心理科学进展 ›› 2022, Vol. 30 ›› Issue (12): 2777-2788.doi: 10.3724/SP.J.1042.2022.02777
张雯1,2,3, 董亓易如1, 龚丽娟1, 尚琪1, 程琛4,5(), 丁雪辰1,6()
收稿日期:
2021-12-13
出版日期:
2022-12-15
发布日期:
2022-09-23
通讯作者:
程琛,丁雪辰
E-mail:ccheng10@bu.edu;dingxuechen_psy@163.com
基金资助:
ZHANG Wen1,2,3, DONG Qiyiru1, GONG Lijuan1, SHANG Qi1, CHENG Chen4,5(), DING Xuechen1,6()
Received:
2021-12-13
Online:
2022-12-15
Published:
2022-09-23
Contact:
CHENG Chen,DING Xuechen
E-mail:ccheng10@bu.edu;dingxuechen_psy@163.com
摘要:
了解运算偏差的形成与发展对探索算数运算系统的内在机制具有重要意义, 早期的算数运算能力是儿童理解和进行复杂数学运算的基础。运算动量偏差是指个体在进行基本数学运算时倾向于高估加法运算结果而低估减法运算结果的一种运算偏差, 主要包括三种理论解释, 即注意转移假说、启发式解释和压缩解释。鉴于运算动量效应在成年群体中相对稳定却在不同发展阶段儿童中存在不一致的证据, 数学能力的提高与空间注意的成熟可结合不同的理论解释来阐明儿童发展过程中运算动量效应的变化趋势。未来可以进一步整合多种研究任务以揭示运算动量效应的发展轨迹, 考察数量表征系统与运算动量效应间的关联, 探究运算动量效应在不同运算符号中的稳定性, 探讨不同因素共同作用对运算动量效应的影响, 并设计有关数学能力的干预措施以减少运算动量效应这一运算偏差。
中图分类号:
张雯, 董亓易如, 龚丽娟, 尚琪, 程琛, 丁雪辰. (2022). 运算动量效应的理论解释及其发展性预测因素. 心理科学进展 , 30(12), 2777-2788.
ZHANG Wen, DONG Qiyiru, GONG Lijuan, SHANG Qi, CHENG Chen, DING Xuechen. (2022). The theoretical accounts and developmental predictors of operational momentum effect. Advances in Psychological Science, 30(12), 2777-2788.
[1] | 曹碧华, 曾春雲, 廖虹, 李富洪. (2021). 心理长度对二年级儿童数字线估计表征的影响. 心理发展与教育, 37(2), 190-198. |
[2] | 曹贤才, 时冉冉, 牛玉柏. (2016). 近似数量系统敏锐度与数学能力的关系. 心理科学, 39(3), 580-586. |
[3] | 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角. 心理科学, 44(4), 793-799. |
[4] | 郭丽月, 严超, 邓赐平. (2018). 数学能力的改善: 针对工作记忆训练的元分析. 心理科学进展, 26(9), 1576-1589. |
[5] | 李红霞, 司继伟, 陈泽建, 张堂正. (2015). 人类的近似数量系统. 心理科学进展, 23(4), 562-570. |
[6] | 梁笑, 康静梅, 王丽娟. (2021). 个体近似数量系统与其数学能力之间的关系: 发展研究的证据. 心理科学进展, 29(5), 827-837. |
[7] | 牛玉柏, 张丽芬, 肖帅, 曹贤才. (2018). 小学生近似数量系统敏锐度的发展趋势及其与数学能力的关系: 抑制控制的中介作用. 心理科学, 41(2), 344-350. |
[8] | 潘运, 戴隆农, 赵竹君, 陈衍, 陈加, 赵守盈. (2019). 正负数混合呈现对负数SNARC效应的影响. 心理科学, 42(5), 1083-1090. |
[9] | 曾婷. (2020). 4-6岁儿童词汇、空间能力、执行功能与数学能力的关系研究 (硕士学位论文). 湖南师范大学. |
[10] |
Au, J., Jaeggi, S. M., & Buschkuehl, M. (2018). Effects of non-symbolic arithmetic training on symbolic arithmetic and the approximate number system. Acta Psychologica, 185, 1-12.
doi: S0001-6918(17)30201-9 pmid: 29407240 |
[11] |
Barth, H., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103(4), 441-454.
