心理学报 ›› 2025, Vol. 57 ›› Issue (2): 232-246.doi: 10.3724/SP.J.1041.2025.0232 cstr: 32110.14.2025.0232
收稿日期:
2023-05-04
发布日期:
2024-12-20
出版日期:
2025-02-25
通讯作者:
孙岩, E-mail: sunyan@lnnu.edu.cn基金资助:
SUN Yan(), WANG Yijin, HOU Peiyu, FENG Xue, LAN Fan
Received:
2023-05-04
Online:
2024-12-20
Published:
2025-02-25
摘要:
抑郁倾向是介于抑郁情绪和抑郁症之间的轻度抑郁状态, 这种状态被连续诱发则会增加抑郁症的发病率。认知重评是使用广泛且有效的情绪调节策略, 可分为自我关注重评和情境关注重评, 抑郁倾向个体在这两种策略下的调节效果及脑网络特征如何变化尚不清楚。本研究采用复杂网络探讨抑郁倾向个体在自我关注重评和情境关注重评任务期间的调节效果及脑网络特征。结果发现, 抑郁倾向组在认知重评任务期间的效价评分总体上低于健康对照组, 唤醒度评分差异并不显著; 两组被试在自我关注重评和情境关注重评任务期间的聚类系数、局部效率和最大介数中心性存在显著差异; 局部脑区差异主要位于边缘叶、额叶和顶叶等。抑郁倾向组自我关注重评和情境关注重评任务脑网络的异常活动与抑郁倾向的严重程度有关。这表明, 异常的脑网络特征可能表明抑郁倾向个体认知重评功能受损, 这为预防和改善抑郁倾向症状提供新的见解。
中图分类号:
孙岩, 王艺锦, 侯沛雨, 冯雪, 兰帆. (2025). 抑郁倾向对自我关注重评和情境关注重评影响的脑网络研究. 心理学报, 57(2), 232-246.
SUN Yan, WANG Yijin, HOU Peiyu, FENG Xue, LAN Fan. (2025). A brain network study on the influence of a depressive tendency on self-focused reappraisal and situation-focused reappraisal. Acta Psychologica Sinica, 57(2), 232-246.
项目名称 | 抑郁倾向组 (n = 38) | 健康对照组 (n = 41) | p值 |
---|---|---|---|
性别(男/女) | 13/25 | 18/23 | 0.378a |
年龄 | 20.90(2.15) | 21.63(2.42) | 0.156b |
贝克抑郁量表 | 20.34(5.32) | 4.51(4.04) | 0.001b |
抑郁自评量表 | 60.13(6.63) | 40.69(7.46) | 0.001b |
积极消极情绪量表 | |||
积极情绪 | 27.55(4.86) | 34.34(6.88) | 0.001b |
消极情绪 | 25.63(7.61) | 17.90(6.97) | 0.001b |
表1 被试分组信息及量表得分[M (SD)]
项目名称 | 抑郁倾向组 (n = 38) | 健康对照组 (n = 41) | p值 |
---|---|---|---|
性别(男/女) | 13/25 | 18/23 | 0.378a |
年龄 | 20.90(2.15) | 21.63(2.42) | 0.156b |
贝克抑郁量表 | 20.34(5.32) | 4.51(4.04) | 0.001b |
抑郁自评量表 | 60.13(6.63) | 40.69(7.46) | 0.001b |
积极消极情绪量表 | |||
积极情绪 | 27.55(4.86) | 34.34(6.88) | 0.001b |
消极情绪 | 25.63(7.61) | 17.90(6.97) | 0.001b |
组别/因变量 | 认知重评条件 | |||
---|---|---|---|---|
观看中性 条件 | 观看负性 条件 | 情境关注 重评 | 自我关注 重评 | |
抑郁倾向组 | ||||
效价 | 5.15(0.50) | 2.94(0.71) | 4.66(1.20) | 3.98(0.82) |
唤醒度 | 4.49(1.15) | 6.00(1.23) | 5.72(1.12) | 4.92(1.43) |
健康对照组 | ||||
效价 | 5.35(0.51) | 3.21(0.87) | 5.14(1.24) | 4.26(0.94) |
唤醒度 | 4.41(1.04) | 5.86(1.19) | 5.65(1.05) | 4.92(1.30) |
表2 不同认知重评条件下抑郁倾向组和健康对照组的主观情绪评级
组别/因变量 | 认知重评条件 | |||
---|---|---|---|---|
观看中性 条件 | 观看负性 条件 | 情境关注 重评 | 自我关注 重评 | |
抑郁倾向组 | ||||
效价 | 5.15(0.50) | 2.94(0.71) | 4.66(1.20) | 3.98(0.82) |
唤醒度 | 4.49(1.15) | 6.00(1.23) | 5.72(1.12) | 4.92(1.43) |
健康对照组 | ||||
效价 | 5.35(0.51) | 3.21(0.87) | 5.14(1.24) | 4.26(0.94) |
唤醒度 | 4.41(1.04) | 5.86(1.19) | 5.65(1.05) | 4.92(1.30) |
