomputational mechanisms of prior-informed perceptual decision-making in humans. Nature Human Behaviour, 5(4), 467-481. https://doi.org/10.1038/s41562-020-00967-9
doi: 10.1038/s41562-020-00967-9 URL pmid: 33318661 |
[39] |
Ko Y. H., Zhou A., Niessen E., Stahl J., Weiss P. H., Hester R., ... Feuerriegel D. (2024). Neural correlates of confidence during decision formation in a perceptual judgment task. Cortex, 173, 248-262. https://doi.org/10.1016/j.cortex.2024.01.006
doi: 10.1016/j.cortex.2024.01.006 URL pmid: 38432176 |
[40] |
Lapate R. C., Samaha J., Rokers B., Postle B. R., & Davidson R. J. (2020). Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex. Communications Biology, 3(1), 360. https://doi.org/10.1038/s42003-020-1049-3
doi: 10.1038/s42003-020-1049-3 URL pmid: 32647260 |
[41] |
Lau H., & Rosenthal D. (2011). Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences, 15(8), 365-373. https://doi.org/10.1016/j.tics.2011.05.009
doi: 10.1016/j.tics.2011.05.009 URL pmid: 21737339 |
[42] | Lebensfeld T. C., & Smalarz L. (2024). Witnessing- condition information differentially affects evaluations of high-and moderate-confidence eyewitness identifications. Cognition, 250, 105841. https://doi.org/10.1016/j.cognition.2024.105841 |
[43] | Lee D. G., Daunizeau J., & Pezzulo G. (2023). Evidence or confidence: What is really monitored during a decision? Psychonomic Bulletin & Review, 30(4), 1360-1379. https://doi.org/10.3758/s13423-023-02255-9 |
[44] | Legrand N., Engen S. S., Correa C. M. C., Mathiasen N. K., Nikolova N., Fardo F., & Allen M. (2021). Emotional metacognition: stimulus valence modulates cardiac arousal and metamemory. Cognition and Emotion, 35(4), 705-721. https://doi.org/10.1080/02699931.2020.1859993 |
[45] | Lei W., Chen J., Yang C., Guo Y., Feng P., Feng T., & Li H. (2020). Metacognition-related regions modulate the reactivity effect of confidence ratings on perceptual decision-making. Neuropsychologia, 144, 107502. https://doi.org/10.1016/j.neuropsychologia.2020.107502 |
[46] |
Macerollo A., Bose S., Ricciardi L., Edwards M. J., & Kilner J. M. (2015). Linking differences in action perception with differences in action execution. Social Cognitive and Affective Neuroscience, 10(8), 1121-1127. https://doi.org/10.1093/scan/nsu161
doi: 10.1093/scan/nsu161 URL pmid: 25691777 |
[47] | MacNeil S. L., Wood E., & Arslantas F. (2024). Development of a metacognition co-curriculum for a university course in introductory organic chemistry. Frontiers in Education, 9, 1402599. https://doi.org/10. 3389/feduc.2024.1402599 |
[48] | Mamassian P., & de Gardelle V. (2022). Modeling perceptual confidence and the confidence forced-choice paradigm. Psychological Review, 129(5), 976-998. https://doi.org/10.1037/rev0000312 |
[49] | Maniscalco B., Castaneda O. G., Odegaard B., Morales J., Rajananda S., & Peters M. A. (2020). The metaperceptual function: Exploring dissociations between confidence and task performance with type 2 psychometric curves. PsyArxiv 2020. https://doi.org/10.31234/osf.io/5qrjn |
[50] |
Maniscalco B., & Lau H. (2012). A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 422-430. https://doi.org/10.1016/j.concog.2011.09.021