doi: 10.1016/j.jecp.2009.01.014 URL |
[12] |
Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199-222.
pmid: 15876429 |
[13] |
Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116-14121.
pmid: 16172388 |
[14] |
Berteletti, I., Lucangeli, D., & Zorzi, M. (2012). Representation of numerical and non-numerical order in children. Cognition, 124(3), 304-313.
doi: 10.1016/j.cognition.2012.05.015 pmid: 22705198 |
[15] |
Bonato, M., D'Ovidio, U., Fias, W., & Zorzi, M. (2021). A momentum effect in temporal arithmetic. Cognition, 206, 104488.
doi: 10.1016/j.cognition.2020.104488 URL |
[16] |
Cai, D., Zhang, L., Li, Y., Wei, W., & Georgiou, G. K. (2018). The role of approximate number system in different mathematics skills across grades. Frontiers in Psychology, 9, 1733.
doi: 10.3389/fpsyg.2018.01733 pmid: 30279672 |
[17] |
Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), e328.
doi: 10.1371/journal.pbio.0050328 pmid: 18092890 |
[18] |
Cassia, V. M., Bulf, H., McCrink, K., & de Hevia, M. D. (2017). Operational momentum during ordering operations for size and number in 4-month-old infants. Journal of Numerical Cognition, 3(2), 270-287.
doi: 10.5964/jnc.v3i2.67 URL |
[19] |
Cassia, V. M., McCrink, K., de Hevia, M. D., Gariboldi, V., & Bulf, H. (2016). Operational momentum and size ordering in preverbal infants. Psychological Research, 80(3), 360-367.
doi: 10.1007/s00426-016-0750-9 pmid: 26898647 |
[20] |
Charras, P., Brod, G., & Lupiáñez, J. (2012). Is 26+26 smaller than 24+28? Estimating the approximate magnitude of repeated versus different numbers. Attention, Perception, & Psychophysics, 74(1), 163-173.
doi: 10.3758/s13414-011-0217-4 URL |
[21] |
Charras, P., Molina, E., & Lupiáñez, J. (2014). Additions are biased by operands: Evidence from repeated versus different operands. Psychological Research, 78(2), 248-265.
doi: 10.1007/s00426-013-0491-y pmid: 23605318 |
[22] |
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172.
doi: 10.1016/j.actpsy.2014.01.016 pmid: 24583622 |
[23] |
Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
doi: 10.1080/15248372.2012.725186 URL |
[24] | Chu, F. W., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. |
[25] |
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
pmid: 1511583 |
[26] |
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396.
doi: 10.1037/0096-3445.122.3.371 URL |
[27] |
Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390-407.
doi: 10.1162/jocn.1993.5.4.390 pmid: 23964915 |
[28] |
Didino, D., Pinheiro-Chagas, P., Wood, G., & Knops, A. (2019). Response: Commentary: The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 10, 160.
doi: 10.3389/fpsyg.2019.00160 pmid: 30787896 |
[29] |
Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11(5), 650-654.
doi: 10.1111/j.1467-7687.2008.00713.x pmid: 18801119 |
[30] |
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446.
doi: 10.1037/0012-1649.43.6.1428 pmid: 18020822 |
[31] |
Dunn, H., Bernstein, N., de Hevia, M. D., Cassia, V. M., Bulf, H., & McCrink, K. (2019). Operational momentum for magnitude ordering in preschool children and adults. Journal of Experimental Child Psychology, 179, 260-275.
doi: S0022-0965(18)30192-9 pmid: 30562633 |
[32] |
Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74.
doi: 10.1080/15248372.2018.1551218 |
[33] |
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
pmid: 15242690 |
[34] |
Fischer, M. H., Miklashevsky, A., & Shaki, S. (2018). Commentary: The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 9, 2259.
doi: 10.3389/fpsyg.2018.02259 pmid: 30524343 |
[35] |
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 126-132.
doi: 10.1037/0278-7393.10.1.126 URL |
[36] |
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465-1484.
doi: 10.1007/s00426-018-1008-5 pmid: 29637258 |
[37] |
Gallistel, C. R. (2011). Prelinguistic thought. Language Learning and Development, 7(4), 253-262.
doi: 10.1080/15475441.2011.578548 URL |
[38] |
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1-2), 43-74.
pmid: 1511586 |
[39] |
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447(7144), 589-591.
doi: 10.1038/nature05850 URL |
[40] |
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229-1241.
