心理学报 ›› 2023, Vol. 55 ›› Issue (2): 210-223.doi: 10.3724/SP.J.1041.2023.00210
高可翔1,2, 张岳瑶2, 李思瑾2, 袁加锦1, 李红1, 张丹丹1,2,3()
收稿日期:
2022-05-16
发布日期:
2022-11-10
出版日期:
2023-02-25
通讯作者:
张丹丹
E-mail:zhangdd05@gmail.com
基金资助:
GAO Kexiang1,2, ZHANG Yueyao2, LI Sijin2, YUAN Jiajin1, LI Hong1, ZHANG Dandan1,2,3()
Received:
2022-05-16
Online:
2022-11-10
Published:
2023-02-25
Contact:
ZHANG Dandan
E-mail:zhangdd05@gmail.com
摘要:
情绪调节对维持个体心理健康、适应社会生活十分重要, 然而以往研究主要关注外显情绪调节, 目前我们对内隐情绪调节的认知神经机制的了解还非常有限。为揭示内隐情绪调节的核心脑区, 本研究使用句子整理任务启动内隐认知重评, 并采用经颅直流电刺激(transcranial direct current stimulation, tDCS)激活内侧前额叶特别是腹内侧前额叶(ventromedial prefrontal cortex, vmPFC), 考察该脑区在内隐情绪调节中的因果作用。结果表明, vmPFC被激活的被试组(实验组, n = 40)在内隐认知重评启动条件下比tDCS伪刺激组(对照组, n = 40), 在观看负性图片时报告了更少的负性情绪, 同时负性图片诱发的晚正成分(late positive potential, LPP)波幅更低(LPP是情绪体验强度的客观指标)。同时, 实验组比对照组在观看负性图片时表现出更低的枕区P1波幅(P1为早期视觉注意程度的客观指标)。以上结果说明, 激活以vmPFC为代表的内侧前额叶不但能增强内隐情绪调节的效果, 还能减少被试对负性刺激的早期注意分配。本研究是采用tDCS技术考察启动引起的内隐情绪调节的首次尝试, 研究结果不但表明了以vmPFC为代表的内侧前额叶在内隐认知重评中的关键作用, 还为临床应用研究指出了增强内隐情绪调节能力的神经调控潜在靶点。
中图分类号:
高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. (2023). 腹内侧前额叶在内隐认知重评中的因果作用. 心理学报, 55(2), 210-223.
GAO Kexiang, ZHANG Yueyao, LI Sijin, YUAN Jiajin, LI Hong, ZHANG Dandan. (2023). Ventromedial prefrontal cortex plays a critical role on implicit emotion regulation: A tDCS study. Acta Psychologica Sinica, 55(2), 210-223.
变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 统计结果 |
---|---|---|---|
年龄(岁) | 20.15 ± 0.29 | 19.52 ± 0.30 | t = 1.49, p = 0.139 |
性别(女/男) | 20/20 | 20/20 | χ2 = 0.00, p = 1.000 |
抑郁(BDI-II) | 5.58 ± 0.95 | 5.05 ± 0.85 | t = 0.41, p = 0.681 |
特质焦虑(STAI-T) | 40.25 ± 1.50 | 38.18 ± 1.35 | t = 1.03, p = 0.306 |
认知重评使用频率(ERQ-R) | 30.38 ± 0.65 | 30.65 ± 0.77 | t = -0.27, p = 0.786 |
表1 本研究两组被试的人口学特征
变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 统计结果 |
---|---|---|---|
年龄(岁) | 20.15 ± 0.29 | 19.52 ± 0.30 | t = 1.49, p = 0.139 |
性别(女/男) | 20/20 | 20/20 | χ2 = 0.00, p = 1.000 |
抑郁(BDI-II) | 5.58 ± 0.95 | 5.05 ± 0.85 | t = 0.41, p = 0.681 |
特质焦虑(STAI-T) | 40.25 ± 1.50 | 38.18 ± 1.35 | t = 1.03, p = 0.306 |
认知重评使用频率(ERQ-R) | 30.38 ± 0.65 | 30.65 ± 0.77 | t = -0.27, p = 0.786 |
变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 统计结果 |
---|---|---|---|
负性情绪程度(总体) | 2.15 ± 0.22 | 2.62 ± 0.28 | t = -1.32, p = 0.189 |
烦躁感 | 1.54 ± 0.16 | 1.79 ± 0.18 | t = -1.03, p = 0.304 |
生理难受程度(总体) | 2.10 ± 0.16 | 2.29 ± 0.26 | t = -0.61, p = 0.545 |
灼烧感 | 2.02 ± 0.20 | 2.22 ± 0.26 | t = -0.60, p = 0.550 |
眩晕恶心感 | 1.40 ± 0.15 | 1.56 ± 0.20 | t = -0.65, p = 0.516 |
刺痛感 | 1.95 ± 0.21 | 2.61 ± 0.27 | t = -1.84, p = 0.070 |
瘙痒感 | 2.18 ± 0.21 | 2.22 ± 0.19 | t = -0.17, p = 0.862 |
舌部异味感 | 1.38 ± 0.18 | 1.75 ± 0.23 | t = -1.26, p = 0.213 |
眼部闪烁感 | 1.52 ± 0.22 | 1.91 ± 0.22 | t = -1.25, p = 0.214 |
表2 两组被试对电流刺激的负性体验
变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 统计结果 |
---|---|---|---|
负性情绪程度(总体) | 2.15 ± 0.22 | 2.62 ± 0.28 | t = -1.32, p = 0.189 |
烦躁感 | 1.54 ± 0.16 | 1.79 ± 0.18 | t = -1.03, p = 0.304 |
生理难受程度(总体) | 2.10 ± 0.16 | 2.29 ± 0.26 | t = -0.61, p = 0.545 |
灼烧感 | 2.02 ± 0.20 | 2.22 ± 0.26 | t = -0.60, p = 0.550 |
眩晕恶心感 | 1.40 ± 0.15 | 1.56 ± 0.20 | t = -0.65, p = 0.516 |
刺痛感 | 1.95 ± 0.21 | 2.61 ± 0.27 | t = -1.84, p = 0.070 |
瘙痒感 | 2.18 ± 0.21 | 2.22 ± 0.19 | t = -0.17, p = 0.862 |
舌部异味感 | 1.38 ± 0.18 | 1.75 ± 0.23 | t = -1.26, p = 0.213 |
眼部闪烁感 | 1.52 ± 0.22 | 1.91 ± 0.22 | t = -1.25, p = 0.214 |
图2 行为结果。A, 自我情绪评分。0~1计分:0分和1分分别代表极端负性和极端正性, 0.5分代表中性。B, 图片效价评分。9点计分:1分和9分分别代表极端负性和极端正性, 5分代表中性。图中的误差条(error bar)代表标准误。小圆圈表示单个被试的数据。C, 自我情绪评分与特质焦虑和抑郁得分的相关关系。为节省空间, 图中仅画出总体样本(n = 80)在重评启动条件下的相关。完整的相关结果见表3。小圆圈和小三角分别表示伪刺激组和阳极刺激组单个被试的数据。** p < 0.01, * p < 0.05。
考察变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 总样本(n = 80) | |||
---|---|---|---|---|---|---|
基线 | 重评启动 | 基线 | 重评启动 | 基线 | 重评启动 | |
