心理科学进展 ›› 2022, Vol. 30 ›› Issue (12): 2764-2776.doi: 10.3724/SP.J.1042.2022.02764
收稿日期:
2022-01-26
出版日期:
2022-12-15
发布日期:
2022-09-23
通讯作者:
毕鸿燕
E-mail:bihy@psych.ac.cn
基金资助:
Received:
2022-01-26
Online:
2022-12-15
Published:
2022-09-23
Contact:
BI Hongyan
E-mail:bihy@psych.ac.cn
摘要:
发展性阅读障碍的本质一直是研究者争论的焦点。大量研究发现, 阅读障碍者具有视听时间整合缺陷。然而, 这些研究仅考察了阅读障碍者视听时间整合加工的整体表现, 也就是平均水平的表现, 却对整合加工的变化过程缺乏探讨。视听时间再校准反映了视听时间整合的动态加工过程, 对内部时间表征与感觉输入之间差异的再校准困难则会导致多感觉整合受损, 而阅读障碍者的再校准相关能力存在缺陷。因此, 视听时间再校准能力受损可能是发展性阅读障碍视听时间整合缺陷的根本原因。未来的研究需要进一步考察发展性阅读障碍者视听时间再校准能力的具体表现, 以及这些表现背后的认知神经机制。
中图分类号:
王润洲, 毕鸿燕. (2022). 发展性阅读障碍视听时间整合缺陷可能的机制:视听时间再校准能力受损. 心理科学进展 , 30(12), 2764-2776.
WANG Runzhou, BI Hongyan. (2022). A possible mechanism for the audiovisual temporal integration deficits in developmental dyslexia: Impaired ability in audiovisual temporal recalibration. Advances in Psychological Science, 30(12), 2764-2776.
[1] | 李涛涛, 胡金生, 王琦, 李骋诗, 李松泽, 何建青,... 刘淑清. (2018). 孤独症谱系障碍者的视听时间整合. 心理科学进展, 26(6), 1031-1040. |
[2] | 武慧多. (2020). 发展性阅读障碍儿童视听时间敏感性及其对阅读能力的影响 (博士学位论文). 华东师范大学, 上海. |
[3] | 袁祥勇, 黄希庭. (2011). 多感觉整合的时间再校准. 心理科学进展, 19(5), 692-700. |
[4] | 袁祥勇, 黄希庭, 毕翠华, 袁宏. (2012). 视听时间再校准: 适应空间与适应客体的联合及独立作用. 心理学报, 44(2), 143-153. |
[5] |
Adhikari, B. M., Goshorn, E. S., Lamichhane, B., & Dhamala, M. (2013). Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices. Brain Connectivity, 3(5), 536-545.
doi: 10.1089/brain.2013.0163 pmid: 23988147 |
[6] |
Anthony, J. L., & Lonigan, C. J. (2004). The nature of phonological awareness: Converging evidence from four studies of preschool and early grade school children. Journal of Educational Psychology, 96(1), 43-55.
doi: 10.1037/0022-0663.96.1.43 URL |
[7] |
Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6(3), 260-268.
pmid: 16643094 |
[8] |
Binder, M. (2015). Neural correlates of audiovisual temporal processing-comparison of temporal order and simultaneity judgments. Neuroscience, 300, 432-447.
doi: 10.1016/j.neuroscience.2015.05.011 pmid: 25982561 |
[9] |
Blau, V., Reithler, J., van Atteveldt, N., Seitz, J., Gerretsen, P., Goebel, R., & Blomert, L. (2010). Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain, 133(3), 868-879.
doi: 10.1093/brain/awp308 URL |
[10] |
Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., & Blomert, L. (2009). Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Current Biology, 19(6), 503-508.
doi: 10.1016/j.cub.2009.01.065 pmid: 19285401 |
[11] |
Casini, L., Pech-Georgel, C., & Ziegler, J. C. (2018). It’s about time: Revisiting temporal processing deficits in dyslexia. Developmental Science, 21(2), e12530. https://doi.org/10.1111/desc.12530
doi: 10.1111/desc.12530 URL |
[12] | De Niear, M. A., Noel, J.-P., & Wallace, M. T. (2017). The impact of feedback on the different time courses of multisensory temporal recalibration. Neural Plasticity, 2017, 3478742. https://doi.org/10.1155/2017/3478742 |
[13] |
Dhamala, M., Assisi, C. G., Jirsa, V. K., Steinberg, F. L., & Kelso, J. S. (2007). Multisensory integration for timing engages different brain networks. NeuroImage, 34(2), 764-773.
