心理学报 ›› 2025, Vol. 57 ›› Issue (2): 232-246.doi: 10.3724/SP.J.1041.2025.0232
孙岩, 王艺锦, 侯沛雨, 冯雪, 兰帆
收稿日期:
2023-05-04
发布日期:
2024-12-20
出版日期:
2025-02-25
通讯作者:
孙岩, E-mail: sunyan@lnnu.edu.cn
基金资助:
SUN Yan, WANG Yijin, HOU Peiyu, FENG Xue, LAN Fan
Received:
2023-05-04
Online:
2024-12-20
Published:
2025-02-25
摘要: 抑郁倾向是介于抑郁情绪和抑郁症之间的轻度抑郁状态, 这种状态被连续诱发则会增加抑郁症的发病率。认知重评是使用广泛且有效的情绪调节策略, 可分为自我关注重评和情境关注重评, 抑郁倾向个体在这两种策略下的调节效果及脑网络特征如何变化尚不清楚。本研究采用复杂网络探讨抑郁倾向个体在自我关注重评和情境关注重评任务期间的调节效果及脑网络特征。结果发现, 抑郁倾向组在认知重评任务期间的效价评分总体上低于健康对照组, 唤醒度评分差异并不显著; 两组被试在自我关注重评和情境关注重评任务期间的聚类系数、局部效率和最大介数中心性存在显著差异; 局部脑区差异主要位于边缘叶、额叶和顶叶等。抑郁倾向组自我关注重评和情境关注重评任务脑网络的异常活动与抑郁倾向的严重程度有关。这表明, 异常的脑网络特征可能表明抑郁倾向个体认知重评功能受损, 这为预防和改善抑郁倾向症状提供新的见解。
中图分类号:
孙岩, 王艺锦, 侯沛雨, 冯雪, 兰帆. (2025). 抑郁倾向对自我关注重评和情境关注重评影响的脑网络研究. 心理学报, 57(2), 232-246.
SUN Yan, WANG Yijin, HOU Peiyu, FENG Xue, LAN Fan. (2025). A brain network study on the influence of a depressive tendency on self-focused reappraisal and situation-focused reappraisal. Acta Psychologica Sinica, 57(2), 232-246.
[1] Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. [2] Aldao A., Nolen-Hoeksema S., & Schweizer S. (2010). Emotion regulation strategies across psychopathology: A meta-analytic review. [3] Aleksandra M., Neil W. B., Oscar W. M., Prabhavi N. P., & Paul B. F. (2023). Alterations in EEG functional connectivity in individuals with depression: A systematic review. [4] Anderson, M. C., & Huddleston, E. (2012). Towards a cognitive and neurobiological model of motivated forgetting. [5] Arnold A. E., Protzner A. B., Bray S., Levy R. M., & Iaria G. (2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. [6] Aron A. R., Robbins T. W., & Poldrack R. A. (2004). Inhibition and the right inferior frontal cortex. [7] Balconi, M., & Mazza, G. (2009). Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band. [8] Bebko G. M., Franconeri S. L., Ochsner K. N., & Chiao J. Y. (2011). Look before you regulate: Differential perceptual strategies underlying expressive suppression and cognitive reappraisal. [9] Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. [10] Belden A. C., Pagliaccio D., Murphy E. R., Luby J. L., & Barch D. M. (2015). Neural activation during cognitive emotion regulation in previously depressed compared to healthy children: Evidence of specific alterations. [11] Benning, S. D., & Ait Oumeziane, B. (2017). Reduced positive emotion and underarousal are uniquely associated with subclinical depression symptoms: Evidence from psychophysiology, self-report, and symptom clusters. [12] Borges A. M., Kuang J., Milhorn H., & Yi R. (2016). An alternative approach to calculating area-under-the-curve (auc) in delay discounting research.Journal of the Experimental Analysis of Behavior, 106(2), 145-155. [13] Bruder G. E., Stewart J. W., & McGrath P. J. (2017). Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. [14] Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. [15] Dai, Q., & Feng, Z. (2011). Dysfunctional distracter inhibition and facilitation for sad faces in depressed individuals. [16] Davidson R. J., Lewis D. A., Alloy L. B., Amaral D. G., Bush G., Cohen J. D.,.. Peterson B. S. (2002). Neural and behavioral substrates of mood and mood regulation. [17] Davis E. G., Foland-Ross L. C., & Gotlib I. H. (2018). Neural correlates of top-down regulation and generation of negative affect in major depressive disorder. [18] De Vico Fallani F., Astolfi L., Cincotti F., Mattia D., Tocci A., Capitanio S.,.. Babiloni F. (2007). Features extraction from time-varying cortical networks adopting a theoretical graph approach.Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 5198-5201. [19] De Zorzi L., RanFaing S., Honoré J., & Sequeira H. (2021). Autonomic reactivity to emotion: A marker oF sub-clinical anxiety and depression symptoms? [20] Diedrich A., Grant M., Hofmann S. G., Hiller W., & Berking M. (2014). Self-compassion as an emotion regulation strategy in major depressive disorder. [21] Dillon, D. G., & Pizzagalli, D. A. (2013). Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. [22] Doré B. P., Rodrik O., Boccagno C., Hubbard A., Weber J., Stanley B.,.. Ochsner K. N. (2018). Negative autobiographical memory in depression reflects elevated amygdala-hippocampal reactivity and hippocampally associated emotion regulation. [23] Dryman, M. T., & Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. [24] Ehring T., Tuschen-Caffier B., Schnülle J., Fischer S., & Gross J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. [25] Erk S., Mikschl A., Stier S., Ciaramidaro A., Gapp V., Weber B., & Walter H. (2010). Acute and sustained effects of cognitive emotion regulation in major depression. [26] Fingelkurts, A. A., & Fingelkurts, A. A. (2015). Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. [27] Fitzgerald, P. J., & Watson, B. O. (2018). Gamma oscillations as a biomarker for major depression: An emerging topic.Translational Psychiatry, 8(1), 177. [28] Fogel J., Eaton W. W., & Ford D. E. (2006). Minor depression as a predictor of the first onset of major depressive disorder over a 15-year follow-up. [29] Ford B. Q., Karnilowicz H. R., & Mauss I. B. (2017). Understanding reappraisal as a multicomponent process: The psychological health benefits of attempting to use reappraisal depend on reappraisal success. [30] Frank D. W., Dewitt M., Hudgens-Haney M., Schaeffer D. J., Ball B. H., Schwarz N. F.,.. Sabatinelli D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. [31] Greco C., Matarazzo O., Cordasco G., Vinciarelli A., Callejas Z., & Esposito A. (2021). Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review. [32] Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review.Review of General Psychology, 2(3), 271-299. [33] Gross J. J.,& Thompson, R. A. (2007). Emotion regulation: Conceptual foundations In J J Gross (Ed), Handbook of emotion regulation (pp 3-24) New York, NY: Guilford Press. [34] Gusnard D. A., Akbudak E., Shulman G. L., & Raichle M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. [35] Gyurak A., Gross J. J., & Etkin A. (2011). Explicit and implicit emotion regulation: A dual-process framework. [36] Hampshire A., Chamberlain S. R., Monti M. M., Duncan J., & Owen A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. [37] Hasanzadeh F., Mohebbi M., & Rostami R. (2020). Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. [38] Jaworska N., Blier P., Fusee W., & Knott V. (2012). α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. [39] John, O. P., & Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development.Journal of Personality, 72(6), 1301-1334. [40] Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. [41] Kalisch R., Wiech K., Critchley H. D., Seymour B., O’Doherty J. P., & Oakley D. A. (2005). Anxiety reduction through detachment: Subjective, physiological, and neural effects. [42] Kang J.-H., Jeong J. W., Kim H. T., Kim S. H., & Kim S.