抑郁BDI-II | r = -0.29 p = 0.07 | r = -0.28 p = 0.09 | r = -0.13 p = 0.43 | r = -0.16 p = 0.34 | r = -0.21 p = 0.06 | r = -0.23 p = 0.04 |
特质焦虑STAI-T | r = -0.35 p = 0.03 | r = -0.38 p = 0.02 | r = -0.33 p = 0.04 | r = -0.35 p = 0.03 | r = -0.34 p = 0.002 | r = -0.380 p < 0.01 |
认知重评频率ERQ-R | r = 0.06 p = 0.72 | r = 0.09 p = 0.57 | r = -0.03 p = 0.86 | r = 0.15 p = 0.37 | r = 0.01 p = 0.93 | r = 0.12 p = 0.28 |
晚正成分波幅LPP | r = -0.33 p = 0.04 | r = -0.43 p = 0.01 | r = -0.46 p < 0.01 | r = -0.41 p = 0.01 | r = -0.41 p < 0.01 | r = -0.43 p < 0.01 |
表3 自我情绪评分与被试特质及LPP波幅的相关
考察变量 | 伪刺激组(n = 40) | 阳极刺激组(n = 40) | 总样本(n = 80) | |||
---|---|---|---|---|---|---|
基线 | 重评启动 | 基线 | 重评启动 | 基线 | 重评启动 | |
抑郁BDI-II | r = -0.29 p = 0.07 | r = -0.28 p = 0.09 | r = -0.13 p = 0.43 | r = -0.16 p = 0.34 | r = -0.21 p = 0.06 | r = -0.23 p = 0.04 |
特质焦虑STAI-T | r = -0.35 p = 0.03 | r = -0.38 p = 0.02 | r = -0.33 p = 0.04 | r = -0.35 p = 0.03 | r = -0.34 p = 0.002 | r = -0.380 p < 0.01 |
认知重评频率ERQ-R | r = 0.06 p = 0.72 | r = 0.09 p = 0.57 | r = -0.03 p = 0.86 | r = 0.15 p = 0.37 | r = 0.01 p = 0.93 | r = 0.12 p = 0.28 |
晚正成分波幅LPP | r = -0.33 p = 0.04 | r = -0.43 p = 0.01 | r = -0.46 p < 0.01 | r = -0.41 p = 0.01 | r = -0.41 p < 0.01 | r = -0.43 p < 0.01 |
图3 顶区晚正成分(LPP)。A, LPP平均波幅。图中的误差条(error bar)代表标准误。小圆圈表示单个被试的数据。B, 自我情绪评分与LPP平均波幅的相关。为节省空间, 图中仅画出总体样本(n = 80)在重评启动条件下的相关。完整的相关结果见表3。小圆圈和小三角分别表示伪刺激组和阳极刺激组单个被试的数据。*** p < 0.001, ** p < 0.01。C, LPP波形图和地形图。波形为Pz、P3、P4、CP1和CP2的平均波幅。地形图为时间窗1~5 s的平均值。
图4 枕区P1成分。A, P1平均波幅。图中的误差条(error bar)代表标准误。小圆圈表示单个被试的数据。* p < 0.05。B, P1波形图和地形图。该波形为O1、O2、P7和P8的平均波幅。地形图为时间窗100~150 ms的平均值。地形图中, 由于未发现启动的主效应, 合并“启动类型”的两个水平。
[1] |
Abend, R., Sar-El, R., Gonen, T., Jalon, I., Vaisvaser, S., Bar- Haim, Y., & Hendler, T. (2019). Modulating emotional experience using electrical stimulation of the medial- prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation: Technology at the Neural Interface, 22(8), 884-893. https://doi.org/10.1111/ner.12787
doi: 10.1111/ner.12787 URL |
[2] | Bai, L., Ma, H., Huang, Y. X., & Luo, Y. J. (2005). The development of native Chinese affective picture system—A pretest in 46 college students. Chinese Mental Health Journal, 19, 719-722. https://doi.org10.3321/j.issn:1000-6729.2005.11.001 |
[ 白露, 马慧, 黄宇霞, 罗跃嘉. (2005). 中国情绪图片系统的编制——在46名中国大学生中的试用. 中国心理卫生杂志, 19(11), 4.] | |
[3] | Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory (2nd ed.). San Antonio, TX: The Psychological Corporation. |
[4] |
Braunstein, L. M., Gross, J. J., & Ochsner, K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive and Affective Neuroscience, 12(10), 1545-1557. https://doi.org/10.1093/scan/nsx096
doi: 10.1093/scan/nsx096 URL pmid: 28981910 |
[5] | Bulteau, S., Laurin, A., Bach‐ngohou, K., Péré, M., Vibet, M. A., Hardouin, J. B., … Prié, Y. (2022). Feasibility of combining transcranial direct current stimulation and active fully embodied virtual reality for visual height intolerance: A double‐blind randomized controlled study. Journal of Clinical Medicine, 11(2). https://doi.org/10.3390/jcm11020345 |
[6] |
Campbell-Sills, L., Barlow, D. H., Brown, T. A., & Hofmann, S. G. (2006). Effects of suppression and acceptance on emotional responses of individuals with anxiety and mood disorders. Behaviour Research and Therapy, 44(9), 1251-1263. https://doi.org/10.1016/j.brat.2005.10.001
doi: 10.1016/j.brat.2005.10.001 URL pmid: 16300723 |
[7] |
Carretié, L., Hinojosa, J. A., Martín-Loeches, M., Mercado, F., & Tapia, M. (2004). Automatic attention to emotional stimuli: Neural correlates. Human Brain Mapping, 22(4), 290-299. https://doi.org/10.1002/hbm.20037
URL pmid: 15202107 |
[8] |
Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8(5), 387-402. https://doi.org/10.1162/jocn.1996.8.5.387
doi: 10.1162/jocn.1996.8.5.387 URL pmid: 23961943 |
[9] |
Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329(5987), 47-50. https://doi.org/10.1126/science.1188595