频段 | 全局网络特征 | 观看中性条件 | 观看负性条件 | 情境关注重评 | 自我关注重评 | ||||
---|---|---|---|---|---|---|---|---|---|
倾向组 | 对照组 | 倾向组 | 对照组 | 倾向组 | 对照组 | 倾向组 | 对照组 | ||
alpha | L | 0.960 (0.003) | 0.960 (0.005) | 0.962 (0.011) | 0.961 (0.005) | 0.960 (0.004) | 0.962 (0.006) | 0.961 (0.004) | 0.960 (0.005) |
Eg | 0.522 (0.001) | 0.522 (0.001) | 0.521 (0.003) | 0.522 (0.002) | 0.522 (0.001) | 0.521 (0.002) | 0.522 (0.001) | 0.522 (0.002) | |
C | 0.418 (0.021) | 0.419 (0.023) | 0.419 (0.022) | 0.425 (0.021) | 0.417 (0.017) | 0.424 (0.020) | 0.415 (0.015) | 0.422 (0.019) | |
Eloc | 0.549 (0.012) | 0.549 (0.014) | 0.548 (0.012) | 0.552 (0.012) | 0.548 (0.009) | 0.552 (0.012) | 0.548 (0.010) | 0.551 (0.011) | |
maxBC | 76.221 (15.335) | 83.246 (28.481) | 72.138 (16.785) | 78.509 (27.021) | 73.735 (18.751) | 79.207 (21.809) | 75.836 (25.410) | 78.516 (16.480) | |
gamma | L | 0.961 (0.004) | 0.960 (0.004) | 0.961 (0.004) | 0.960 (0.004) | 0.960 (0.005) | 0.960 (0.005) | 0.959 (0.003) | 0.959 (0.004) |
Eg | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.002) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | |
C | 0.428 (0.020) | 0.441 (0.026) | 0.431 (0.025) | 0.439 (0.027) | 0.427 (0.021) | 0.440 (0.023) | 0.432 (0.022) | 0.448 (0.027) | |
Eloc | 0.555 (0.012) | 0.562 (0.015) | 0.555 (0.015) | 0.561 (0.015) | 0.554 (0.013) | 0.562 (0.014) | 0.558 (0.013) | 0.566 (0.015) | |
maxBC | 75.134 (19.386) | 88.831 (28.774) | 85.657 (23.989) | 91.325 (20.510) | 84.781 (25.612) | 96.891 (29.638) | 89.428 (25.996) | 95.862 (25.293) |
表3 不同认知重评条件下抑郁倾向组和健康对照组全局网络特征的描述性统计
频段 | 全局网络特征 | 观看中性条件 | 观看负性条件 | 情境关注重评 | 自我关注重评 | ||||
---|---|---|---|---|---|---|---|---|---|
倾向组 | 对照组 | 倾向组 | 对照组 | 倾向组 | 对照组 | 倾向组 | 对照组 | ||
alpha | L | 0.960 (0.003) | 0.960 (0.005) | 0.962 (0.011) | 0.961 (0.005) | 0.960 (0.004) | 0.962 (0.006) | 0.961 (0.004) | 0.960 (0.005) |
Eg | 0.522 (0.001) | 0.522 (0.001) | 0.521 (0.003) | 0.522 (0.002) | 0.522 (0.001) | 0.521 (0.002) | 0.522 (0.001) | 0.522 (0.002) | |
C | 0.418 (0.021) | 0.419 (0.023) | 0.419 (0.022) | 0.425 (0.021) | 0.417 (0.017) | 0.424 (0.020) | 0.415 (0.015) | 0.422 (0.019) | |
Eloc | 0.549 (0.012) | 0.549 (0.014) | 0.548 (0.012) | 0.552 (0.012) | 0.548 (0.009) | 0.552 (0.012) | 0.548 (0.010) | 0.551 (0.011) | |
maxBC | 76.221 (15.335) | 83.246 (28.481) | 72.138 (16.785) | 78.509 (27.021) | 73.735 (18.751) | 79.207 (21.809) | 75.836 (25.410) | 78.516 (16.480) | |
