心理学报 ›› 2025, Vol. 57 ›› Issue (2): 191-206.doi: 10.3724/SP.J.1041.2025.0191 cstr: 32110.14.2025.0191
• 研究报告 • 下一篇
收稿日期:
2024-07-22
发布日期:
2024-12-20
出版日期:
2025-02-25
通讯作者:
李寿欣, E-mail: shouxinli@sdnu.edu.cn基金资助:
LIAN Haomin, ZHANG Qian, GU Xuemin, LI Shouxin()
Received:
2024-07-22
Online:
2024-12-20
Published:
2025-02-25
摘要:
采用行为实验、事件相关电位和事件相关光信号联合采集技术, 通过操纵视觉工作记忆(VWM)项目的检测概率变化VWM项目加工的优先性, 探讨持续性视觉注意对VWM项目优先加工的影响是否受到工作记忆资源的调节, 以及VWM项目优先加工的神经基础。行为结果显示, 在VWM保持阶段插入消耗视觉注意的任务, 当优先加工1个项目时, 非优先项目受到干扰, 而优先项目不受影响; 当优先加工2个项目时, 优先与非优先项目均受到干扰。事件相关电位和事件相关光信号结果显示, 在VWM保持阶段, 与无项目优先加工相比, 存在项目优先加工时诱发更大的晚期正成分和负慢波, 更高激活额叶和枕叶。这表明, 持续性视觉注意对VWM项目优先加工的作用受到工作记忆资源的调节, VWM项目优先加工的潜在机制是在保持阶段激活额叶和枕叶, 并投入更多的工作记忆资源, 增强优先项目的表征稳定性。
中图分类号:
连浩敏, 张倩, 谷雪敏, 李寿欣. (2025). 持续性视觉注意对视觉工作记忆项目优先加工的影响. 心理学报, 57(2), 191-206.
LIAN Haomin, ZHANG Qian, GU Xuemin, LI Shouxin. (2025). Influence of sustained visual attention on the prioritization of visual working memory. Acta Psychologica Sinica, 57(2), 191-206.
时间点 | 脑区 | Talairach坐标(x, y, z) | Peak Z | Peak Z(crit) | p |
---|---|---|---|---|---|
416 ms | 额叶 | −16, 9, 48 | 2.35 | 2.06 | 0.020 |
416 ms | 枕叶 | 22, −83, 33 | 2.30 | 2.14 | 0.016 |
544 ms | 额叶 | 34, −6, 51 | 2.46 | 2.44 | 0.007 |
608 ms | 额叶 | 34, 37, 33 | 2.64 | 2.62 | 0.004 |
832 ms | 额叶 | 12, −3, 56 | 2.38 | 2.12 | 0.017 |
1056 ms | 额叶 | 19, 29, 45 | 2.27 | 2.19 | 0.014 |
1248 ms | 枕叶 | 7, −83, 32 | 2.56 | 2.32 | 0.010 |
1280 ms | 枕叶 | 9, −88, 29 | 3.53 | 2.48 | 0.007 |
表1 实验3 VWM任务保持阶段提示线索减中性线索存在更高激活差异的脑区
时间点 | 脑区 | Talairach坐标(x, y, z) | Peak Z | Peak Z(crit) | p |
---|---|---|---|---|---|
416 ms | 额叶 | −16, 9, 48 | 2.35 | 2.06 | 0.020 |
416 ms | 枕叶 | 22, −83, 33 | 2.30 | 2.14 | 0.016 |
544 ms | 额叶 | 34, −6, 51 | 2.46 | 2.44 | 0.007 |
608 ms | 额叶 | 34, 37, 33 | 2.64 | 2.62 | 0.004 |
832 ms | 额叶 | 12, −3, 56 | 2.38 | 2.12 | 0.017 |
1056 ms | 额叶 | 19, 29, 45 | 2.27 | 2.19 | 0.014 |
1248 ms | 枕叶 | 7, −83, 32 | 2.56 | 2.32 | 0.010 |
1280 ms | 枕叶 | 9, −88, 29 | 3.53 | 2.48 | 0.007 |
[1] | Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, & Psychophysics, 80(7), 1731-1743. |
[2] | Atkinson, A. L., Berry, E. D., Waterman, A. H., Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2018). Are there multiple ways to direct attention in working memory? Annals of the New York Academy of Sciences, 1424(1), 115-126. |
[3] | Atkinson, A. L., Oberauer, K., Allen, R. J., & Souza, A. S. (2022). Why does the probe value effect emerge in working memory? Examining the biased attentional refreshing account. Psychonomic Bulletin & Review, 29(3), 891-900. |
[4] |
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126.