doi: 10.1126/science.1188595 URL pmid: 20595607 |
[10] |
D’Argembeau, A., Xue, G., Lu, Z. L., Van der Linden, M., & Bechara, A.(2008). Neural correlates of envisioning emotional events in the near and far future. NeuroImage, 40(1), 398-407. https://doi.org/10.1016/j.neuroimage.2007.11.025
doi: 10.1016/j.neuroimage.2007.11.025 URL pmid: 18164213 |
[11] |
Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 19(12), 1545-1552. https://doi.org/10.1038/nn.4438
doi: 10.1038/nn.4438 URL pmid: 27898086 |
[12] |
Delplanque, S., Lavoie, M. E., Hot, P., Silvert, L., & Sequeira, H. (2004). Modulation of cognitive processing by emotional valence studied through event-related potentials in humans. Neuroscience Letters, 356(1), 1-4. https://doi.org/10.1016/j.neulet.2003.10.014
URL pmid: 14746887 |
[13] |
Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows. A coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58(1), 275-285. https://doi. org/10.1016/j.neuroimage.2011.05.073
doi: 10.1016/j.neuroimage.2011.05.073 URL |
[14] |
Dittert, N., Hüttner, S., Polak, T., & Herrmann, M. J. (2018). Augmentation of fear extinction by transcranial direct current stimulation (tDCS). Frontiers in Behavioral Neuroscience, 12, 76. https://doi.org/10.3389/fnbeh.2018.00076
doi: 10.3389/fnbeh.2018.00076 URL pmid: 29922133 |
[15] |
Erk, S., Mikschl, A., Stier, S., Ciaramidaro, A., Gapp, V., Weber, B., & Walter, H. (2010). Acute and sustained effects of cognitive emotion regulation in major depression. Journal of Neuroscience, 30(47), 15726-15734. https://doi.org/10.1523/JNEUROSCI.1856-10.2010
doi: 10.1523/JNEUROSCI.1856-10.2010 URL pmid: 21106812 |
[16] |
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews. Neuroscience, 16(11), 693-700. https://doi.org/10.1038/nrn4044
doi: 10.1038/nrn4044 URL pmid: 26481098 |
[17] |
Foti, D., & Hajcak, G. (2008). Deconstructing reappraisal: Descriptions preceding arousing pictures modulate the subsequent neural response. Journal of Cognitive Neuroscience, 20(6), 977-988. https://doi.org/10.1162/jocn.2008.20066
doi: 10.1162/jocn.2008.20066 URL pmid: 18211235 |
[18] |
Garnefski, N., & Kraaij, V. (2006). Relationships between cognitive emotion regulation strategies and depressive symptoms: A comparative study of five specific samples. Personality and Individual Differences, 40(8), 1659-1669. https://doi.org/10.1016/j.paid.2005.12.009
doi: 10.1016/j.paid.2005.12.009 URL |
[19] |
Garnefski, N., Rieffe, C., Jellesma, F., Terwogt, M. M., & Kraaij, V. (2007). Cognitive emotion regulation strategies and emotional problems in 9-11-year-old children: The development of an instrument. European Child and Adolescent Psychiatry, 16(1), 1-9. https://doi.org/10.1007/s00787-006-0562-3
URL pmid: 16791542 |
[20] |
Gilam, G., Abend, R., Gurevitch, G., Erdman, A., Baker, H., Ben-Zion, Z., & Hendler, T. (2018). Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex, 109, 156-170. https://doi.org/10.1016/j.cortex.2018.09.010
doi: S0010-9452(18)30309-5 URL pmid: 30343211 |
[21] |
Gottfried, J. A., & Dolan, R. J. (2004). Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neuroscience, 7(10), 1144-1152. https://doi.org/10.1038/nn1314
URL pmid: 15361879 |
[22] |
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74(1), 224-237. https://doi.org/10.1037/0022-3514.74.1.224
doi: 10.1037//0022-3514.74.1.224 URL pmid: 9457784 |
[23] |
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348-362. https://doi.org/10.1037/0022-3514.85.2.348
doi: 10.1037/0022-3514.85.2.348 URL pmid: 12916575 |
[24] |
Gu, R., Ao, X., Mo, L., & Zhang, D. (2020). Neural correlates of negative expectancy and impaired social feedback processing in social anxiety. Social Cognitive and Affective Neuroscience, 15(3), 285-291. https://doi.org/10.1093/scan/nsaa038