gamma | L | 0.961 (0.004) | 0.960 (0.004) | 0.961 (0.004) | 0.960 (0.004) | 0.960 (0.005) | 0.960 (0.005) | 0.959 (0.003) | 0.959 (0.004) |
Eg | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.002) | 0.522 (0.001) | 0.522 (0.001) | 0.522 (0.001) | |
C | 0.428 (0.020) | 0.441 (0.026) | 0.431 (0.025) | 0.439 (0.027) | 0.427 (0.021) | 0.440 (0.023) | 0.432 (0.022) | 0.448 (0.027) | |
Eloc | 0.555 (0.012) | 0.562 (0.015) | 0.555 (0.015) | 0.561 (0.015) | 0.554 (0.013) | 0.562 (0.014) | 0.558 (0.013) | 0.566 (0.015) | |
maxBC | 75.134 (19.386) | 88.831 (28.774) | 85.657 (23.989) | 91.325 (20.510) | 84.781 (25.612) | 96.891 (29.638) | 89.428 (25.996) | 95.862 (25.293) |
频段 | 全局网络特征 | 组别 | 认知重评条件 | 组别×认知重评条件 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | ηp2 | F | p | ηp2 | F | p | ηp2 | ||
alpha | L | 0.02 | 0.895 | 0.00 | 2.10 | 0.123 | 0.03 | 0.99 | 0.379 | 0.01 |
Eg | 0.011 | 0.917 | 0.00 | 2.18 | 0.111 | 0.03 | 0.91 | 0.410 | 0.01 | |
C | 3.04 | 0.085 | 0.04 | 0.62 | 0.600 | 0.01 | 0.58 | 0.632 | 0.01 | |
Eloc | 2.81 | 0.098 | 0.04 | 0.17 | 0.915 | 0.00 | 0.52 | 0.672 | 0.01 | |
maxBC | 3.11 | 0.082 | 0.04 | 0.700 | 0.553 | 0.01 | 0.19 | 0.908 | 0.00 | |
gamma | L | 1.85 | 0.178 | 0.02 | 1.21 | 0.308 | 0.02 | 0.63 | 0.599 | 0.01 |
Eg | 2.03 | 0.158 | 0.03 | 1.28 | 0.283 | 0.02 | 0.60 | 0.616 | 0.01 | |
C | 8.29 | 0.005* | 0.10 | 2.58 | 0.055 | 0.03 | 0.68 | 0.567 | 0.01 | |
Eloc | 8.33 | 0.005* | 0.10 | 3.04 | 0.030* | 0.04 | 0.21 | 0.892 | 0.00 | |
maxBC | 7.16 | 0.009* | 0.09 | 3.33 | 0.020* | 0.04 | 0.62 | 0.603 | 0.01 |
表4 抑郁倾向组和健康对照组全局网络特征的结果
频段 | 全局网络特征 | 组别 | 认知重评条件 | 组别×认知重评条件 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | ηp2 | F | p | ηp2 | F | p | ηp2 | ||
alpha | L | 0.02 | 0.895 | 0.00 | 2.10 | 0.123 | 0.03 | 0.99 | 0.379 | 0.01 |
Eg | 0.011 | 0.917 | 0.00 | 2.18 | 0.111 | 0.03 | 0.91 | 0.410 | 0.01 | |
C | 3.04 | 0.085 | 0.04 | 0.62 | 0.600 | 0.01 | 0.58 | 0.632 | 0.01 | |
Eloc | 2.81 | 0.098 | 0.04 | 0.17 | 0.915 | 0.00 | 0.52 | 0.672 | 0.01 | |
maxBC | 3.11 | 0.082 | 0.04 | 0.700 | 0.553 | 0.01 | 0.19 | 0.908 | 0.00 | |
gamma | L | 1.85 | 0.178 | 0.02 | 1.21 | 0.308 | 0.02 | 0.63 | 0.599 | 0.01 |
Eg | 2.03 | 0.158 | 0.03 | 1.28 | 0.283 | 0.02 | 0.60 | 0.616 | 0.01 | |
C | 8.29 | 0.005* | 0.10 | 2.58 | 0.055 | 0.03 | 0.68 | 0.567 | 0.01 | |
Eloc | 8.33 | 0.005* | 0.10 | 3.04 | 0.030* | 0.04 | 0.21 | 0.892 | 0.00 | |