doi: 10.1037/a0027433 pmid: 22390659 |
[41] | Haman, M., & Lipowska, K. (2021). Moving attention along the mental number line in preschool age: Study of the operational momentum in 3- to 5-year-old children's non- symbolic arithmetic. Developmental Science, 24(1), e13007. |
[42] |
Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12.
doi: 10.3389/fpsyg.2015.00012 pmid: 25657635 |
[43] |
He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7, 1052.
doi: 10.3389/fpsyg.2016.01052 pmid: 27462291 |
[44] | Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah, & A. Miake (Eds.). The Cambridge handbook of visuospatial thinking (pp. 121- 169). Cambridge University Press. |
[45] |
Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371-1403.
doi: 10.3758/s13423-014-0624-3 URL |
[46] |
Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141(6), 1081-1119.
doi: 10.1037/bul0000016 pmid: 26237420 |
[47] |
Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221-1247.
pmid: 17678639 |
[48] |
Jang, S., & Cho, S. (2022). Operational momentum during children’s approximate arithmetic relates to symbolic math skills and space-magnitude association. Journal of Experimental Child Psychology, 213, 105253.
doi: 10.1016/j.jecp.2021.105253 URL |
[49] | Karsenty, R. (2020). Mathematical ability. Encyclopedia of Mathematics Education, 494-497. |
[50] |
Katz, C., & Knops, A. (2014). Operational momentum in multiplication and division? PLoS One, 9(8), e104777.
doi: 10.1371/journal.pone.0104777 URL |
[51] |
Kibbe, M. M., & Feigenson, L. (2015). Young children ‘solve for x’ using the approximate number system. Developmental Science, 18(1), 38-49.
doi: 10.1111/desc.12177 URL |
[52] |
Klein, E., Huber, S., Nuerk, H. C., & Moeller, K. (2014). Operational momentum affects eye fixation behaviour. Quarterly Journal of Experimental Psychology, 67(8), 1614-1625.
doi: 10.1080/17470218.2014.902976 URL |
[53] |
Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? Quarterly Journal of Experimental Psychology, 67(8), 1541-1556.
doi: 10.1080/17470218.2014.890234 URL |
[54] |
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583-1585.
doi: 10.1126/science.1171599 pmid: 19423779 |
[55] |
Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803-821.
doi: 10.3758/APP.71.4.803 URL |
[56] |
Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325.
doi: 10.3389/fpsyg.2013.00325 pmid: 23772216 |
[57] |
Koshy, V., Ernest, P., & Casey, R. (2009). Mathematically gifted and talented learners: Theory and practice. International Journal of Mathematical Education in Science and Technology, 40(2), 213-228.
doi: 10.1080/00207390802566907 URL |
[58] |
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., ... von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782-795.
doi: 10.1016/j.neuroimage.2011.01.070 pmid: 21295145 |
[59] |
Kucian, K., Plangger, F., O'Gorman, R., & von Aster, M. (2013). Operational momentum effect in children with and without developmental dyscalculia. Frontiers in Psychology, 4, 847.
doi: 10.3389/fpsyg.2013.00847 pmid: 24273526 |
[60] | Lindemann, O., & Tira, M. D. (2015). Operational momentum in numerosity production judgments of multi-digit number problems. Zeitschrift fu Psychologie / Journal of Psychology, 219(1), 50-57. |
[61] |
Lindskog, M., Poom, L., & Winman, A. (2021). Attentional bias induced by stimulus control (ABC) impairs measures of the approximate number system. Attention, Perception, & Psychophysics, 83(4), 1684-1698.
doi: 10.3758/s13414-020-02229-2 URL |
[62] |
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
pmid: 4075870 |
[63] |
Liu, D., Cai, D., Verguts, T., & Chen, Q. (2017). The time course of spatial attention shifts in elementary arithmetic. Scientific Reports, 7(1), 921.
doi: 10.1038/s41598-017-01037-3 pmid: 28424467 |
[64] |
Masson, N., Letesson, C., & Pesenti, M. (2018). Time course of overt attentional shifts in mental arithmetic: Evidence from gaze metrics. Quarterly Journal of Experimental Psychology, 71(4), 1009-1019.
doi: 10.1080/17470218.2017.1318931 URL |
[65] |
Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: A functional role for attention shifts in mental calculation. Psychological Research, 80(4), 640-651.
doi: 10.1007/s00426-015-0668-7 pmid: 25991551 |
[66] |
McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324-1333.