doi: 10.1016/j.concog.2011.09.021 URL pmid: 22071269 |
[51] | Maniscalco B., & Lau H. (2016). The signal processing architecture underlying subjective reports of sensory awareness. Neuroscience of Consciousness, 2016(1), 1-17. https://doi.org/10.1093/nc/niw002 |
[52] | Maniscalco B., Odegaard B., Grimaldi P., Cho S. H., Basso M. A., Lau H., & Peters M. A. (2021). Tuned inhibition in perceptual decision-making circuits can explain seemingly suboptimal confidence behavior. PLoS Computational Biology, 17(3), e1008779. https://doi.org/10.1371/journal.pcbi.1008779 |
[53] | Mazancieux A., Pereira M., Faivre N., Mamassian P., Moulin C., & Souchay C. (2023). Towards a common conceptual space for metacognition in perception and memory. Nature Reviews Psychology, 2, 751-766. https://doi.org/10.1038/s44159-023-00245-1 |
[54] | Milner A. D. (2017). How do the two visual streams interact with each other? Experimental Brain Research, 235(3), 1297-1308. https://doi.org/10.1007/s00221-017-4917-4 |
[55] |
Milner A. D., & Goodale M. A. (1993). Visual pathways to perception and action. Progress in Brain Research, 95, 317-337. https://doi.org/10.1016/s0079-6123(08)60379-9
URL pmid: 8493342 |
[56] | Milner A. D., & Goodale M. A. (1995). The visual brain in action. Oxford University Press. |
[57] | Milshtein D., Henik A., Ben-Zedeff E. H., & Milstein U. (2024). Mind on the battlefield: What can cognitive science add to the military lessons-learned process? Defence Studies, 24(2), 277-298. https://doi.org/10.1080/14702436.2024.2316138 |
[58] | Moro V., Scandola M., & Aglioti S. M. (2022). What the study of spinal cord injured patients can tell us about the significance of the body in cognition. Psychonomic Bulletin & Review, 29(6), 2052-2069. https://doi.org/10.3758/s13423-022-02129-6 |
[59] | Olawole-Scott H., & Yon D. (2023). Expectations about precision bias metacognition and awareness. Journal of Experimental Psychology: General, 152(8), 2177-2189. https://doi.org/https://doi.org/10.1037/xge0001371 |
[60] |
Overhoff H., Ko Y. H., Feuerriegel D., Fink G. R., Stahl J., Weiss P. H., ... Niessen E. (2021). Neural correlates of metacognition across the adult lifespan. Neurobiology of Aging, 108, 34-46. https://doi.org/10.1016/j.neurobiolaging.2021.08.001
doi: 10.1016/j.neurobiolaging.2021.08.001 URL pmid: 34487950 |
[61] | Overhoff H., Ko Y. H., Fink G. R., Weiss P. H., Stahl J., Bode S., & Niessen E. (2022). The relationship between response dynamics and the formation of confidence varies across the lifespan. Frontiers in Aging Neuroscience, 14, 969074. https://doi.org/10.3389/fnagi.2022.969074 |
[62] |
Palmer C. E., Bunday K. L., Davare M., & Kilner J. M. (2016). A causal role for primary motor cortex in perception of observed actions. Journal of Cognitive Neuroscience, 28(12), 2021-2029. https://doi.org/10.1162/jocn_a_01015
URL pmid: 27458752 |
[63] | Palser E. R., Fotopoulou A., & Kilner J. M. (2018). Altering movement parameters disrupts metacognitive accuracy. Consciousness & Cognition, 57, 33-40. https://doi.org/10.1016/j.concog.2017.11.005 |