pmid: 17098445 |
[14] |
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9(2), 167-188.
doi: 10.1207/s1532799xssr0902_4 URL |
[15] |
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433.
doi: 10.1038/415429a URL |
[16] |
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169.
pmid: 15050512 |
[17] |
Francisco, A. A., Groen, M. A., Jesse, A., & McQueen, J. M. (2017). Beyond the usual cognitive suspects: The importance of speechreading and audiovisual temporal sensitivity in reading ability. Learning and Individual Differences, 54, 60-72.
doi: 10.1016/j.lindif.2017.01.003 URL |
[18] |
Francisco, A. A., Jesse, A., Groen, M. A., & McQueen, J. M. (2017). A general audiovisual temporal processing deficit in adult readers with dyslexia. Journal of Speech, Language, and Hearing Research, 60(1), 144-158.
doi: 10.1044/2016_JSLHR-H-15-0375 URL |
[19] | Francisco, A. A., Jesse, A., Groen, M., & McQueen, J. M. (2014, September). Audiovisual temporal sensitivity in typical and dyslexic adult readers. In Interspeech 2014: 15th Annual Conference of the International Speech Communication Association (pp. 2575-2579), Singapore. |
[20] |
Froyen, D., van Atteveldt, N., Bonte, M., & Blomert, L. (2008). Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neuroscience Letters, 430(1), 23-28.
pmid: 18023979 |
[21] |
Froyen, D., Willems, G., & Blomert, L. (2011). Evidence for a specific cross-modal association deficit in dyslexia: An electrophysiological study of letter-speech sound processing. Developmental Science, 14(4), 635-648.
doi: 10.1111/j.1467-7687.2010.01007.x pmid: 21676085 |
[22] |
Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. Y. (2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7(7), 773-778.
pmid: 15195098 |
[23] | Gori, M., Ober, K. M., Tinelli, F., & Coubard, O. A. (2020). Temporal representation impairment in developmental dyslexia for unisensory and multisensory stimuli. Developmental Science, 23(5), e12977. https://doi.org/10.1111/desc.12977 |
[24] |
Hairston, W. D., Burdette, J. H., Flowers, D. L., Wood, F. B., & Wallace, M. T. (2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166(3-4), 474-480.
doi: 10.1007/s00221-005-2387-6 pmid: 16028030 |
[25] |
Harvey, C., van der Burg, E., & Alais, D. (2014). Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally. Brain Research, 1585, 120-130.
doi: 10.1016/j.brainres.2014.08.028 pmid: 25148705 |
[26] |
Hood, M., & Conlon, E. (2004). Visual and auditory temporal processing and early reading development. Dyslexia, 10(3), 234-252.
pmid: 15341200 |
[27] |
Jaffe-Dax, S., Kimel, E., & Ahissar, M. (2018). Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex. eLife, 7, e30018. https://doi.org/10.7554/eLife.30018.001
doi: 10.7554/eLife.30018 URL |
[28] |
Keetels, M., Bonte, M., & Vroomen, J. (2018). A selective deficit in phonetic recalibration by text in developmental dyslexia. Frontiers in Psychology, 9, 710. https://doi.org/10.3389/fpsyg.2018.00710
doi: 10.3389/fpsyg.2018.00710 URL pmid: 29867675 |
[29] |
Keetels, M., & Vroomen, J. (2007). No effect of auditory-visual spatial disparity on temporal recalibration. Experimental Brain Research, 182(4), 559-565.
pmid: 17598092 |
[30] |
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392-399.
doi: 10.1016/j.tics.2010.06.005 pmid: 20655802 |
[31] |
Laasonen, M., Service, E., & Virsu, V. (2002). Crossmodal temporal order and processing acuity in developmentally dyslexic young adults. Brain and Language, 80(3), 340-354.
pmid: 11896646 |
[32] | Lewkowicz, D. J. (1992). The development of temporally-based intersensory perception in human infants. In F. Macar, V. Pouthas & W. J. Friedman (Eds.), Time, Action, and Cognition: Towards Bridging the Gap (Vol. 66, pp.33-43). Springer, Dordrecht. |
[33] | Lewkowicz, D. J. (1994). Development of intersensory perception in human infants. In D. J. Lewkowicz & R. Lickliter (Eds.), The Development of Intersensory Perception: Comparative Perspectives (pp. 165-203). Psychology Press. |
[34] |
Lewkowicz, D. J. (1996). Perception of auditory-visual temporal synchrony in human infants. Journal of Experimental Psychology: Human Perception and Performance, 22(5), 1094-1106.