-P. (2014). Representation of cognitive reappraisal goals in frontal gamma oscillations. [43] Kassam K. S., Markey A. R., Cherkassky V. L., Loewenstein G., & Just M. A. (2013). Identifying emotions on the basis of neural activation. [44] Kelley W. M., Macrae C. N., Wyland C. L., Caglar S., Inati S., & Heatherton T. F. (2002). Finding the self? An event-related fMRI study. [45] Kravitz D. J., Saleem K. S., Baker C. I., & Mishkin M. (2011). A new neural framework for visuospatial processing. [46] Langenecker S. A., Kennedy S. E., Guidotti L. M., Briceno E. M., Own L. S., Hooven T.,.. Zubieta J. K. (2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. [47] Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. [48] Li F., Lui S., Yao L., Ji G. J., Liao W., Sweeney J. A., & Gong Q. (2018). Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. [49] Li H., Yang X. G., Zheng W. Y., & Wang C. (2019). Emotional regulation goals of young adults with depression inclination: An event-related potential study. [李红, 杨小光, 郑文瑜, 王超. (2019). 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据. [50] Li Y., Cao D., Wei L., Tang Y., & Wang J. (2015). Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. [51] Liang X., Wang J. H., & He Y. (2010). Human connectome: Structural and functional brain networks. [梁夏, 王金辉, 贺永. (2010). 人脑连接组研究: 脑结构网络和脑功能网络. [52] Liang Y., Huo M., Kennison R., & Zhou R. L. (2017). The role of cognitive control in older adult cognitive reappraisal: Detached and positive reappraisal. [53] Lindsey M. R., Katherine D. M. L., James O., Jaclyn B. D., Michelle Q., Hunter P. D., & Jennifer B. (2020). Effects of a brief interpersonal conflict cognitive reappraisal intervention on improvements in access to emotion regulation strategies and depressive symptoms in college students. [54] Lioi G., Cury C., Perronnet L., Mano M., Bannier E., Lécuyer A., & Barillot C. (2020). Simultaneous eeg-fmri during a neurofeedback task, a brain imaging dataset for multimodal data integration.Entific Data, 7(1), 173. [55] Liu M., Ma J., Fu C. Y., Yeo J., Xiao S. S., Xiao W. X.,.. Li Y. X. (2022). Dysfunction of emotion regulation in mild cognitive impairment individuals combined with depressive disorder: A neural mechanism study. [56] Liu S., Chen S. T., Huang Z. N., Liu X. Y., Li M. J., Su F. Y., Hao X. Y., & Ming D. (2022). Hypofunction of directed brain network within alpha frequency band in depressive patients: A graph-theoretic analysis.Cognitive Neurodynamics, 16(5), 1059-1071. [57] Liu X., Li T., Tang C., Xu T., Chen P., Bezerianos A., & Wang H. (2019). Emotion recognition and dynamic functional connectivity analysis based on EEG.IEEE Access, 7, 143293-143302. [58] Liu Y., Ren G. Q., & Qu K. J. (2023). The emotion regulation effect of cognitive reappraisal strategies on college students with depression tendency.Chinese Journal of Clinical Psychology, (1), 39-44. [刘岩, 任桂琴, 曲可佳. (2023). 认知重评策略对抑郁倾向大学生的情绪调节研究. [59] Long Z., Duan X., Wang Y., Liu F., Zeng L., Zhao J. P., & Chen H. (2015). Disrupted structural connectivity network in treatment-naive depression. [60] Meng C., Brandl F., Tahmasian M., Shao J., Manoliu A., Scherr M.,.. Sorg C. (2014). Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression.Brain, 137(2), 598-609. [61] Mohammadi, Y., & Moradi, M. H. (2021). Prediction of depression severity scores based on functional connectivity and complexity of the EEG signal. [62] Moser J. S., Hartwig R., Moran T. P., Jendrusina A. A., & Kross E. (2014). Neural markers of positive reappraisal and their associations with trait reappraisal and worry. [63] Murugappan M., Zheng B. S., & Khairunizam W. (2021). Recurrent quantification analysis-based emotion classification in stroke using electroencephalogram signals.Arabian Journal for Science and Engineering, 46, 9573-9588. [64] Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion.Trends in Cognitive Sciences, 9(5), 242-249. [65] Ochsner K. N., Ray R. D., Cooper J. C., Robertson E. R., Chopra S., Gabrieli J. D., & Gross J. J. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. [66] Olaf S., Honey C. J., Rolf K., & Marcus K. (2007). Identification and classification of hubs in brain networks. [67] Peng W. Q., Luo W., & Zhou R. L. (2019). HRV evidence for the improvement of emotion regulation in university students with depression tendency by working memory training. [彭婉晴, 罗帏, 周仁来. (2019). 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据. [68] Picó-Pérez M., Radua J., Steward T., Menchón J. M., & Soriano-Mas C. (2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. [69] Pierce J. E., Haque E., & Neta M. (2022). Affective flexibility as a developmental building block of cognitive reappraisal: An fMRI study. [70] Qi S. Q., Li Y. P., Tang X. M., Zeng Q. H., Diao L. T., Li H., & Hu W. P. (2017). The temporal dynamics of detached versus positive reappraisal: An ERP study.Cognitive, Affective, & Behavioral Neuroscience, 17(3), 516-527. [71] Ramezani M., Johnsrude I., Rasoulian A., Bosma R., Tong R., Hollenstein T.,.. Abolmaesumi P. (2014). Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression. [72] Rodríguez M. R., Nuevo R., Chatterji S., & Ayuso-Mateos J. L. (2012). Definitions and factors associated with subthreshold depressive conditions: A systematic review. [73] Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. [74] Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. [75] Shao X., Sun S., Li J., Kong W., Zhu J., Li X., & Hu B. (2021). Analysis of functional brain network in MDD based on improved empirical mode decomposition with resting state EEG data. [76] Sheline Y. I., Price J. L., Yan Z., & Mintun M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. [77] Shiota, M. N., & Levenson, R. W. (2002). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. [78] Shiota, M. N., & Levenson, R. W. (2009). Effects of aging on experimentally instructed detached reappraisal, positive reappraisal, and emotional behavior suppression.Psychology and Aging, 24(4), 890-900. [79] Shiota, M. N., & Levenson, R. W. (2012). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. [80] Song P., Lin H., Liu C., Jiang Y., Lin Y., Xue Q., Xu P., & Wang Y. (2019). Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic module reconfiguration in brain networks. [81] Sullivan, S. K., & Strauss, G. P. (2017). Electrophysiological evidence for detrimental impact of a reappraisal emotion regulation strategy on subsequent cognitive control in schizophrenia. [82] Sun X. F., Zheng X. W., Xu Y. H., Cui L. Z., & Hu B. (2021). Major depressive disorder recognition and cognitive analysis based on multi-layer brain functional connectivity networks.arXiv -CS -Machine Learning, 2111, 01351. [83] Sun Y., Lv J. J., Lan F., & Zhang L. N. (2020).Emotion regulation strategy of self-focused and situation-focused reappraisal and their impact on subsequent cognitive control.Acta Psychologica Sinica, 52(12), 1393-1406. [孙岩, 吕娇娇, 兰帆, 张丽娜. (2020). 