pmid: 11239812 |
[5] |
Barbosa, J., Stein, H., Martinez, R. L., Galan-Gadea, A., Li, S., Dalmau, J.,... Compte, A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23(8), 1016-1024.
doi: 10.1038/s41593-020-0644-4 pmid: 32572236 |
[6] |
Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19, 150-157.
doi: 10.1038/nn.4174 pmid: 26595654 |
[7] | Camos, V., Johnson, M., Loaiza, V., Portrat, S., Souza, A., & Vergauwe, E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424(1), 19-32. |
[8] | Che, X., Lian, H., Zhang, F., Li, S., & Zheng, Y. (2024). The reactivation of working memory representations affects attentional guidance. Psychophysiology, 61(3), e14514. |
[9] | Che, X., Wang, K., Shangguan, M., & Li, S. (2020). The Representation of attention template in visual working memory: An EROS study. Studies of Psychology and Behavior, 18(3), 297-303. |
[车晓玮, 王凯旋, 上官梦麒, 李寿欣. (2020). 视觉工作记忆中注意模板的表征—来自EROS 的证据. 心理与行为研究, 18(3), 297-303.] | |
[10] |
Che, X., Xu, H., Wang, K., Zhang, Q., & Li, S. (2021). Precision requirement of working memory representations influences attentional guidance. Acta Psychologica Sinica, 53(7), 694-713.
doi: 10.3724/SP.J.1041.2021.00694 |
[车晓玮, 徐慧云, 王凯旋, 张倩, 李寿欣. (2021). 工作记忆表征精度加工需求对注意引导的影响. 心理学报, 53(7), 694-713.]
doi: 10.3724/SP.J.1041.2021.00694 |
|
[11] |
Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J. D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494-496.
doi: 10.1038/s41593-018-0094-4 pmid: 29507410 |
[12] | Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101. |
[13] |
Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454-1465.
doi: 10.1037/xhp0000398 pmid: 28368161 |
[14] |
Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893-905.
doi: 10.1016/j.neuron.2015.07.013 pmid: 26257053 |
[15] | Ester, E. F., & Pytel, P. (2023). Changes in behavioral priority influence the accessibility of working memory content. NeuroImage, 272, 120055. |
[16] |
Fabiani, M., Low, K. A., Wee, E., Sable, J. J., & Gratton, G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults. Journal of Cognitive Neuroscience, 18(4), 637-650.
pmid: 16768366 |
[17] | Fu, X., Ye, C., Hu, Z., Li, Z., Liang, T., & Liu, Q. (2022). The impact of retro-cue validity on working memory representation: Evidence from electroencephalograms. Biological Psychology, 170, 108320. |
[18] | Gao, Z., Li, J., Wu, J., Dai, A., Liao, H., & Shen, M. (2022). Diverting the focus of attention in working memory through a perceptual task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 876-905. |
[19] |
Gratton, G., & Corballis, P. M. (1995). Removing the heart from the brain: Compensation for the pulse artifact in the photon migration signal. Psychophysiology, 32(3), 292-299.
pmid: 7784538 |
[20] |
Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.