[64] | Patel D., Fleming S. M., & Kilner J. M. (2012). Inferring subjective states through the observation of actions. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4853-4860. https://doi.org/10.1098/rspb.2012.1847 |
[65] | Pereira M., Faivre N., Iturrate I., Wirthlin M., Serafini L., Martin S., ... Millán J. D. R. (2020). Disentangling the origins of confidence in speeded perceptual judgments through multimodal imaging. Proceedings of the National Academy of Sciences, 117(15), 8382-8390. https://doi.org/10.1073/pnas.1918335117 |
[66] | Pezzetta R., Wokke M. E., Aglioti S. M., & Ridderinkhof K. R. (2022). Doing it wrong: A systematic review on electrocortical and behavioral correlates of error monitoring in patients with neurological disorders. Neuroscience, 486, 103-125. https://doi.org/10.1016/j.neuroscience.2021.01.027 |
[67] |
Pfurtscheller G., & Lopes da Silva F. H. (1999). Event- related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/S1388-2457(99)00141-8
doi: 10.1016/s1388-2457(99)00141-8 URL pmid: 10576479 |
[68] | Philiastides M. G., Heekeren H. R., & Sajda P. (2014). Human scalp potentials reflect a mixture of decision- related signals during perceptual choices. Journal of Neuroscience, 24(50), 16877-16889. https://doi.org/10.1523/JNEUROSCI.3012-14.2014 |
[69] |
Pleskac T. J., & Busemeyer J. R. (2010). Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review, 117(3), 864-901. https://doi.org/10.1037/a0019737
doi: 10.1037/a0019737 URL pmid: 20658856 |
[70] | Qiu L., Su J., Ni Y., Bai Y., Zhang X., Li X., & Wan X. (2018). The neural system of metacognition accompanying decision-making in the prefrontal cortex. PLoS Biology, 16(4), e2004037. https://doi.org/10.1371/journal.pbio.2004037 |
[71] | Qiu S., Cheng X., CHeng Z., Cao J., Fan Z., & Ding X. (2024). Physical effort modulates perceptual awareness judgment independent of level of processing. Consciousness and Cognition, 124, 103746. https://doi.org/10.1016/j.concog.2024.103746 |
[72] | Rahnev D., Desender K., Lee A. L. F., Adler W. T., Aguilar-Lleyda D, Akdogan B., ... Zylberberg A. (2020). The confidence database. Nature Human Behaviour, 4(3), 317-325. https://doi.org/10.1038/s41562-019-0813-1 |
[73] | Rahnev D., & Fleming S. M. (2019). How experimental procedures influence estimates of metacognitive ability. Neuroscience of Consciousness, 2019(1), niz009. https://doi.org/10.1093/nc/niz009 |
[74] | Rausch M., Hellmann S., & Zehetleitner M. (2023). Measures of metacognitive efficiency across cognitive models of decision confidence. Psychological Methods, 10.1037/met0000634. Advance online publication. https://doi.org/10.1037/met0000634 |
[75] | Rausch M., Zehetleitner M., Steinhauser M., & Maier M. E. (2020). Cognitive modelling reveals distinct electrophysiological markers of decision confidence and error monitoring. NeuroImage, 218, 116963. https://doi.org/10.1016/j.neuroimage.2020.116963 |
[76] |
Rollwage M., Loosen A., Hauser T. U., Moran R., Dolan R. J., & Fleming S. M. (2020). Confidence drives a neural confirmation bias. Nature Communications, 11(1), 2634. https://doi.org/10.1038/s41467-020-16278-6
doi: 10.1038/s41467-020-16278-6 URL pmid: 32457308 |