maxBC | 7.16 | 0.009* | 0.09 | 3.33 | 0.020* | 0.04 | 0.62 | 0.603 | 0.01 |
情绪调节条件 | 两组节点平均数比较 | 局部脑区 | BA | p |
---|---|---|---|---|
观看中性条件 | 抑郁倾向组>对照组 | 右侧中央前回(PreCG) | 6 | 0.008a |
左侧顶上叶(IPS) | 7 | 0.043a | ||
观看负性条件 | 抑郁倾向组>对照组 | 左侧前扣带回(ACC) | 32 | 0.001* |
右侧海马旁回(PHG) | 30 | 0.010* | ||
左侧后扣带回(PCC) | 29 | 0.029* | ||
右侧后扣带回(PCC) | 29 | 0.035* | ||
抑郁倾向组<对照组 | 左侧颞中回/颞上回(MTG/STG) | 38 | 0.014* | |
右侧中央后回(PoCG) | 2 | 0.021* | ||
左侧颞下回(ITG) | 20 | 0.046* | ||
左侧中央后回(PoCG) | 43 | 0.046* | ||
情境关注重评 | 抑郁倾向组>对照组 | 左侧中央前回(PreCG) | 44 | 0.032a |
抑郁倾向组<对照组 | 左侧额下回(IFG) | 47 | 0.001a | |
右侧顶上叶(IPS) | 7 | 0.013a | ||
右侧颞中回/颞上回(MTG/STG) | 39 | 0.034a | ||
右侧中央后回(PoCG) | 5 | 0.044a | ||
右侧额下回(IFG) | 9 | 0.045a | ||
自我关注重评 | 抑郁倾向组>对照组 | 右侧后扣带回(PCC) | 29 | 0.028a |
抑郁倾向组<对照组 | 右侧颞上回(STG) | 38 | 0.023a |
表5 不同认知重评条件下alpha频段局部网络特征的组间差异
情绪调节条件 | 两组节点平均数比较 | 局部脑区 | BA | p |
---|---|---|---|---|
观看中性条件 | 抑郁倾向组>对照组 | 右侧中央前回(PreCG) | 6 | 0.008a |
左侧顶上叶(IPS) | 7 | 0.043a | ||
观看负性条件 | 抑郁倾向组>对照组 | 左侧前扣带回(ACC) | 32 | 0.001* |
右侧海马旁回(PHG) | 30 | 0.010* | ||
左侧后扣带回(PCC) | 29 | 0.029* | ||
右侧后扣带回(PCC) | 29 | 0.035* | ||
抑郁倾向组<对照组 | 左侧颞中回/颞上回(MTG/STG) | 38 | 0.014* | |
右侧中央后回(PoCG) | 2 | 0.021* | ||
左侧颞下回(ITG) | 20 | 0.046* | ||
左侧中央后回(PoCG) | 43 | 0.046* | ||
情境关注重评 | 抑郁倾向组>对照组 | 左侧中央前回(PreCG) | 44 | 0.032a |
抑郁倾向组<对照组 | 左侧额下回(IFG) | 47 | 0.001a | |
右侧顶上叶(IPS) | 7 | 0.013a | ||
右侧颞中回/颞上回(MTG/STG) | 39 | 0.034a | ||
右侧中央后回(PoCG) | 5 | 0.044a | ||
右侧额下回(IFG) | 9 | 0.045a | ||
自我关注重评 | 抑郁倾向组>对照组 | 右侧后扣带回(PCC) | 29 | 0.028a |
抑郁倾向组<对照组 | 右侧颞上回(STG) | 38 | 0.023a |
认知重评条件 | 两组节点平均数比较 | 局部脑区 | BA | p |
---|---|---|---|---|
观看中性条件 | 抑郁倾向组>对照组 | 左侧海马旁回(PHG) | 35 | 0.002* |
左侧前扣带回(ACC) | 24 | 0.014* | ||
右侧后扣带回(PCC) | 30 | 0.017* | ||
左侧后扣带回(PCC) | 29 | 0.021* | ||
右侧后扣带回(PCC) | 29 | 0.023* | ||
左侧海马旁回(PHG) | 36 | 0.023* | ||
左侧海马旁回(PHG) | 28 | 0.031* | ||
左侧海马旁回(PHG) | 27 | 0.043* | ||
观看负性条件 | 抑郁倾向组>对照组 | 左侧后扣带回(PCC) | 29 | 0.024* |
右侧颞上回(STG) | 22 | 0.027* | ||
左侧海马旁回(PHG) | 27 | 0.029* | ||
左侧颞上回(STG) | 42 | 0.031* | ||
右侧中央后回(PoCG) | 3 | 0.033* | ||
左侧海马旁回(PHG) | 30 | 0.039* | ||
抑郁倾向组<对照组 | 右侧颞中回(MTG) | 37 | 0.012* | |
左侧顶下叶(IPL) | 40 | 0.018* | ||
情境关注重评 | 抑郁倾向组>对照组 | 左侧后扣带回(PCC) | 29 | 0.003* |
右侧后扣带回(PCC) | 23 | 0.003* | ||
右侧后扣带回(PCC) | 29 | 0.009* | ||
左侧额中回(MFG) | 8 | 0.021* | ||
左侧海马旁回(PHG) | 27 | 0.030* | ||
右侧中央前回(PreCG) | 4 | 0.048* | ||