doi: 10.1162/089892903322598139 pmid: 14709235 |
[21] | Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, C. N. (2019). EEG dynamics reveal a dissociation between storage and selective attention within working memory. Scientific Reports, 9(1), 13499. |
[22] | Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632-635. |
[23] | Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception, & Psychophysics, 82(1), 280-293. |
[24] | Hitch, G. J., Hu, Y., Allen, R. J., & Baddeley, A. D. (2018). Competition for the focus of attention in visual working memory:Perceptual recency versus executive control. Annals of the New York Academy of Sciences, 1424(1), 64-75. |
[25] |
Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047-1058.
doi: 10.1037/a0030238 pmid: 23067118 |
[26] | Hu, Y., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164-2175. |
[27] |
Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1665-1678.
doi: 10.1037/a0037163 pmid: 24933616 |
[28] | Huang, J., Wang, S., Jia, S., Mo, D., & Chen, H. C. (2013). Cortical dynamics of semantic processing during sentence comprehension: Evidence from event-related optical signals. PloS One, 8(8), e70671. |
[29] | Jeanneret, S., Bartsch, L. M., & Vergauwe, E. (2023). To be or not to be relevant: Comparing short-and long-term consequences across working memory prioritization procedures. Attention, Perception, & Psychophysics, 85(5), 1486-1498. |
[30] |
Jia, K., Li, Y., Gong, M., Huang, H., Wang, Y., & Li, S. (2021). Perceptual learning beyond perception: Mnemonic representation in early visual cortex and intraparietal sulcus. Journal of Neuroscience, 41(20), 4476-4486.
doi: 10.1523/JNEUROSCI.2780-20.2021 pmid: 33811151 |
[31] | Li, D., Hu, Y., Qi, M., Zhao, C., Jensen, O., Huang, J., & Song, Y. (2023). Prioritizing flexible working memory representations through retrospective attentional strengthening. NeuroImage, 269, 119902. |
[32] |
Liang, T., Chen, X., Ye, C., Zhang, J., & Liu, Q. (2019). Electrophysiological evidence supports the role of sustained visuospatial attention in maintaining visual WM contents. International Journal of Psychophysiology, 146, 54-62.
doi: S0167-8760(19)30504-5 pmid: 31639381 |
[33] |
Lorenc, E. S., Mallett, R., & Lewis-Peacock, J. A. (2021). Distraction in visual working memory: Resistance is not futile. Trends in Cognitive Sciences, 25(3), 228-239.
doi: 10.1016/j.tics.2020.12.004 pmid: 33397602 |
[34] |
Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A. R., & D'Esposito, M. (2018). Flexible coding of visual working memory representations during distraction. Journal of Neuroscience, 38(23), 5267-5276.
doi: 10.1523/JNEUROSCI.3061-17.2018 pmid: 29739867 |
[35] |
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356.
doi: 10.1038/nn.3655 pmid: 24569831 |
[36] | Macedo-Pascual, J., Capilla, A., Campo, P., Hinojosa, J. A., & Poch, C. (2023). Selection within working memory impairs perceptual detection. Psychonomic Bulletin & Review, 30(4), 1442-1451. |
[37] | Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421. |
[38] | Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601-605. |
[39] |
Proulx, N., Samadani, A. A., & Chau, T. (2018). Quantifying fast optical signal and event-related potential relationships during a visual oddball task. NeuroImage, 178, 119-128.
doi: S1053-8119(18)30438-5 pmid: 29777826 |
[40] | Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42(5), 712-728. |
[41] | Rose, N. S. (2020). The dynamic-processing model of working memory. Current Directions in Psychological Science, 29(4), 378-387. |
[42] | Sandry, J., & Ricker, T. J. (2020). Prioritization within visual working memory reflects a flexible focus of attention. Attention, Perception, & Psychophysics, 82(6), 2985-3004. |
[43] | Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763. |
[44] |
Schneider, D., Barth, A., Getzmann, S., & Wascher, E. (2017). On the neural mechanisms underlying the protective function of retroactive cuing against perceptual interference: Evidence by event-related potentials of the EEG. Biological Psychology, 124, 47-56.