doi: 10.1093/scan/nsaa038 URL pmid: 32232371 |
[25] |
Guhn, A., Dresler, T., Andreatta, M., Müller, L. D., Hahn, T., Tupak, S. V., … Herrmann, M. J. (2014). Medial prefrontal cortex stimulation modulates the processing of conditioned fear. Frontiers in Behavioral Neuroscience, 8, 44. https://doi.org/10.3389/fnbeh.2014.00044
doi: 10.3389/fnbeh.2014.00044 URL pmid: 24600362 |
[26] |
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25(3), 400-412. https://doi.org/10.1080/02699931.2010.544160
doi: 10.1080/02699931.2010.544160 URL pmid: 21432682 |
[27] |
Haeffel, G. J., & Howard, G. S. (2010). Self-report: Psychology’s four-letter word. The American Journal of Psychology, 123(2), 181-188. https://doi.org/10.5406/amerjpsyc.123.2.0181
doi: 10.5406/amerjpsyc.123.2.0181 URL |
[28] |
Hajcak, G., Macnamara, A., & Olvet, D. M. (2010). Event- related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129-155. https://doi.org/10.1080/87565640903526504
doi: 10.1080/87565640903526504 URL pmid: 20390599 |
[29] | Hajcak, G., & Nieuwenhuis, S. (2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective & Behavioral Neuroscience, 6(4), 291-297. https://doi.org/10.3758/cabn.6.4.291 |
[30] |
He, Z., Zhao, J., Shen, J., Muhlert, N., Elliott, R., & Zhang, D. (2020). The right VLPFC and downregulation of social pain: A TMS study. Human Brain Mapping, 41(5), 1362-1371. https://doi.org/10.1002/hbm.24881
doi: 10.1002/hbm.24881 URL pmid: 31789480 |
[31] |
Hermann, A., Kress, L., & Stark, R. (2017). Neural correlates of immediate and prolonged effects of cognitive reappraisal and distraction on emotional experience. Brain Imaging and Behavior, 11(5), 1227-1237. https://doi.org/10.1007/s11682-016-9603-9
doi: 10.1007/s11682-016-9603-9 URL pmid: 27709512 |
[32] |
Hermann, A., Neudert, M. K., Schäfer, A., Zehtner, R. I., Fricke, S., Seinsche, R. J., & Stark, R. (2021). Lasting effects of cognitive emotion regulation: Neural correlates of reinterpretation and distancing. Social Cognitive and Affective Neuroscience, 16(3), 268-279. https://doi.org/10.1093/scan/nsaa159
doi: 10.1093/scan/nsaa159 URL |
[33] |
Hiser, J., & Koenigs, M. (2018). Review the multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638-647. https://doi.org/10.1016/j.biopsych.2017.10.030
doi: S0006-3223(17)32203-5 URL pmid: 29275839 |
[34] |
Hopp, H., Troy, A. S., & Mauss, I. B. (2011). The unconscious pursuit of emotion regulation: Implications for psychological health. Cognition and Emotion, 25(3), 532-545. https://doi.org/10.1080/02699931.2010.532606
doi: 10.1080/02699931.2010.532606 URL pmid: 21432692 |
[35] |
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal- subcortical circuitry in major depression. Journal of Neuroscience, 27(33), 8877-8884. https://doi.org/10.1523/JNEUROSCI.2063-07.2007
doi: 10.1523/JNEUROSCI.2063-07.2007 URL pmid: 17699669 |
[36] |
Junghofer, M., Winker, C., Rehbein, M. A., & Sabatinelli, D. (2017). Noninvasive stimulation of the ventromedial prefrontal cortex enhances pleasant scene processing. Cerebral Cortex, 27(6), 3449-3456. https://doi.org/10.1093/cercor/bhx073
doi: 10.1093/cercor/bhx073 URL |
[37] |
Koole, S. L., & Rothermund, K. (2011). “I feel better but I don’t know why”: The psychology of implicit emotion regulation. Cognition and Emotion, 25(3), 389-399. https://doi.org/10.1080/02699931.2010.550505
doi: 10.1080/02699931.2010.550505 URL |
[38] |
Koole, S. L., Webb, T. L., & Sheeran, P. L. (2015). Implicit emotion regulation: Feeling better without knowing why. Current Opinion in Psychology, 3, 6-10. https://doi.org/10.1016/j.copsyc.2014.12.027
doi: 10.1016/j.copsyc.2014.12.027 URL |
[39] | Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1(39-58), 3. |
[40] | Li, H., & Yuan, J. (2018). The emotion regulation effect of unconscious distraction on the subclinical depression. Chinese Science Bulletin, 63(20), 2057-2070. https://doi. org/10.1360/N972017-01253 |