[77] | Rouault M., & Fleming S. M. (2020). Formation of global self-beliefs in the human brain. Proceedings of the National Academy of Sciences, 117(44), 27268-27276. https://doi.org/10.1073/pnas.200309411 |
[78] | Samaha J., & Denison R. (2022). The positive evidence bias in perceptual confidence is unlikely post-decisional. Neuroscience of Consciousness, 2022(1), 1-8. https://doi.org/10.1093/nc/niac010 |
[79] |
Samaha J., Switzky M., & Postle B. R. (2019). Confidence boosts serial dependence in orientation estimation. Journal of Vision, 19(4), 25. https://doi.org/10.1167/19.4.25
doi: 10.1167/19.4.25 URL pmid: 31009526 |
[80] | Sanchez R., Courant A., Desantis A., & Gajdos T. (2024). Making precise movements increases confidence in perceptual decisions. Cognition, 249, 105832. https://doi.org/10.1016/j.cognition.2024.105832 |
[81] | Sanchez R., Davranche K., Gajdos T., & Desantis A. (2023). Action monitoring boosts perceptual confidence. BioRxiv, 2023-08. https://doi.org/10.1101/2023.08.14.553210 |
[82] |
Sanders J. I., Hangya B., & Kepecs A. (2016). Signatures of a statistical computation in the human sense of confidence. Neuron, 90(3), 499-506. https://doi.org/10.1016/j.neuron.2016.03.025
doi: 10.1016/j.neuron.2016.03.025 URL pmid: 27151640 |
[83] | Scheliga S., Kellermann T., Lampert A., Rolke R., Spehr M., & Habel U. (2023). Neural correlates of multisensory integration in the human brain: An ALE meta-analysis. Reviews in the Neurosciences, 34(2), 223-245. https://doi.org/10.1515/revneuro-2022-0065 |
[84] |
Schulz L., Fleming S. M., & Dayan P. (2023). Metacognitive computations for information search: Confidence in control. Psychological Review, 130(3), 604-639. https://doi.org/10.1037/rev0000401
doi: 10.1037/rev0000401 URL pmid: 36757948 |
[85] |
Shekhar M., & Rahnev D. (2018). Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition. Journal of Neuroscience, 38(22), 5078-5087. https://doi.org/10.1523/JNEUROSCI.3484-17.2018
doi: 10.1523/JNEUROSCI.3484-17.2018 URL pmid: 29720553 |
[86] | Shekhar M., & Rahnev D. (2021). The nature of metacognitive inefficiency in perceptual decision making. Psychological Review, 128(1), 45-70. https://doi.org/10.1037/rev0000249 |
[87] | Shekhar M., & Rahnev D. (2024). How do humans give confidence? A comprehensive comparison of process models of perceptual metacognition. Journal of Experimental Psychology: General, 153(3), 656-688. https://doi.org/10.1037/xge0001524 |
[88] | Siedlecka M., Hobot J., Skora Z., Paulewicz B., Timmermans B., & Wierzchoń M. (2019). Motor response influences perceptual awareness judgements. Consciousness and Cognition, 75, 102804. https://doi.org/10.1016/j.concog.2019.102804 |
[89] | Siedlecka M., Koculak M., & Paulewicz B. (2021). Confidence in action: Differences between perceived accuracy of decision and motor response. Psychonomic Bulletin & Review, 28(5), 1698-1706. https://doi.org/10.3758/s13423-021-01913-0 |
[90] | Siedlecka M., Paulewicz B., & Koculak M. (2020). Task-related motor response inflates confidence. BioRxiv, 2020-2003. https://doi.org/10.1101/2020.03.26.010306 |
[91] | Siedlecka M., Paulewicz B., & Wierzchoń M. (2016). But I was so sure! Metacognitive judgments are less accurate given prospectively than retrospectively. Frontiers in Psychology, 7, 171892. https://doi.org/10.3389/fpsyg.2016.00218 |