doi: 10.1037/0096-1523.22.5.1094 URL |
[35] |
Liu, S., Wang, L.-C., & Liu, D. (2019). Auditory, visual, and cross-modal temporal processing skills among Chinese children with developmental dyslexia. Journal of Learning Disabilities, 52(6), 431-441.
doi: 10.1177/0022219419863766 pmid: 31313628 |
[36] |
Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215-3229.
pmid: 3668625 |
[37] |
Mittag, M., Thesleff, P., Laasonen, M., & Kujala, T. (2013). The neurophysiological basis of the integration of written and heard syllables in dyslexic adults. Clinical Neurophysiology, 124(2), 315-326.
doi: 10.1016/j.clinph.2012.08.003 pmid: 22939780 |
[38] |
Mossbridge, J., Zweig, J., Grabowecky, M., & Suzuki, S. (2017). An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 29(3), 435-447.
doi: 10.1162/jocn_a_01052 pmid: 28129060 |
[39] |
Navarra, J., Hartcher-O’Brien, J., Piazza, E., & Spence, C. (2009). Adaptation to audiovisual asynchrony modulates the speeded detection of sound. Proceedings of the National Academy of Sciences, 106(23), 9169-9173.
doi: 10.1073/pnas.0810486106 URL |
[40] |
Navarra, J., Soto-Faraco, S., & Spence, C. (2007). Adaptation to audiotactile asynchrony. Neuroscience Letters, 413(1), 72-76.
pmid: 17161530 |
[41] |
Navarra, J., Vatakis, A., Zampini, M., Soto-Faraco, S., Humphreys, W., & Spence, C. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cognitive Brain Research, 25(2), 499-507.
pmid: 16137867 |
[42] |
Noel, J.-P., De Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10(1), 121-129.
doi: 10.1002/aur.1633 URL |
[43] |
Noel, J.-P., De Niear, M. A., van der Burg, E., & Wallace, M. T. (2016). Audiovisual simultaneity judgment and rapid recalibration throughout the lifespan. PloS One, 11(8), e0161698. https://doi.org/10.1371/journal.pone.0161698
doi: 10.1371/journal.pone.0161698 URL |
[44] |
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H.-J., & Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. Journal of Neuroscience, 27(42), 11431-11441.
doi: 10.1523/JNEUROSCI.2252-07.2007 pmid: 17942738 |
[45] |
O’Connor, I. M., & Klein, P. D. (2004). Exploration of strategies for facilitating the reading comprehension of high-functioning students with autism spectrum disorders. Journal of Autism and Developmental Disorders, 34(2), 115-127.
pmid: 15162931 |
[46] |
Ozernov-Palchik, O., Beach, S. D., Brown, M., Centanni, T. M., Gaab, N., Kuperberg, G., Perrachione, T. K., & Gabrieli, J. D. E. (2022). Speech-specific perceptual adaptation deficits in children and adults with dyslexia. Journal of Experimental Psychology: General, 151(7), 1556-1572. https://doi.org/10.1037/xge0001145
doi: 10.1037/xge0001145 URL |
[47] |
Pammer, K., & Vidyasagar, T. R. (2005). Integration of the visual and auditory networks in dyslexia: A theoretical perspective. Journal of Research in Reading, 28(3), 320-331.
doi: 10.1111/j.1467-9817.2005.00272.x URL |
[48] |
Park, H., & Kayser, C. (2019). Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife, 8, e47001. https://doi.org/10.7554/eLife.47001.001
doi: 10.7554/eLife.47001 URL |
[49] | Patti, P. J., & Lupinetti, L. (1993). Brief report: Implications of hyperlexia in an autistic savant. Journal of Autism and Developmental Disorders, 23(2), 397-405. |
[50] |
Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
doi: 10.1016/j.tics.2012.08.009 URL |
[51] |
Perrachione, T. K., Del Tufo, S. N., Winter, R., Murtagh, J., Cyr, A., Chang, P., ... Gabrieli, J. D. (2016). Dysfunction of rapid neural adaptation in dyslexia. Neuron, 92(6), 1383-1397.