自我关注重评 | 抑郁倾向组>对照组 | 左侧海马旁回(PHG) | 35 | 0.004* |
左侧海马旁回(PHG) | 27 | 0.037* | ||
左侧海马旁回(PHG) | 36 | 0.007* | ||
左侧海马旁回(PHG) | 28 | 0.018* | ||
右侧海马旁回(PHG) | 35 | 0.021* | ||
右侧海马旁回(PHG) | 36 | 0.030* | ||
右侧后扣带回(PCC) | 30 | 0.032* | ||
左侧后扣带回(PCC) | 29 | 0.032* | ||
右侧中央前回(PreCG) | 4 | 0.035* | ||
右侧中央后回(PoCG) | 3 | 0.045* |
表6 不同认知重评条件下gamma频段局部网络特征的组间差异
认知重评条件 | 两组节点平均数比较 | 局部脑区 | BA | p |
---|---|---|---|---|
观看中性条件 | 抑郁倾向组>对照组 | 左侧海马旁回(PHG) | 35 | 0.002* |
左侧前扣带回(ACC) | 24 | 0.014* | ||
右侧后扣带回(PCC) | 30 | 0.017* | ||
左侧后扣带回(PCC) | 29 | 0.021* | ||
右侧后扣带回(PCC) | 29 | 0.023* | ||
左侧海马旁回(PHG) | 36 | 0.023* | ||
左侧海马旁回(PHG) | 28 | 0.031* | ||
左侧海马旁回(PHG) | 27 | 0.043* | ||
观看负性条件 | 抑郁倾向组>对照组 | 左侧后扣带回(PCC) | 29 | 0.024* |
右侧颞上回(STG) | 22 | 0.027* | ||
左侧海马旁回(PHG) | 27 | 0.029* | ||
左侧颞上回(STG) | 42 | 0.031* | ||
右侧中央后回(PoCG) | 3 | 0.033* | ||
左侧海马旁回(PHG) | 30 | 0.039* | ||
抑郁倾向组<对照组 | 右侧颞中回(MTG) | 37 | 0.012* | |
左侧顶下叶(IPL) | 40 | 0.018* | ||
情境关注重评 | 抑郁倾向组>对照组 | 左侧后扣带回(PCC) | 29 | 0.003* |
右侧后扣带回(PCC) | 23 | 0.003* | ||
右侧后扣带回(PCC) | 29 | 0.009* | ||
左侧额中回(MFG) | 8 | 0.021* | ||
左侧海马旁回(PHG) | 27 | 0.030* | ||
右侧中央前回(PreCG) | 4 | 0.048* | ||
自我关注重评 | 抑郁倾向组>对照组 | 左侧海马旁回(PHG) | 35 | 0.004* |
左侧海马旁回(PHG) | 27 | 0.037* | ||
左侧海马旁回(PHG) | 36 | 0.007* | ||
左侧海马旁回(PHG) | 28 | 0.018* | ||
右侧海马旁回(PHG) | 35 | 0.021* | ||
右侧海马旁回(PHG) | 36 | 0.030* | ||
右侧后扣带回(PCC) | 30 | 0.032* | ||
左侧后扣带回(PCC) | 29 | 0.032* | ||
右侧中央前回(PreCG) | 4 | 0.035* | ||
右侧中央后回(PoCG) | 3 | 0.045* |
图3 不同认知重评条件下抑郁倾向组和健康对照组局部网络特征差异图 注:a观看中性, b观看负性, c情境关注重评, d自我关注重评。节点不同颜色表示不同脑区:红色表示额叶, 黄色表示颞叶, 绿色表示枕叶, 蓝色表示顶叶, 紫色表示边缘叶。使用BrainNet Viewer工具箱绘制大脑区域。彩图见电子版。
[1] | Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. |
[2] | Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217-237. |
[3] |
Aleksandra, M., Neil, W. B., Oscar, W. M., Prabhavi, N. P., & Paul, B. F. (2023). Alterations in EEG functional connectivity in individuals with depression: A systematic review. Journal of Affective Disorders, 328, 287-302.
doi: 10.1016/j.jad.2023.01.126 pmid: 36801418 |
[4] | Anderson, M. C., & Huddleston, E. (2012). Towards a cognitive and neurobiological model of motivated forgetting. Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 58, 53-120. |
[5] |
Arnold, A. E., Protzner, A. B., Bray, S., Levy, R. M., & Iaria, G. (2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. Journal of Cognitive Neuroscience, 26(2), 380-394.