[92] | Siegel M., Donner T. H., & Engel A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 20-25. https://doi.org/10.1038/nrn3137 |
[93] | Tang H., Costa V. D., Bartolo R., & Averbeck B. B. (2022). Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports, 38(1), 110198. https://doi.org/10.1016/j.celrep.2021.110198 |
[94] | Turner W., Angdias R., Feuerriegel D., Chong T. J., Hester R., & Bode S. (2021). Perceptual decision confidence is sensitive to forgone physical effort expenditure. Cognition, 207(1), 104525. https://doi.org/10.1016/j.cognition.2020.104525 |
[95] |
Van Marcke H., Denmat P. L., Verguts T., & Desender K. (2024). Manipulating prior beliefs causally induces under- and overconfidence. Psychological Science, 35(4), 358-375. https://doi.org/10.1177/09567976241231572
doi: 10.1177/09567976241231572 URL pmid: 38427319 |
[96] |
Wokke M. E., Achoui D., & Cleeremans A. (2020). Action information contributes to metacognitive decision-making. Scientific Reports, 10(1), 3632. https://doi.org/10.1038/s41598-020-60382-y
doi: 10.1038/s41598-020-60382-y URL pmid: 32107455 |
[97] | Wokke M. E., Cleeremans A., & Ridderinkhof K. R. (2017). Sure I’m sure: Prefrontal oscillations support metacognitive monitoring of decision making. Journal of Neuroscience, 37(4), 781-789. https://doi.org/10.1523/JNEUROSCI.1612-16.2016 |
[98] |
Xie L., Cao B., Li Z., & Li F. (2020). Neural dynamics of cognitive control in various types of incongruence. Frontiers in Human Neuroscience, 14, 214. https://doi.org/10.3389/fnhum.2020.00214
doi: 10.3389/fnhum.2020.00214 URL pmid: 32581754 |
[99] | Yeung N., & Summerfield C. (2012). Metacognition in human decision-making: Confidence and error monitoring. Philosophical Transactions of The Royal Society B Biological Sciences, 367(1594), 1310-1321. https://doi.org/10.1098/rstb.2011.0416 |
[1] | 巩芳颍, 孙逸梵, 贺琴, 石可, 刘伟, 陈宁. 教学互动中师生脑间同步性及其调节因素[J]. 心理科学进展, 2025, 33(3): 452-464. |
[2] | 夏熠, 张婕, 张火垠, 雷怡, 窦皓然. 焦虑个体趋避冲突失调的认知神经机制[J]. 心理科学进展, 2025, 33(3): 477-493. |
[3] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
[4] | 曾庆贺, 崔晓宇, 唐为, 李娟. 记忆辨别力受老化影响的认知神经机制及其应用[J]. 心理科学进展, 2024, 32(7): 1138-1151. |
[5] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
[6] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
[7] | 郑好, 陈荣荣, 买晓琴. 第三方惩罚行为的认知神经机制[J]. 心理科学进展, 2024, 32(2): 398-412. |
[8] | 家晓余, 李平, 李伟健. 成长型思维影响学习过程的行为和神经反应模式:基于自我调节学习理论的视角[J]. 心理科学进展, 2024, 32(12): 1947-1960. |
[9] | 高芷晗, 王蕊, 蒋毅. 基于局部生物运动方向的适应后效[J]. 心理科学进展, 2023, 31(suppl.): 24-24. |
[10] | 潘静, 徐宏格. 知觉精细动作的可能性:视觉信息和动作经验的影响[J]. 心理科学进展, 2023, 31(suppl.): 61-61. |
[11] | 何煜潇, 潘静. 通过运动变异性信息识别人类和非人类运动[J]. 心理科学进展, 2023, 31(suppl.): 63-63. |
[12] | 罗钰萱, 张奇凯, 吴静岚, 高在峰. 社会交互信息在工作记忆中的表征方式:工作记忆中的“同事件优势”[J]. 心理科学进展, 2023, 31(suppl.): 82-82. |
[13] | 叶健彤, 高洁, 邓芷晴, 陈娟. 视觉动作训练的视网膜位置特异性与迁移性[J]. 心理科学进展, 2023, 31(suppl.): 117-117. |
[14] | 周明, 龚政鑫, 戴宇萱, 文雨珊, 刘友谊, 甄宗雷. 自然场景下人类动作识别的大规模功能核磁共振数据集[J]. 心理科学进展, 2023, 31(suppl.): 165-165. |
[15] | 杨以诺, 刘星宇, 甄宗雷. 基于自然视频刺激的多维度动作表征空间研究[J]. 心理科学进展, 2023, 31(suppl.): 166-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||