[1] Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference.Attention, Perception, & Psychophysics, 80(7), 1731-1743. [2] Atkinson A. L., Berry E. D., Waterman A. H., Baddeley A. D., Hitch G. J., & Allen R. J. (2018). Are there multiple ways to direct attention in working memory?Annals of the New York Academy of Sciences. 1424(1), 115-126. [3] Atkinson A. L., Oberauer K., Allen R. J., & Souza A. S. (2022). Why does the probe value effect emerge in working memory? Examining the biased attentional refreshing account.Psychonomic Bulletin & Review, 29(3), 891-900. [4] Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory.Trends in Cognitive Sciences, 5(3), 119-126. [5] Barbosa J., Stein H., Martinez R. L., Galan-Gadea A., Li S., Dalmau J.,.. Compte A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory.Nature Neuroscience, 23(8), 1016-1024. [6] Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas.Nature Neuroscience, 19, 150-157. [7] Camos V., Johnson M., Loaiza V., Portrat S., Souza A., & Vergauwe E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424(1), 19-32. [8] Che X., Lian H., Zhang F., Li S., & Zheng Y. (2024). The reactivation of working memory representations affects attentional guidance.Psychophysiology, 61(3), e14514. [9] Che X., Wang K., Shangguan M., & Li S. (2020). The Representation of attention template in visual working memory: An EROS study.Studies of Psychology and Behavior, 18(3), 297-303. [车晓玮, 王凯旋, 上官梦麒, 李寿欣. (2020). 视觉工作记忆中注意模板的表征—来自EROS 的证据.心理与行为研究, 18(3), 297-303.] [10] Che X., Xu H., Wang K., Zhang Q., & Li S. (2021). Precision requirement of working memory representations influences attentional guidance.Acta Psychologica Sinica, 53(7), 694-713. [车晓玮, 徐慧云, 王凯旋, 张倩, 李寿欣. (2021). 工作记忆表征精度加工需求对注意引导的影响.心理学报, 53(7), 694-713.] [11] Christophel T. B., Iamshchinina P., Yan C., Allefeld C., & Haynes J. D. (2018). Cortical specialization for attended versus unattended working memory.Nature Neuroscience, 21(4), 494-496. [12] Cohen, J. (1992). Statistical power analysis.Current Directions in Psychological Science, 1(3), 98-101. [13] Emrich S. M., Lockhart H. A., & Al-Aidroos N. (2017). Attention mediates the flexible allocation of visual working memory resources.Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454-1465. [14] Ester E. F., Sprague T. C., & Serences J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory.Neuron, 87(4), 893-905. [15] Ester, E. F., & Pytel, P. (2023). Changes in behavioral priority influence the accessibility of working memory content.NeuroImage, 272, 120055. [16] Fabiani M., Low K. A., Wee E., Sable J. J., & Gratton G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults.Journal of Cognitive Neuroscience, 18(4), 637-650. [17] Fu X., Ye C., Hu Z., Li Z., Liang T., & Liu Q. (2022). The impact of retro-cue validity on working memory representation: Evidence from electroencephalograms.Biological Psychology, 170, 108320. [18] Gao Z., Li J., Wu J., Dai A., Liao H., & Shen M. (2022). Diverting the focus of attention in working memory through a perceptual task.Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 876-905. [19] Gratton, G., & Corballis, P. M. (1995). Removing the heart from the brain: Compensation for the pulse artifact in the photon migration signal.Psychophysiology, 32(3), 292-299. [20] Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations.Journal of Cognitive Neuroscience, 15(8), 1176-1194. [21] Günseli E., Fahrenfort J. J., van Moorselaar D., Daoultzis K. C., Meeter M., & Olivers C. N. (2019). EEG dynamics reveal a dissociation between storage and selective attention within working memory.Scientific Reports, 9(1), 13499. [22] Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas.Nature, 458(7238), 632-635. [23] Hitch G. J., Allen R. J., & Baddeley A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage.Attention, Perception, & Psychophysics, 82(1), 280-293. [24] Hitch G. J., Hu Y., Allen R. J., & Baddeley A. D. (2018). Competition for the focus of attention in visual working memory: Perceptual recency versus executive control.Annals of the New York Academy of Sciences, 1424(1), 64-75. [25] Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention.Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047-1058. [26] Hu Y., Allen R. J., Baddeley A. D., & Hitch G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory.Attention, Perception, & Psychophysics, 78(7), 2164-2175. [27] Hu Y., Hitch G. J., Baddeley A. D., Zhang M., & Allen R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects.Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1665-1678. [28] Huang J., Wang S., Jia S., Mo D., & Chen H. C. (2013). Cortical dynamics of semantic processing during sentence comprehension: Evidence from event-related optical signals.PloS One, 8(8), e70671. [29] Jeanneret S., Bartsch L. M., & Vergauwe E. (2023). To be or not to be relevant: Comparing short-and long-term consequences across working memory prioritization procedures.Attention, Perception, & Psychophysics, 85(5), 1486-1498. [30] Jia K., Li Y., Gong M., Huang H., Wang Y., & Li S. (2021). Perceptual learning beyond perception: Mnemonic representation in early visual cortex and intraparietal sulcus.Journal of Neuroscience, 41(20), 4476-4486. [31] Li D., Hu Y., Qi M., Zhao C., Jensen O., Huang J., & Song Y. (2023). Prioritizing flexible working memory representations through retrospective attentional strengthening.NeuroImage, 269, 119902. [32] Liang T., Chen X., Ye C., Zhang J., & Liu Q. (2019). Electrophysiological evidence supports the role of sustained visuospatial attention in maintaining visual WM contents.International Journal of Psychophysiology, 146, 54-62. [33] Lorenc E. S., Mallett R., & Lewis-Peacock J. A. (2021). Distraction in visual working memory: Resistance is not futile.Trends in Cognitive Sciences, 25(3), 228-239. [34] Lorenc E. S., Sreenivasan K. K., Nee D. E., Vandenbroucke A. R., & D'Esposito M. (2018). Flexible coding of visual working memory representations during distraction.Journal of Neuroscience, 38(23), 5267-5276. [35] Ma W. J., Husain M., & Bays P. M. (2014). Changing concepts of working memory.Nature Neuroscience, 17(3), 347-356. [36] Macedo-Pascual J., Capilla A., Campo P., Hinojosa J. A., & Poch C. (2023). Selection within working memory impairs perceptual detection.Psychonomic Bulletin & Review, 30(4), 1442-1451. [37] Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention.Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421. [38] Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention.Nature, 592(7855), 601-605. [39] Proulx N., Samadani A. A., & Chau T. (2018). Quantifying fast optical signal and event-related potential relationships during a visual oddball task.NeuroImage, 178, 119-128. [40] Rerko L., Souza A. S., & Oberauer K. (2014). Retro-cue benefits in working memory without sustained focal attention.Memory & Cognition, 42(5), 712-728. [41] Rose, N. S. (2020). The dynamic-processing model of working memory.Current Directions in Psychological Science, 29(4), 378-387. [42] Sandry, J., & Ricker, T. J. (2020). Prioritization within visual working memory reflects a flexible focus of attention.Attention, Perception, & Psychophysics, 82(6), 2985-3004. [43] Schmidt B. K., Vogel E. K., Woodman G. F., & Luck S. J. (2002). Voluntary and automatic attentional control of visual working memory.Perception & Psychophysics, 64(5), 754-763. [44] Schneider D., Barth A., Getzmann S., & Wascher E. (2017). On the neural mechanisms underlying the protective function of retroactive cuing against perceptual interference: Evidence by event-related potentials of the EEG.Biological Psychology, 124, 47-56. [45] Souza A. S., Czoschke S., & Lange E. B. (2020). Gaze-based and attention-based rehearsal in spatial working memory.Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(5), 980-1003. [46] Tas A. C., Luck S. J., & Hollingworth A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting.Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138. [47] Teng, C., & Postle, B. R. (2024). Investigating the roles of the visual and parietal cortex in representing content versus context in visual working memory. eNeuro, 11(2), ENEURO.0270-20.2024. [48] Wang M., Liu H., Chen Y., Yang P., & Fu S. (2023). Different prioritization states of working memory representations affect visual searches: Evidence from an event-related potential study.International Journal of Psychophysiology, 193, 112246. [49] Williams M., Pouget P., Boucher L., & Woodman G. F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory.Memory & Cognition, 41(5), 698-715. [50] Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory.Nature, 453(7192), 233-235. [51] Zhang, Z., & Lewis-Peacock, J. A. (2023a). Prioritization sharpens working memories but does not protect them from distraction.Journal of Experimental Psychology: General, 152(4), 1158-1174. [52] Zhang, Z., & Lewis-Peacock, J. A. (2023b). Bend but don't break: Prioritization protects working memory from displacement but leaves it vulnerable to distortion from distraction.Cognition, 239, 105574. |