doi: 10.1162/jocn_a_00491 pmid: 24047389 |
[6] |
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170-177.
doi: 10.1016/j.tics.2004.02.010 pmid: 15050513 |
[7] |
Balconi, M., & Mazza, G. (2009). Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band. International Journal of Psychophysiology, 74(2), 158-165.
doi: 10.1016/j.ijpsycho.2009.08.006 pmid: 19709636 |
[8] |
Bebko, G. M., Franconeri, S. L., Ochsner, K. N., & Chiao, J. Y. (2011). Look before you regulate: Differential perceptual strategies underlying expressive suppression and cognitive reappraisal. Emotion, 11(4), 732-742.
doi: 10.1037/a0024009 pmid: 21707159 |
[9] | Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. The American Journal of Psychiatry, 165(8), 969-977. |
[10] |
Belden, A. C., Pagliaccio, D., Murphy, E. R., Luby, J. L., & Barch, D. M. (2015). Neural activation during cognitive emotion regulation in previously depressed compared to healthy children: Evidence of specific alterations. Journal of the American Academy of Child and Adolescent Psychiatry, 54(9), 771-781.
doi: 10.1016/j.jaac.2015.06.014 pmid: 26299299 |
[11] |
Benning, S. D., & Ait Oumeziane, B. (2017). Reduced positive emotion and underarousal are uniquely associated with subclinical depression symptoms: Evidence from psychophysiology, self-report, and symptom clusters. Psychophysiology, 54(7), 1010-1030.
doi: 10.1111/psyp.12853 pmid: 28322458 |
[12] |
Borges, A. M., Kuang, J., Milhorn, H., & Yi, R. (2016). An alternative approach to calculating area-under-the-curve (auc) in delay discounting research. Journal of the Experimental Analysis of Behavior, 106(2), 145-155.
doi: 10.1002/jeab.219 pmid: 27566660 |
[13] |
Bruder, G. E., Stewart, J. W., & McGrath, P. J. (2017). Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neuroscience and Biobehavioral Reviews, 78, 178-191.
doi: S0149-7634(16)30427-4 pmid: 28445740 |
[14] |
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198.
doi: 10.1038/nrn2575 pmid: 19190637 |
[15] |
Dai, Q., & Feng, Z. (2011). Dysfunctional distracter inhibition and facilitation for sad faces in depressed individuals. Psychiatry Research, 190(2-3), 206-211.
doi: 10.1016/j.psychres.2011.05.007 pmid: 21683453 |
[16] |
Davidson, R. J., Lewis, D. A., Alloy, L. B., Amaral, D. G., Bush, G., Cohen, J. D.,... Peterson, B. S. (2002). Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 52(6), 478-502.
doi: 10.1016/s0006-3223(02)01458-0 pmid: 12361665 |
[17] |
Davis, E. G., Foland-Ross, L. C., & Gotlib, I. H. (2018). Neural correlates of top-down regulation and generation of negative affect in major depressive disorder. Psychiatry Research: Neuroimaging, 276, 1-8.
doi: S0925-4927(17)30124-5 pmid: 29689500 |
[18] |
De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Tocci, A., Capitanio, S.,... Babiloni, F. (2007). Features extraction from time-varying cortical networks adopting a theoretical graph approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 5198-5201.
pmid: 18003179 |
[19] | De Zorzi, L., RanFaing, S., Honoré, J., & Sequeira, H. (2021). Autonomic reactivity to emotion: A marker of sub-clinical anxiety and depression symptoms? Psychophysiology, 58(4), e13774. |
[20] |
Diedrich, A., Grant, M., Hofmann, S. G., Hiller, W., & Berking, M. (2014). Self-compassion as an emotion regulation strategy in major depressive disorder. Behaviour Research and Therapy, 58, 43-51.
doi: 10.1016/j.brat.2014.05.006 pmid: 24929927 |
[21] |
Dillon, D. G., & Pizzagalli, D. A. (2013). Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Research, 212(2), 99-107.
doi: 10.1016/j.pscychresns.2013.01.001 pmid: 23570916 |
[22] | Doré, B. P., Rodrik, O., Boccagno, C., Hubbard, A., Weber, J., Stanley, B.,... Ochsner, K. N. (2018). Negative autobiographical memory in depression reflects elevated amygdala- hippocampal reactivity and hippocampally associated emotion regulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 358-366. |
[23] |
Dryman, M. T., & Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clinical Psychology Review, 65, 17-42.
doi: S0272-7358(18)30071-0 pmid: 30064053 |
[24] |
Ehring, T., Tuschen-Caffier, B., Schnülle, J., Fischer, S., & Gross, J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. Emotion, 10(4), 563-572.