[ 李红, 袁加锦. (2018). 无意识注意分散对抑郁人群的情绪调节效应. 科学通报, 63(20), 2057-2070.] | |
[41] | Li, S., Xie, H., Zheng, Z., Chen, W., Xu, F., Hu, X., & Zhang, D. (2022). The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. HumanBbrain Mapping, 43(9), 2898-2910. https://doi.org/10.1002/hbm.25824 |
[42] | Liu, Y., Huang, H., McGinnis-Deweese, M., Keil, A., & Ding, M. (2012). Neural substrate of the late positive potential in emotional processing. Journal of Neuroscience , 32(42), 14563-14572. https://doi.org/10.1523/JNEUROSCI.3109-12.2012 |
[43] |
Maren, S., & Quirk, G. J. (2004). Neuronal signalling of fear memory. Nature Reviews. Neuroscience, 5(11), 844-852. https://doi.org/10.1038/nrn1535
doi: 10.1038/nrn1535 URL pmid: 15496862 |
[44] |
Martínez-Pérez, V., Campoy, G., Palmero, L. B., & Fuentes, L. J. (2020). Examining the dorsolateral and ventromedial prefrontal cortex involvement in the self-attention network: A randomized, sham-controlled, parallel group, double- blind, and multichannel HD-tDCS Study. Frontiers in Neuroscience, 14, 683. https://doi.org/10.3389/fnins.2020.00683
doi: 10.3389/fnins.2020.00683 URL pmid: 32760241 |
[45] |
Mauss, I. B., Cook, C. L., & Gross, J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43(5), 698-711. https://doi.org/10.1016/j.jesp.2006.07.003
doi: 10.1016/j.jesp.2006.07.003 URL |
[46] |
Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209-237. https://doi.org/10.1080/02699930802204677
doi: 10.1080/02699930802204677 URL pmid: 19809584 |
[47] |
Mocaiber, I., Pereira, M. G., Erthal, F. S., Machado-Pinheiro, W., David, I. A., Cagy, M., … de Oliveira, L. (2010). Fact or fiction? An event-related potential study of implicit emotion regulation. Neuroscience Letters, 476(2), 84-88. https://doi.org/10.1016/j.neulet.2010.04.008
doi: 10.1016/j.neulet.2010.04.008 URL pmid: 20385204 |
[48] |
Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276-284. https://doi.org/10.1016/j.biopsych.2014.02.014
doi: S0006-3223(14)00109-7 URL pmid: 24673881 |
[49] |
Mungee, A., Kazzer, P., Feeser, M., Nitsche, M. A., Schiller, D., & Bajbouj, M. (2014). Transcranial direct current stimulation of the prefrontal cortex. NeuroReport, 25(7), 480-484. https://doi.org/10.1097/WNR.0000000000000119
doi: 10.1097/WNR.0000000000000119 URL |
[50] |
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215-1229. https://doi.org/10.1162/089892902760807212
doi: 10.1162/089892902760807212 URL pmid: 12495527 |
[51] |
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242-249. https://doi.org/10.1016/j.tics.2005.03.010
doi: 10.1016/j.tics.2005.03.010 URL pmid: 15866151 |
[52] | Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation:A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1-E24. https://doi.org/10.1111/j.1749-6632.2012.06751.x |
[53] |
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12(2), 229-235. https://doi.org/10.1037/a0027421
doi: 10.1037/a0027421 URL pmid: 22468617 |
[54] |
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829-857. https://doi.org/10.1038/mp.2008.65
doi: 10.1038/mp.2008.65 URL pmid: 18574483 |
[55] |
Polivy, J., & Doyle, C. (1980). Laboratory induction of mood states through the reading of self-referent mood statements: Affective changes or demand characteristics? Journal of Abnormal Psychology, 89(2), 286-290. https://doi.org/10.1037//0021-843x.89.2.286
URL pmid: 7365140 |
[56] |
Quirk, G. J., Garcia, R., & González-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry, 60(4), 337-343. https://doi.org/10.1016/j.biopsych.2006.03.010
URL pmid: 16712801 |
[57] |
Raij, T., Nummenmaa, A., Marin, M. F., Porter, D., Furtak, S., Setsompop, K., & Milad, M. R. (2018). Prefrontal cortex stimulation enhances fear extinction memory in humans. Biological Psychiatry, 84(2), 129-137. https://doi.org/10.1016/j.biopsych.2017.10.022
