[1] |
Ahmad F. N., & Hockley W. E . (2014). The role of familiarity in associative recognition of unitized compound word pairs. The Quarterly Journal of Experimental Psychology, 67(12), 2301-2324.
doi: 10.1080/17470218.2014.923007
URL
pmid: 24873736
|
[2] |
Bao X. H., Ji M., Huang J., He L. G., & You X. Q . (2014). The Effects of activation levels of visual long-term memory on visual short-term memory. Acta Psychologica Sinica, 46(8), 1086-1093.
|
|
[ 鲍旭辉, 姬鸣, 黄杰, 何立国, 游旭群 . (2014). 视觉长时记忆激活度对促进视觉短时记忆的影响. 心理学报, 46(8), 1086-1093.]
|
[3] |
Bastin C., Diana R. A., Simon J., Collette F., Yonelinas A. P., & Salmon E . (2013). Associative memory in aging: The effect of unitization on source memory. Psychology & Aging, 28(1), 275-283.
doi: 10.1037/a0031566
URL
pmid: 23527745
|
[4] |
Brady T. F., Konkle T., & Alvarez G. A . (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4-4.
doi: 10.1167/11.5.4
URL
pmid: 21617025
|
[5] |
Brady T. F., Konkle T., Gill J., Oliva A., & Alvarez G. A . (2013). Visual long-term memory has the same limit on fidelity as visual working memory. Psychological Science, 24(6), 981-990.
doi: 10.1177/0956797612465439
URL
pmid: 23630219
|
[6] |
Brown G. D. A., Neath I., & Chater N . (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539-576.
doi: 10.1037/0033-295X.114.3.539
URL
pmid: 17638496
|
[7] |
Cowan N . (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163-191.
doi: 10.1037/0033-2909.104.2.163
URL
pmid: 3054993
|
[8] |
Cowan N . (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory. Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge, England: Cambridge University Press.
|
[9] |
Cowan, & Nelson . (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.
doi: 10.1017/s0140525x01003922
URL
pmid: 11515286
|
[10] |
Delorme A., & Makeig S . (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009
URL
pmid: 15102499
|
[11] |
Eichenbaum H . (2016). Memory: Organization and control. Annual Review of Psychology, 68(1), 19-45.
|
[12] |
Ezzyat Y., & Davachi L . (2014). Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81(5), 1179-1189.
doi: 10.1016/j.neuron.2014.01.042
URL
pmid: 24607235
|
[13] |
Feldmann-Wüstefeld T., Vogel E. K., & Awh E . (2018). Contralateral delay activity indexes working memory storage, not the current focus of spatial attention. Journal of Cognitive Neuroscience, 30(8), 1185-1196.
doi: 10.1162/jocn_a_01271
URL
pmid: 29694260
|
[14] |
Fukuda K., & Woodman G. F . (2017). Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the National Academy of Sciences, 114(20), 5306-5311.
doi: 10.1073/pnas.1617874114
URL
pmid: 28461479
|
[15] |
Guillaume F., & Etienne Y . (2015). Target-context unitization effect on the familiarity-related FN400: A face recognition exclusion task. International Journal of Psychophysiology, 95(3), 345-354.
doi: 10.1016/j.ijpsycho.2015.01.004
URL
pmid: 25583572
|
[16] |
Hasson U., & Chen J., Honey C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6):304-313.
doi: 10.1016/j.tics.2015.04.006
URL
pmid: 25980649
|
[17] |
Jeneson A., & Squire L. R . (2012). Working memory, long-term memory, and medial temporal lobe function. Learning & Memory, 19(1), 15-25.
doi: 10.1101/lm.024018.111
URL
pmid: 22180053
|
[18] |
Jung T.s-P., Makeig S., Humphries C., Lee T.-W., Mckeown M. J., Iragui V., & Sejnowski T. J . (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178.
URL
pmid: 10731767
|
[19] |
Kcs A., Robison M. K., & Vogel E. K . (2018). Contralateral delay activity tracks fluctuations in working memory performance. Journal of Cognitive Neuroscience, 30(9), 1229-1240.
doi: 10.1162/jocn_a_01233
URL
pmid: 29308988
|
[20] |
Liu Z. X., Grady C., & Moscovitch M . (2016). Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex, 27(3), 1991-2009.
doi: 10.1093/cercor/bhw047
URL
pmid: 26941384
|
[21] |
Luck S. J., & Vogel E. K . (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
doi: 10.1038/36846
URL
pmid: 9384378
|
[22] |
Oberauer K . (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421
URL
pmid: 12018494
|
[23] |
Oberauer K., Awh E., & Sutterer D. W . (2016). The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(1), 1-22.
doi: 10.1037/xlm0000302
URL
pmid: 27685018
|
[24] |
Oberauer K., & Lin H. Y . (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59.
doi: 10.1037/rev0000044
URL
pmid: 27869455
|
[25] |
Old S. R., & Naveh-Benjamin M . (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104-118.
doi: 10.1037/0882-7974.23.1.104
URL
pmid: 18361660
|
[26] |
Olson I. R., & Jiang Y. H . (2004). Visual short-term memory is not improved by training. Memory & Cognition, 32(8), 1326-1332.
doi: 10.3758/bf03206323
URL
pmid: 15900926
|
[27] |
Parks C. M., & Yonelinas A. P . (2015). The importance of unitization for familiarity-based learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 881-903.
|
[28] |
Sauvage M. M., Beer Z., & Eichenbaum H . (2010). Recognition memory: Adding a response deadline eliminates recollection but spares familiarity. Learning & Memory, 17(2), 104-108.
doi: 10.1101/lm.1647710
URL
pmid: 20154356
|
[29] |
Schurgin M. W., & Flombaum J. I . (2015). Visual long-term memory has weaker fidelity than working memory. Visual Cognition, 23(7), 859-862.
|
[30] |
Thavabalasingam S., O’Neil E. B., Tay J., Nestor A., & Lee A. C. H . (2019). Evidence for the incorporation of temporal duration information in human hippocampal long-term memory sequence representations. Proceedings of the National Academy of Sciences, 116(13), 6407-6414.
doi: 10.1073/pnas.1819993116
URL
pmid: 30862732
|
[31] |
Wang J. X., Rogers L. M., Gross E. Z., Ryals A. J., Dokucu M. E., & Brandstatt K. L. … Voss J. L . (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 1054-1057.
doi: 10.1126/science.1252900
URL
pmid: 25170153
|
[32] |
Xie W., & Zhang W . (2017). Familiarity speeds up visual short-term memory consolidation: Electrophysiological evidence from contralateral delay activities. Journal of Cognitive Neuroscience, 30(1), 1-13.
doi: 10.1162/jocn_a_01188
URL
pmid: 28891784
|
[33] |
Yonelinas A. P., Aly M., Wang W.-C., & Koen J. D . (2010). Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus, 20(11), 1178-1194.
doi: 10.1002/hipo.20864
URL
pmid: 20848606
|
[34] |
Zalesak M., & Heckers S . (2009). The role of the hippocampus in transitive inference. Psychiatry Research: Neuroimaging, 172(1), 24-30.
doi: 10.1016/j.pscychresns.2008.09.008
URL
pmid: 19216061
|
[35] |
Zeithamova D., Dominick A. L., & Preston A. R . (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168-79.
doi: 10.1016/j.neuron.2012.05.010
URL
pmid: 22794270
|