doi: S0301-0511(17)30006-6 pmid: 28115199 |
[45] | Souza, A. S., Czoschke, S., & Lange, E. B. (2020). Gaze-based and attention-based rehearsal in spatial working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(5), 980-1003. |
[46] |
Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138.
doi: 10.1037/xhp0000212 pmid: 26854532 |
[47] | Teng, C., & Postle, B. R. (2024). Investigating the roles of the visual and parietal cortex in representing content versus context in visual working memory. eNeuro, 11(2), ENEURO. 0270-20.2024. |
[48] | Wang, M., Liu, H., Chen, Y., Yang, P., & Fu, S. (2023). Different prioritization states of working memory representations affect visual searches: Evidence from an event-related potential study. International Journal of Psychophysiology, 193, 112246. |
[49] | Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory. Memory & Cognition, 41(5), 698-715. |
[50] | Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. |
[51] | Zhang, Z., & Lewis-Peacock, J. A. (2023a). Prioritization sharpens working memories but does not protect them from distraction. Journal of Experimental Psychology: General, 152(4), 1158-1174. |
[52] | Zhang, Z., & Lewis-Peacock, J. A. (2023b). Bend but don't break: Prioritization protects working memory from displacement but leaves it vulnerable to distortion from distraction. Cognition, 239, 105574. |
[1] | 李子媛, 雷鸣, 刘强. 视觉工作记忆离线态表征的生成机制[J]. 心理学报, 2024, 56(4): 412-420. |
[2] | 庞超, 陈颜璋, 王莉, 杨喜端, 贺雅, 李芷莹, 欧阳小钰, 傅世敏, 南威治. 客体信息在视觉工作记忆编码和维持阶段的不同注意选择模式[J]. 心理学报, 2023, 55(9): 1397-1410. |
[3] | 周子暖, 陈颜璋, 傅世敏. 预期对注意的影响受制于被预期主体是目标还是分心物[J]. 心理学报, 2022, 54(3): 221-235. |
[4] | 李杰, 杨悦, 赵婧. 汉语发展性阅读障碍儿童视觉同时性加工技能子成分的发展及其与阅读的关系[J]. 心理学报, 2021, 53(8): 821-836. |
[5] | 孙彦良, 宋佳汝, 辛晓雯, 丁晓伟, 李寿欣. 视觉工作记忆的同类别存储优势[J]. 心理学报, 2021, 53(11): 1189-1202. |
[6] | 叶超雄, 胡中华, 梁腾飞, 张加峰, 许茜如, 刘强. 视觉工作记忆回溯线索效应的产生机制:认知阶段分离[J]. 心理学报, 2020, 52(4): 399-413. |
[7] | 张頔, 郝仁宁, 刘强. 注意范围分布对视觉工作记忆巩固过程的影响[J]. 心理学报, 2019, 51(7): 772-780. |
[8] | 李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. 视觉工作记忆负载类型对注意选择的影响[J]. 心理学报, 2019, 51(5): 527-542. |
[9] | 王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738. |
[10] | 刘璐, 闫国利. 聋人阅读中的副中央凹视觉注意增强效应——来自消失文本的证据[J]. 心理学报, 2018, 50(7): 715-726. |
[11] | 王静, 薛成波, 刘强. 客体同维度特征的视觉工作记忆存储机制[J]. 心理学报, 2018, 50(2): 176-185. |
[12] | 黄羽商, 曹立人. 基于空间方位信息的构型对视觉工作记忆绩效的影响[J]. 心理学报, 2018, 50(11): 1222-1234. |
[13] | 李腾飞, 马 楠, 胡中华, 刘 强. 空间距离对视觉工作记忆巩固的影响[J]. 心理学报, 2017, 49(6): 711-722. |
[14] | 薛成波;叶超雄;张引;刘强. 视觉工作记忆中特征绑定关系的记忆机制[J]. 心理学报, 2015, 47(7): 851-858. |
[15] | 黎翠红;何旭;郭春彦. 多特征刺激在视觉工作记忆中的存储模式[J]. 心理学报, 2015, 47(6): 734-745. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||