doi: S0006-3223(17)32144-3 URL pmid: 29246436 |
[58] |
Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A., & Phelps, E. A. (2013). Cognitive emotion regulation fails the stress test. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15139-15144. https://doi.org/10.1073/pnas.1305706110
doi: 10.1073/pnas.1305706110 URL pmid: 23980142 |
[59] |
Riva, P., Lauro, L. J. R., Nathan DeWall, C., Chester, D. S., & Bushman, B. J. (2015). Reducing aggressive responses to social exclusion using transcranial direct current stimulation. Social Cognitive and Affective Neuroscience, 10(3), 352-356. https://doi.org/10.1093/scan/nsu053
doi: 10.1093/scan/nsu053 URL pmid: 24748546 |
[60] |
Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhé, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2),2529-2553. https://doi.org/10.1016/j.neubiorev.2013.07.018
doi: 10.1016/j.neubiorev.2013.07.018 URL pmid: 23928089 |
[61] |
Robinson, H., Sheen, E., Sliwinski, R., Mu, J., & Compton, R. J. (2021). Find the silver lining or ignore the cloud? Cognitive reappraisal versus visual attention training. Emotion, 21(6), 1204-1212. https://doi.org/10.1037/emo0000983
doi: 10.1037/emo0000983 URL pmid: 34351197 |
[62] |
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147-156. https://doi.org/10.1016/j.tics.2012.01.005
doi: 10.1016/j.tics.2012.01.005 URL pmid: 22310704 |
[63] |
Schönfelder, S., Kanske, P., Heissler, J., & Wessa, M. (2013). Time course of emotion-related responding during distraction and reappraisal. Social Cognitive and Affective Neuroscience, 9(9), 1310-1319. https://doi.org/10.1093/scan/nst116
doi: 10.1093/scan/nst116 URL |
[64] |
Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Tiffany, I., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology, 37(2), 257-261. https://doi.org/10.1017/S0048577200001530
URL pmid: 10731776 |
[65] |
Sergiou, C. S., Santarnecchi, E., Romanella, S. M., Wieser, M. J., Franken, I., Rassin, E., & van Dongen, J. (2022). Transcranial direct current stimulation targeting the ventromedial prefrontal cortex reduces reactive aggression and modulates electrophysiological responses in a forensic population. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(1), 95-107. https://doi.org/10.1016/j.bpsc.2021.05.007
doi: 10.1016/j.bpsc.2021.05.007 URL |
[66] |
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10(10), 1329-1337. https://doi.org/10.1093/scan/nsv022
doi: 10.1093/scan/nsv022 URL pmid: 25700568 |
[67] |
Shafir, R., Thiruchselvam, R., Suri, G., Gross, J. J., & Sheppes, G. (2016). Neural processing of emotional-intensity predicts emotion regulation choice. Social Cognitive and Affective Neuroscience, 11(12), 1863-1871. https://doi.org/10.1093/scan/nsw114
URL pmid: 27522091 |
[68] |
Sharot, T., Riccardi, A. M., Raio, C. M., & Phelps, E. A. (2007). Neural mechanisms mediating optimism bias. Nature, 450(7166), 102-105. https://doi.org/10.1038/nature06280
doi: 10.1038/nature06280 URL |
[69] |
Smith, N. K., Cacioppo, J. T., Larsen, J. T., & Chartrand, T. L. (2003). May I have your attention, please: Electrocortical responses to positive and negative stimuli. Neuropsychologia, 41(2), 171-183. https://doi.org/10.1016/S0028-3932(02)00147-1
URL pmid: 12459215 |
[70] |
Smith, R., & Lane, R. D. (2015). The neural basis of one’s own conscious and unconscious emotional states. Neuroscience and Biobehavioral Reviews, 57, 1-29. https://doi.org/10.1016/j.neubiorev.2015.08.003
doi: 10.1016/j.neubiorev.2015.08.003 URL pmid: 26363579 |
[71] |
Sotres-Bayon, F., & Quirk, G. J. (2010). Prefrontal control of fear: More than just extinction. Current Opinion in Neurobiology, 20(2), 231-235. https://doi.org/10.1016/j.conb.2010.02.005
doi: 10.1016/j.conb.2010.02.005 URL pmid: 20303254 |