doi: 10.1037/a0019010 pmid: 20677873 |
[25] | Erk, S., Mikschl, A., Stier, S., Ciaramidaro, A., Gapp, V., Weber, B., & Walter, H. (2010). Acute and sustained effects of cognitive emotion regulation in major depression. The Journal of Neuroscience, 30(47), 15726-15734. |
[26] |
Fingelkurts, A. A., & Fingelkurts, A. A. (2015). Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biological Psychiatry, 77(12), 1050-1060.
doi: 10.1016/j.biopsych.2014.12.011 pmid: 25662102 |
[27] | Fitzgerald, P. J., & Watson, B. O. (2018). Gamma oscillations as a biomarker for major depression: An emerging topic. Translational Psychiatry, 8(1), 177. |
[28] |
Fogel, J., Eaton, W. W., & Ford, D. E. (2006). Minor depression as a predictor of the first onset of major depressive disorder over a 15-year follow-up. Acta Psychiatrica Scandinavica, 113(1), 36-43.
doi: 10.1111/j.1600-0447.2005.00654.x pmid: 16390367 |
[29] |
Ford, B. Q., Karnilowicz, H. R., & Mauss, I. B. (2017). Understanding reappraisal as a multicomponent process: The psychological health benefits of attempting to use reappraisal depend on reappraisal success. Emotion, 17(6), 905-911.
doi: 10.1037/emo0000310 pmid: 28358559 |
[30] |
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F.,... Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202-211.
doi: 10.1016/j.neubiorev.2014.06.010 pmid: 24984244 |
[31] | Greco, C., Matarazzo, O., Cordasco, G., Vinciarelli, A., Callejas, Z., & Esposito, A. (2021). Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review. IEEE Access, 9, 112850-112870. |
[32] | Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271-299. |
[33] | Gross, J. J., & Thompson, R. A. (2007). Emotion regulation:Conceptual foundations. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 3-24). New York, NY: Guilford Press. |
[34] | Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences, 98(7), 4259-4264. |
[35] | Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25(3), 400-412. |
[36] |
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage, 50(3), 1313-1319.
doi: 10.1016/j.neuroimage.2009.12.109 pmid: 20056157 |
[37] | Hasanzadeh, F., Mohebbi, M., & Rostami, R. (2020). Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. Journal of Neural Engineering, 17(2), 026010. |
[38] |
Jaworska, N., Blier, P., Fusee, W., & Knott, V. (2012). α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. Journal of Psychiatric Research, 46(11), 1483-1491.
doi: 10.1016/j.jpsychires.2012.08.003 pmid: 22939462 |
[39] |
John, O. P., & Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. Journal of Personality, 72(6), 1301-1334.
doi: 10.1111/j.1467-6494.2004.00298.x pmid: 15509284 |
[40] | Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition & Emotion, 24(2), 281-298. |
[41] |
Kalisch, R., Wiech, K., Critchley, H. D., Seymour, B., O’Doherty, J. P., & Oakley, D. A. (2005). Anxiety reduction through detachment: Subjective, physiological, and neural effects. Journal of Cognitive Neuroscience, 17(6), 874-883.
pmid: 15969906 |
[42] | Kang, J.-H., Jeong, J. W., Kim, H. T., Kim, S. H., & Kim, S.-P. (2014). Representation of cognitive reappraisal goals in frontal gamma oscillations. PLoS ONE, 9(11), e113375. |
[43] | Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., & Just, M. A. (2013). Identifying emotions on the basis of neural activation. PloS ONE, 8(6), e66032. |
[44] |
Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14(5), 785-794.
pmid: 12167262 |
[45] |
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature reviews. Neuroscience, 12(4), 217-230.
doi: 10.1038/nrn3008 pmid: 21415848 |
[46] |
Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T.,... Zubieta, J. K. (2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biological Psychiatry, 62(11), 1272-1280.
doi: 10.1016/j.biopsych.2007.02.019 pmid: 17585888 |
[47] | Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. |
[48] |
Li, F., Lui, S., Yao, L., Ji, G. J., Liao, W., Sweeney, J. A., & Gong, Q. (2018). Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. Schizophrenia Bulletin, 44(2), 409-418.
doi: 10.1093/schbul/sbx048 pmid: 28520931 |
[49] |
Li, H., Yang, X. G., Zheng, W. Y., & Wang, C. (2019). Emotional regulation goals of young adults with depression inclination: An event-related potential study. Acta Psychologica Sinica, 51(6), 637-647.
doi: 10.3724/SP.J.1041.2019.00637 |
[李红, 杨小光, 郑文瑜, 王超. (2019). 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据. 心理学报, 51(6), 637-647.]