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响. [84] Thiruchselvam R., Blechert J., Sheppes G., Rydstrom A., & Gross J. J. (2011). The temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. [85] Tuithof M., Ten Have M., van Dorsselaer S., Kleinjan M., Beekman A., & de Graaf R. (2018). Course of subthreshold depression into a depressive disorder and its risk factors. [86] van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. [87] Wang C. F., Zhang Q., & Zhang X. X. (2021). The differences in regulatory effect and success degree of negative emotions between detached and positive cognitive reappraisals in juveniles, youths, diddle and elderly peoples.Journal of Psychological Science, 44(6), 1376-1382. [王彩凤, 张奇, 张笑笑. (2021). 积极与分离认知重评负性情绪调节效果和成功程度的差异:青年、中老年和少年的实验结果. [88] Willroth, E. C., & Hilimire, M. R. (2016). Differential effects of self-and situation-focused reappraisal. [89] Wong N. M., Liu H. L., Lin C., Huang C. M., Wai Y. Y., Lee S. H., & Lee T. M. (2016). Loneliness in late-life depression: Structural and functional connectivity during affective processing. [90] Zhang J., Wang J., Wu Q., Kuang W., Huang X., He Y., & Gong Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. [91] Zhang K., Wang C. M., & Wang J. X. (2016). The Effect of Reappraisal and Distraction for Patients of Depression:ERPs Study.Psychological Exploration, (3), 245-250. [张阔, 王春梅, 王敬欣. (2016). 抑郁症患者认知重评和分心情绪调节的有效性: ERPs研究. [92] Zhang R., Kranz G. S., Zou W., Deng Y., Huang X., Lin K., & Lee T. (2020). Rumination network dysfunction in major depression: A brain connectome study. [93] Zhang T., Zhao B., Shi C., Nie B., Liu H., Yang X.,.. Shan B. (2020). Subthreshold depression may exist on a spectrum with major depressive disorder: Evidence from gray matter volume and morphological brain network. [94] Zhang W., Zou Y., Zhao F., Yang Y., Mao N., Li Y., Huang G., Yao Z., & Hu B. (2022). Brain network alterations in rectal cancer survivors with depression tendency: Evaluation with multimodal magnetic resonance imaging.Frontiers in Neurology, 13, 791298. |
[1] | 姚雨佳, 颜之悦, 林慧慧, 陈静全, 宣雨阳. 人际距离和策略创造性对人际情绪调节的影响[J]. 心理学报, 2025, 57(1): 125-134. |
[2] | 肖程元, 赵世瑞, 袁加锦. 积极认知重评对负性信息传播的调控及多维证据[J]. 心理学报, 2024, 56(11): 1471-1487. |
[3] | 郭晓栋, 郑泓, 阮盾, 胡丁鼎, 王毅, 王艳郁, 陈楚侨. 认知和情感共情与负性情绪:情绪调节的作用机制[J]. 心理学报, 2023, 55(6): 892-904. |
[4] | 高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. 腹内侧前额叶在内隐认知重评中的因果作用[J]. 心理学报, 2023, 55(2): 210-223. |
[5] | 张妮, 刘文, 刘方, 郭鑫. 8~12岁儿童抑郁与认知重评的关系:悲伤面孔注意偏向的中介作用[J]. 心理学报, 2022, 54(1): 25-39. |
[6] | 袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455. |
[7] | 孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406. |
[8] | 孙岩, 薄思雨, 吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25. |
[9] | 李红, 杨小光, 郑文瑜, 王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647. |
[10] | 彭婉晴, 罗帏, 周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661. |
[11] | 张丹丹, 刘珍莉, 陈钰, 买晓琴. 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用:一项tDCS研究[J]. 心理学报, 2019, 51(2): 207-2015. |
[12] | 杨青青, 胡娜, 陈旭, 牛娟, 翟晶. 恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316. |
[13] | 侯璐璐, 江琦, 王焕贞, 李长燃. 特质愤怒对攻击行为的影响: 基于综合认知模型的视角[J]. 心理学报, 2017, 49(12): 1548-1558. |
[14] | 陈颖媛;邹智敏;潘俊豪. 资质过剩感影响组织公民行为的情绪路径[J]. 心理学报, 2017, 49(1): 72-82. |
[15] | 蔡阿燕;杨洁敏;许爽;袁加锦. 表达抑制调节负性情绪的男性优势 ——来自事件相关电位的证据[J]. 心理学报, 2016, 48(5): 482-494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||