[72] | Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory (form Y1-Y2). Palo Alto, CA: Consulting Psychologist Press. |
[73] |
Suri, G., Whittaker, K., & Gross, J. J. (2015). Launching reappraisal: It’s less common than you might think. Emotion, 15(1), 73-77. https://doi.org/10.1037/emo0000011
doi: 10.1037/emo0000011 URL |
[74] | Torrisi, S., Gorka, A. X., Gonzalez-Castillo, J., O’Connell, K., Balderston, N., Grillon, C., & Ernst, M. (2018). Extended amygdala connectivity changes during sustained shock anticipation. Translational Psychiatry, 8(1). https://doi.org/10.1038/s41398-017-0074-6 |
[75] |
Urry, H. L., Van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., … Davidson, R. J. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26(16), 4415-4425. https://doi.org/10.1523/JNEUROSCI.3215-05.2006
doi: 10.1523/JNEUROSCI.3215-05.2006 URL pmid: 16624961 |
[76] |
Walter, H., von Kalckreuth, A., Schardt, D., Stephan, A., Goschke, T., & Erk, S. (2009). The temporal dynamics of voluntary emotion regulation. PloS One, 4(8), e6726. https://doi.org/10.1371/journal.pone.0006726
doi: 10.1371/journal.pone.0006726 URL |
[77] |
Wang, Y., & Li, X. (2017). Temporal course of implicit emotion regulation during a Priming-Identify task: An ERP study. Scientific Reports, 7, 41941. https://doi.org/10.1038/srep41941
doi: 10.1038/srep41941 URL pmid: 28150801 |
[78] |
Williams, L. E., Bargh, J. A., Nocera, C. C., & Gray, J. R. (2009). The unconscious regulation of emotion: Nonconscious reappraisal goals modulate emotional reactivity. Emotion, 9(6), 847-854. https://doi.org/10.1037/a0017745
doi: 10.1037/a0017745 URL pmid: 20001127 |
[79] |
Winecoff, A., Clithero, J. A., Carter, R. M. K., Bergman, S. R., Wang, L., & Huettel, S. A. (2013). Ventromedial prefrontal cortex encodes emotional value. Journal of Neuroscience, 33(27), 11032-11039. https://doi.org/10.1523/JNEUROSCI.4317-12.2013
doi: 10.1523/JNEUROSCI.4317-12.2013 URL pmid: 23825408 |
[80] |
Winker, C., Rehbein, M. A., Sabatinelli, D., Dohn, M., Maitzen, J., Roesmann, K., … Junghoefer, M. (2019). Noninvasive stimulation of the ventromedial prefrontal cortex indicates valence ambiguity in sad compared to happy and fearful face processing. Frontiers in Behavioral Neuroscience, 13, 83. https://doi.org/10.3389/fnbeh.2019.00083
doi: 10.3389/fnbeh.2019.00083 URL pmid: 31156403 |
[81] |
Winker, C., Rehbein, M. A., Sabatinelli, D., Dohn, M., Maitzen, J., Wolters, C. H., Arolt, V., & Junghofer, M. (2018). Noninvasive stimulation of the ventromedial prefrontal cortex modulates emotional face processing. NeuroImage, 175, 388-401. https://doi.org/10.1016/j.neuroimage.2018.03.067
doi: S1053-8119(18)30277-5 URL pmid: 29605579 |
[82] |
Winker, C., Rehbein, M. A., Sabatinelli, D., & Junghofer, M. (2020). Repeated noninvasive stimulation of the ventromedial prefrontal cortex reveals cumulative amplification of pleasant compared to unpleasant scene processing: A single subject pilot study. PloS One, 15(1), e0222057. https://doi.org/10.1371/journal.pone.0222057
doi: 10.1371/journal.pone.0222057 URL |
[83] |
Wolf, R. C., Philippi, C. L., Motzkin, J. C., Baskaya, M. K., & Koenigs, M. (2014). Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition. Brain, 137(6), 1772-1780. https://doi.org/10.1093/brain/awu063
doi: 10.1093/brain/awu063 URL |
[84] |
Wyczesany, M., Adamczyk, A. K., Ligeza, T. S., Bereś, A., & Marchewka, A. (2021). Implicit induction of emotional control-A comparative fMRI investigation of self-control and reappraisal goal pursuit. Emotion, 21(7), 1379-1391. https://doi.org/10.1037/emo0000852
doi: 10.1037/emo0000852 URL |
[85] |
Yang, Q., Tang, P., Gu, R., Luo, W., & Luo, Y. (2015). Implicit emotion regulation affects outcome evaluation. Social Cognitive and Affective Neuroscience, 10(6), 824-831. https://doi.org/10.1093/scan/nsu124
doi: 10.1093/scan/nsu124 URL pmid: 25332404 |