doi: S0896-6273(16)30858-3 pmid: 28009278 |
[52] |
Peter, B., McCollum, H., Daliri, A., & Panagiotides, H. (2019). Auditory gating in adults with dyslexia: An ERP account of diminished rapid neural adaptation. Clinical Neurophysiology, 130(11), 2182-2192.
doi: S1388-2457(19)31183-6 pmid: 31451333 |
[53] |
Powers, A. R., Hevey, M. A., & Wallace, M. T. (2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32(18), 6263-6274.
doi: 10.1523/JNEUROSCI.6138-11.2012 pmid: 22553032 |
[54] |
Powers, A. R., Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29(39), 12265-12274.
doi: 10.1523/JNEUROSCI.3501-09.2009 pmid: 19793985 |
[55] |
Rüsseler, J., Ye, Z., Gerth, I., Szycik, G. R., & Münte, T. F. (2018). Audio-visual speech perception in adult readers with dyslexia: An fMRI study. Brain Imaging and Behavior, 12(2), 357-368.
doi: 10.1007/s11682-017-9694-y pmid: 28290075 |
[56] |
Sato, Y., & Aihara, K. (2011). A Bayesian model of sensory adaptation. PloS One, 6(4), e19377. https://doi.org/10.1371/journal.pone.0019377
doi: 10.1371/journal.pone.0019377 URL |
[57] |
Simon, D. M., Nidiffer, A. R., & Wallace, M. T. (2018). Single trial plasticity in evidence accumulation underlies rapid recalibration to asynchronous audiovisual speech. Scientific Reports, 8(1), 12499. https://doi.org/10.1038/s41598-018-30414-9
doi: 10.1038/s41598-018-30414-9 URL pmid: 30131578 |
[58] |
Simon, D. M., Noel, J.-P., & Wallace, M. T. (2017). Event related potentials index rapid recalibration to audiovisual temporal asynchrony. Frontiers in Integrative Neuroscience, 11, 8. https://doi.org/10.3389/fnint.2017.00008
doi: 10.3389/fnint.2017.00008 URL pmid: 28381993 |
[59] |
Stevenson, R. A., Fister, J. K., Barnett, Z. P., Nidiffer, A. R., & Wallace, M. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219(1), 121-137.
doi: 10.1007/s00221-012-3072-1 pmid: 22447249 |
[60] |
Stevenson, R. A., Segers, M., Ferber, S., Barense, M. D., Camarata, S., & Wallace, M. T. (2016). Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Research, 9(7), 720-738.
doi: 10.1002/aur.1566 pmid: 26402725 |
[61] |
Stevenson, R. A., & Wallace, M. T. (2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227(2), 249-261.
doi: 10.1007/s00221-013-3507-3 pmid: 23604624 |
[62] |
Theves, S., Chan, J. S., Naumer, M. J., & Kaiser, J. (2020). Improving audio-visual temporal perception through training enhances beta-band activity. NeuroImage, 206, 116312. https://doi.org/10.1016/j.neuroimage.2019.116312
doi: 10.1016/j.neuroimage.2019.116312 URL |
[63] |
Turi, M., Karaminis, T., Pellicano, E., & Burr, D. (2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, 21756. https://doi.org/10.1038/srep21756
doi: 10.1038/srep21756 URL pmid: 26899367 |
[64] |
Ullas, S., Hausfeld, L., Cutler, A., Eisner, F., & Formisano, E. (2020). Neural correlates of phonetic adaptation as induced by lexical and audiovisual context. Journal of Cognitive Neuroscience, 32(11), 2145-2158.
doi: 10.1162/jocn_a_01608 URL |
[65] |
van der Burg, E., Alais, D., & Cass, J. (2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33(37), 14633-14637.
doi: 10.1523/JNEUROSCI.1182-13.2013 pmid: 24027264 |
[66] |
van der Burg, E., Alais, D., & Cass, J. (2015). Audiovisual temporal recalibration occurs independently at two different time scales. Scientific Reports, 5, 14526. https://doi.org/10.1038/srep14526
doi: 10.1038/srep14526 URL pmid: 26455577 |
[67] |
van der Burg, E., & Goodbourn, P. T. (2015). Rapid, generalized adaptation to asynchronous audiovisual speech. Proceedings of the Royal Society B: Biological Sciences, 282(1804), 20143083. https://doi.org/10.1098/rspb.2014.3083
doi: 10.1098/rspb.2014.3083 URL |
[68] |
van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of integration in auditory-visual speech perception. Neuropsychologia, 45(3), 598-607.