doi: 10.3758/BF03192949 URL |
[67] |
McCrink, K., & Hubbard, T. (2017). Dividing attention increases operational momentum. Journal of Numerical Cognition, 3(2), 230-245.
doi: 10.5964/jnc.v3i2.34 URL |
[68] |
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781.
pmid: 15482450 |
[69] |
McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400-408.
doi: 10.1016/j.jecp.2009.01.013 pmid: 19285683 |
[70] |
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10.
doi: 10.1016/j.intell.2008.08.004 URL |
[71] | Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (Ed.). Advances in child development and behavior (pp. 197-243). Elsevier Academic Press. |
[72] |
Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206-1227.
doi: 10.1037/xge0000182 URL |
[73] |
Navarro, M. G., Braham, E. J., & Libertus, M. E. (2018). Intergenerational associations of the approximate number system in toddlers and their parents. British Journal of Developmental Psychology, 36(4), 521-539.
doi: 10.1111/bjdp.12234 pmid: 29377230 |
[74] |
Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149-157.
pmid: 12526780 |
[75] | Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift fu Psychologie / Journal of Psychology, 219(1), 3-22. |
[76] |
Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives, 12(4), 223-229.
doi: 10.1111/cdep.12288 pmid: 30534193 |
[77] |
Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278-293.
doi: S0022-0965(16)30087-X pmid: 27596808 |
[78] |
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019.
doi: 10.1177/0956797613482944 pmid: 23921769 |
[79] |
Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200.
doi: 10.1016/j.cognition.2014.06.011 pmid: 25044247 |
[80] |
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.
doi: 10.1016/j.cognition.2010.03.012 pmid: 20381023 |
[81] |
Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408-415.
doi: 10.1016/j.cognition.2008.09.003 pmid: 18976986 |
[82] |
Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: Operation signs have spatial associations. Quarterly Journal of Experimental Psychology, 67(8), 1527-1540.
doi: 10.1080/17470218.2014.892516 URL |
[83] |
Pinhas, M., Shaki, S., & Fischer, M. H. (2015). Addition goes where the big numbers are: Evidence for a reversed operational momentum effect. Psychonomic Bulletin & Review, 22(4), 993-1000.
doi: 10.3758/s13423-014-0786-z URL |
[84] |
Pinheiro-Chagas, P., Didino, D., Haase, V. G., Wood, G., & Knops, A. (2018). The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 9, 1062.
doi: 10.3389/fpsyg.2018.01062 pmid: 30065673 |
[85] |
Qu, C., Szkudlarek, E., & Brannon, E. M. (2021). Approximate multiplication in young children prior to multiplication instruction. Journal of Experimental Child Psychology, 207, 105116.
doi: 10.1016/j.jecp.2021.105116 URL |
[86] |
Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low-income children's mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727-1742.
doi: 10.1111/cdev.12662 pmid: 27921305 |
[87] |
Shaki, S., & Fischer, M. H. (2017). Competing biases in mental arithmetic: When division is more and multiplication is less. Frontiers in Human Neuroscience, 11, 37.
doi: 10.3389/fnhum.2017.00037 pmid: 28203152 |
[88] | Shaki, S., Pinhas, M., & Fischer, M. H. (2018). Heuristics and biases in mental arithmetic: Revisiting and reversing operational momentum. Thinking & Reasoning, 24(2), 138-156. |
[89] |
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-250.
pmid: 12741747 |
[90] |
Spelke, E. S. (2017). Core knowledge, language, and number. Language Learning and Development, 13(2), 147-170.
doi: 10.1080/15475441.2016.1263572 URL |
[91] |
Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190.
doi: 10.1080/15475441.2016.1263573 pmid: 28344520 |
[92] |
Szkudlarek, E., & Brannon, E. M. (2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9, 606.
doi: 10.3389/fpsyg.2018.00606 pmid: 29867624 |
[93] |
Szkudlarek, E., & Brannon, E. M. (2021). First and second graders successfully reason about ratios with both dot arrays and Arabic numerals. Child Development, 92(3), 1011-1027.
doi: 10.1111/cdev.13470 pmid: 33609044 |
[94] |
Szkudlarek, E., Park, J., & Brannon, E. M. (2021). Failure to replicate the benefit of approximate arithmetic training for symbolic arithmetic fluency in adults. Cognition, 207, 104521.