[86] |
Yin, S., Bi, T., Chen, A., & Egner, T. (2021). Ventromedial prefrontal cortex drives the prioritization of self-associated stimuli in working memory. Journal of Neuroscience, 41(9), 2012-2023. https://doi.org/10.1523/JNEUROSCI.1783-20.2020
doi: 10.1523/JNEUROSCI.1783-20.2020 URL pmid: 33462089 |
[87] |
Yuan, J., Ding, N., Liu, Y., & Yang, J. (2015). Unconscious emotion regulation: Nonconscious reappraisal decreases emotion-related physiological reactivity during frustration. Cognition and Emotion, 29(6), 1042-1053. https://doi.org/10.1080/02699931.2014.965663
doi: 10.1080/02699931.2014.965663 URL pmid: 25297822 |
[88] |
Yuan, J., Long, Q., Ding, N., Lou, Y., Liu, Y., & Yang, J. (2015). Suppression dampens unpleasant emotion faster than reappraisal: Neural dynamics in a Chinese sample. Science China Life Sciences, 58(5), 480-491. https://doi.org/10.1007/s11427-014-4739-6
doi: 10.1007/s11427-014-4739-6 URL pmid: 25316046 |
[89] |
Yuan, J., Long, Q., Li, X., Deng, Z., Ma, B., Chen, S., & Yang, J. (2019). Regulatory effect of implicit acceptance during outcome evaluation: The temporal dynamics in an event-related potential study. International Journal of Psychophysiology, 141, 37-44. https://doi.org/10.1016/j.ijpsycho.2019.05.003
doi: S0167-8760(18)31098-5 URL pmid: 31071358 |
[90] |
Zhang, D., Ao, X., Zheng, Z., Shen, J., Zhang, Y., & Gu, R. (2022). Modulating social feedback processing by deep TMS targeting the medial prefrontal cortex: Behavioral and electrophysiological manifestations. NeuroImage, 250, 118967. https://doi.org/10.1016/j.neuroimage.2022.118967
doi: 10.1016/j.neuroimage.2022.118967 URL |
[91] |
Zhang, Y., Chen, S., Deng, Z., Yang, J., & Yuan, J. (2020). Benefits of implicit regulation of instructed fear: Evidence from neuroimaging and functional connectivity. Frontiers in Neuroscience, 14, 201. https://doi.org/10.3389/fnins.2020.00201
doi: 10.3389/fnins.2020.00201 URL pmid: 32231516 |
[92] |
Zhao, J., Mo, L., Bi, R., He, Z., Chen, Y., Xu, F., … Zhang, D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. Journal of Neuroscience, 41(6), 1331-1339. https://doi.org/10.1523/JNEUROSCI.1906-20.2020
doi: 10.1523/JNEUROSCI.1906-20.2020 URL pmid: 33443069 |
[93] |
Żochowska, A., Jakuszyk, P., Nowicka, M. M., & Nowicka, A. (2022). Are covered faces eye-catching for us? The impact of masks on attentional processing of self and other faces during the COVID-19 pandemic. Cortex, 149, 173-187. https://doi.org/10.1016/j.cortex.2022.01.015
doi: 10.1016/j.cortex.2022.01.015 URL pmid: 35257944 |
[1] | 郭晓栋, 郑泓, 阮盾, 胡丁鼎, 王毅, 王艳郁, 陈楚侨. 认知和情感共情与负性情绪:情绪调节的作用机制[J]. 心理学报, 2023, 55(6): 892-904. |
[2] | 姜路遥, 李兵兵. 汉语听觉阈下启动效应:来自听觉掩蔽启动范式的证据[J]. 心理学报, 2023, 55(4): 529-541. |
[3] | 王阳, 张琳爽, 崔楠楠, 吴岩. 4~6岁幼儿口语产生中句法结构和动词重复的作用:来自句法启动的证据[J]. 心理学报, 2023, 55(10): 1608-1619. |
[4] | 陈晓宇, 杜媛媛, 刘强. 积极情绪提高背景线索学习的适应性[J]. 心理学报, 2022, 54(12): 1481-1490. |
[5] | 黄健, 杨子瑜, 洪丹萍, 刘喜琴, 王穗苹. 中心词和非中心词在句法启动的词汇增强效应中存在不同的机制[J]. 心理学报, 2022, 54(11): 1354-1365. |
[6] | 杨集梅, 柴洁余, 邱天龙, 全小山, 郑茂平. 共情与中国民族音乐情绪识别的关系:来自ERP的证据[J]. 心理学报, 2022, 54(10): 1181-1192. |
[7] | 张妮, 刘文, 刘方, 郭鑫. 8~12岁儿童抑郁与认知重评的关系:悲伤面孔注意偏向的中介作用[J]. 心理学报, 2022, 54(1): 25-39. |
[8] | 袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455. |
[9] | 佐斌, 戴月娥, 温芳芳, 高佳, 谢志杰, 何赛飞. 人如其食:食物性别刻板印象及对人物评价的影响[J]. 心理学报, 2021, 53(3): 259-272. |
[10] | 华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056. |
[11] | 黄发杰, 孟迎芳, 严颖. 提取干扰对不同类型内隐记忆的影响[J]. 心理学报, 2020, 52(5): 572-583. |
[12] | 于宙, 张清芳. 句法结构和动词重复对汉语句子口语产生中句法启动效应的影响[J]. 心理学报, 2020, 52(3): 283-293. |
[13] | 孙岩, 薄思雨, 吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25. |
[14] | 孙俊才, 寻凤娇, 刘萍, 张文海. 高善良特质在情绪调节行动控制中的内隐优势[J]. 心理学报, 2019, 51(7): 781-794. |
[15] | 殷西乐, 李建标, 陈思宇, 刘晓丽, 郝洁. 第三方惩罚的神经机制:来自经颅直流电刺激的证据[J]. 心理学报, 2019, 51(5): 571-583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||