doi: 10.1016/j.neuropsychologia.2006.01.001 pmid: 16530232 |
[69] |
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57-63.
doi: 10.1016/j.tics.2009.12.003 pmid: 20080053 |
[70] |
Virsu, V., Lahti-Nuuttila, P., & Laasonen, M. (2003). Crossmodal temporal processing acuity impairment aggravates with age in developmental dyslexia. Neuroscience Letters, 336(3), 151-154.
pmid: 12505615 |
[71] |
Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, and Psychophysics, 72(4), 871-884.
doi: 10.3758/APP.72.4.871 URL |
[72] |
Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123.
doi: 10.1016/j.neuropsychologia.2014.08.005 pmid: 25128432 |
[73] |
Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(12), 2891-2902.
doi: 10.1007/s10803-013-1836-5 pmid: 23624833 |
[74] |
Yu, L., Stein, B. E., & Rowland, B. A. (2009). Adult plasticity in multisensory neurons: Short-term experience-dependent changes in the superior colliculus. Journal of Neuroscience, 29(50), 15910-15922.
doi: 10.1523/JNEUROSCI.4041-09.2009 pmid: 20016107 |
[75] |
Zaidel, A., Goin-Kochel, R. P., & Angelaki, D. E. (2015). Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses. Proceedings of the National Academy of Sciences, 112(20), 6461-6466.
doi: 10.1073/pnas.1506582112 URL |
[76] |
Zhou, H.-Y., Cheung, E. F., & Chan, R. C. (2020). Audiovisual temporal integration: Cognitive processing, neural mechanisms, developmental trajectory and potential interventions. Neuropsychologia, 140, 107396. https://doi.org/10.1016/j.neuropsychologia.2020.107396
doi: 10.1016/j.neuropsychologia.2020.107396 URL |
[77] |
Zhou, H.-Y., Shi, L.-J., Yang, H.-X., Cheung, E. F., & Chan, R. C. (2020). Audiovisual temporal integration and rapid temporal recalibration in adolescents and adults: Age-related changes and its correlation with autistic traits. Autism Research, 13(4), 615-626.
doi: 10.1002/aur.2249 URL |
[1] | 崔楠, 王久菊, 赵婧. 注意缺陷多动障碍-发展性阅读障碍共患儿童的干预效果及其内在机理[J]. 心理科学进展, 2023, 31(4): 622-630. |
[2] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[3] | 王润洲, 毕鸿燕. 发展性阅读障碍的听觉时间加工缺陷[J]. 心理科学进展, 2021, 29(7): 1231-1238. |
[4] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[5] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[6] | 季雨竹, 毕鸿燕. 发展性阅读障碍的噪音抑制缺陷[J]. 心理科学进展, 2019, 27(2): 201-208. |
[7] | 赵婧. 发展性阅读障碍的视觉注意广度技能[J]. 心理科学进展, 2019, 27(1): 20-26. |
[8] | 李涛涛, 胡金生, 王琦, 李骋诗, 李松泽, 何建青, 李辰洋, 刘淑清. 孤独症谱系障碍者的视听时间整合 *[J]. 心理科学进展, 2018, 26(6): 1031-1040. |
[9] | 黄晨, 赵婧. 发展性阅读障碍的视觉空间注意加工能力[J]. 心理科学进展, 2018, 26(1): 72-80. |
[10] | 孟泽龙, 赵婧, 毕鸿燕. 汉语发展性阅读障碍儿童的视觉大细胞通路功能探究:一项ERPs研究[J]. 心理科学进展, 2017, 25(suppl.): 2-2. |
[11] | 冯小霞;李乐;丁国盛. 发展性阅读障碍的脑区连接异常[J]. 心理科学进展, 2016, 24(12): 1864-1872. |
[12] | 夏志超;洪恬;张林军;舒华. 脑干诱发电位在言语感知研究中的应用[J]. 心理科学进展, 2014, 22(1): 14-26. |
[13] | 苏萌萌;张玉平;史冰洁;舒华. 发展性阅读障碍的遗传关联分析[J]. 心理科学进展, 2012, 20(8): 1259-1267. |
[14] | 王正科;孙乐勇;简洁;孟祥芝. 英语发展性阅读障碍的训练程序[J]. 心理科学进展, 2007, 15(5): 802-809. |
[15] | 王艳碧;余林. 我国近十年来汉语阅读障碍研究回顾与展望[J]. 心理科学进展, 2007, 15(4): 596-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||