doi: 10.1016/j.cognition.2020.104521 URL |
[95] |
Tam, Y. P., Wong, T. T. Y., & Chan, W. W. L. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24.
doi: 10.1016/j.cedpsych.2018.10.007 URL |
[96] |
Thompson, J. M., Nuerk, H. C., Moeller, K., & Kadosh, R. C. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144(2), 324-331.
doi: 10.1016/j.actpsy.2013.05.009 pmid: 23933002 |
[97] |
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402.
doi: 10.1037/a0028446 pmid: 22663761 |
[98] |
van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505.
doi: 10.1111/desc.12143 pmid: 24498980 |
[99] |
Vilkomir, T., & O’Donoghue, J. (2009). Using components of mathematical ability for initial development and identification of mathematically promising students. International Journal of Mathematical Education in Science and Technology, 40(2), 183-199.
doi: 10.1080/00207390802276200 URL |
[100] | Wang, J., Halberda, J., & Feigenson, L. (2021). Emergence of the link between the approximate number system and symbolic math ability. Child Development, 92(2), e186-e200. |
[101] |
Wang, J. J., Libertus, M. E., & Feigenson, L. (2018). Hysteresis-induced changes in preverbal infants’ approximate number precision. Cognitive Development, 47, 107-116.
doi: 10.1016/j.cogdev.2018.05.002 URL |
[102] |
Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82-99.
doi: 10.1016/j.jecp.2016.03.002 URL |
[103] |
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749-750.
doi: 10.1038/358749a0 URL |
[104] |
Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educational Psychology Review, 32, 113-155.
doi: 10.1007/s10648-019-09496-y URL |
[105] |
Zhang, X., Räsänen, P., Koponen, T., Aunola, K., Lerkkanen, M. K., & Nurmi, J. E. (2017). Knowing, applying, and reasoning about arithmetic: Roles of domain-general and numerical skills in multiple domains of arithmetic learning. Developmental Psychology, 53(12), 2304-2318.
doi: 10.1037/dev0000432 pmid: 29083215 |
[106] |
Zhu, R., Luo, Y., You, X., & Wang, Z. (2018). Spatial bias induced by simple addition and subtraction: From eye movement evidence. Perception, 47(2), 143-157.
doi: 10.1177/0301006617738718 pmid: 29132267 |
[107] |
Zhu, R., You, X., Gan, S., & Wang, J. (2019). Spatial attention shifts in addition and subtraction arithmetic: Evidence of eye movement. Perception, 48(9), 835-849.
doi: 10.1177/0301006619865156 pmid: 31324133 |
[1] | 吴秀英, 李菲菲, 刘宝根. 词典互动对儿童电子图画书阅读的影响[J]. 心理科学进展, 2023, 31(5): 759-768. |
[2] | 成美霞, 匡子翌, 冷晓雪, 张洋, 王福兴. 以教促学:学习者自我生成教学对学习的影响[J]. 心理科学进展, 2023, 31(5): 769-782. |
[3] | 吴佳桧, 傅海伦, 张玉环. 感知社会支持与学生学业成就关系的元分析:学习投入的中介作用[J]. 心理科学进展, 2023, 31(4): 552-569. |
[4] | 匡子翌, 成美霞, 李文静, 王福兴, 胡祥恩. 视频教学中教师的眼神注视能否促进学习?[J]. 心理科学进展, 2022, 30(10): 2291-2302. |
[5] | 王燕青, 龚少英, 姜甜甜, 吴亚男. 情感代理能否提高多媒体学习的效果?[J]. 心理科学进展, 2022, 30(7): 1524-1535. |
[6] | 成晓君, 刘美焕, 潘亚峰, 李红. 教与学的大脑:人际神经科学助推教育研究[J]. 心理科学进展, 2021, 29(11): 1993-2001. |
[7] | 李莹, 张灿, 王悦. 道德情绪在道德隐喻映射中的作用及其神经机制[J]. 心理科学进展, 2019, 27(7): 1224-1231. |
[8] | 赵凤青, 俞国良. 日常性学业弹性:日常学业压力下的积极适应机制 *[J]. 心理科学进展, 2018, 26(6): 1054-1062. |
[9] | 匡子翌, 张洋, 王福兴, 杨晓梦, 胡祥恩. 教师的存在能否促进视频学习?[J]. 心理科学进展, 2021, 29(12): 2184-2194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||