doi: 10.3724/SP.J.1041.2019.00637 |
|
[50] |
Li, Y., Cao, D., Wei, L., Tang, Y., & Wang, J. (2015). Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clinical Neurophysiology, 126(11), 2078-2089.
doi: 10.1016/j.clinph.2014.12.026 pmid: 25766267 |
[51] | Liang, X., Wang, J. H., & He, Y. (2010). Human connectome: Structural and functional brain networks. Chinese Science Bulletin, 55(16), 1565-1583. |
[梁夏, 王金辉, 贺永. (2010). 人脑连接组研究: 脑结构网络和脑功能网络. 科学通报, (16), 1565-1583.] | |
[52] |
Liang, Y., Huo, M., Kennison, R., & Zhou, R. L. (2017). The role of cognitive control in older adult cognitive reappraisal: Detached and positive reappraisal. Frontiers in Behavioral Neuroscience, 11, 27.
doi: 10.3389/fnbeh.2017.00027 pmid: 28326024 |
[53] | Lindsey, M. R., Katherine, D. M. L., James, O., Jaclyn, B. D., Michelle, Q., Hunter, P. D., & Jennifer, B. (2020). Effects of a brief interpersonal conflict cognitive reappraisal intervention on improvements in access to emotion regulation strategies and depressive symptoms in college students. Psychology & Health. 35(10), 1207-1227. |
[54] | Lioi, G., Cury, C., Perronnet, L., Mano, M., Bannier, E., Lécuyer, A., & Barillot, C. (2020). Simultaneous eeg-fmri during a neurofeedback task, a brain imaging dataset for multimodal data integration. Entific Data, 7(1), 173. |
[55] | Liu, M., Ma, J., Fu, C. Y., Yeo, J., Xiao, S. S., Xiao, W. X.,... Li, Y. X. (2022). Dysfunction of emotion regulation in mild cognitive impairment individuals combined with depressive disorder: A neural mechanism study. Frontiers in Aging Neuroscience, 14, 884741. |
[56] |
Liu, S., Chen, S. T., Huang, Z. N., Liu, X. Y., Li, M. J., Su, F. Y., Hao, X. Y., & Ming, D. (2022). Hypofunction of directed brain network within alpha frequency band in depressive patients: A graph-theoretic analysis. Cognitive Neurodynamics, 16(5), 1059-1071.
doi: 10.1007/s11571-022-09782-6 pmid: 36237415 |
[57] | Liu, X., Li, T., Tang, C., Xu, T., Chen, P., Bezerianos, A., & Wang, H. (2019). Emotion recognition and dynamic functional connectivity analysis based on EEG. IEEE Access, 7, 143293-143302. |
[58] | Liu, Y., Ren, G. Q., & Qu, K. J. (2023). The emotion regulation effect of cognitive reappraisal strategies on college students with depression tendency. Chinese Journal of Clinical Psychology, (1), 39-44. |
[刘岩, 任桂琴, 曲可佳. (2023). 认知重评策略对抑郁倾向大学生的情绪调节研究. 中国临床心理学杂志, (1), 39-44.] | |
[59] | Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J. P., & Chen, H. (2015). Disrupted structural connectivity network in treatment-naive depression. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 56, 18-26. |
[60] | Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M.,... Sorg, C. (2014). Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain, 137(2), 598-609. |
[61] |
Mohammadi, Y., & Moradi, M. H. (2021). Prediction of depression severity scores based on functional connectivity and complexity of the EEG signal. Clinical EEG and Neuroscience, 52(1), 52-60.
doi: 10.1177/1550059420965431 pmid: 33040603 |
[62] |
Moser, J. S., Hartwig, R., Moran, T. P., Jendrusina, A. A., & Kross, E. (2014). Neural markers of positive reappraisal and their associations with trait reappraisal and worry. Journal of Abnormal Psychology, 123(1), 91-105.
doi: 10.1037/a0035817 pmid: 24661162 |
[63] | Murugappan, M., Zheng, B. S., & Khairunizam, W. (2021). Recurrent quantification analysis-based emotion classification in stroke using electroencephalogram signals. Arabian Journal for Science and Engineering, 46, 9573-9588. |
[64] |
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242-249.
doi: 10.1016/j.tics.2005.03.010 pmid: 15866151 |
[65] |
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage, 23(2), 483-499.
doi: 10.1016/j.neuroimage.2004.06.030 pmid: 15488398 |
[66] | Olaf, S., Honey, C. J., Rolf, K., & Marcus, K. (2007). Identification and classification of hubs in brain networks. PLoS ONE, 2(10), e1049. |
[67] |
Peng, W. Q., Luo, W., & Zhou, R. L. (2019). HRV evidence for the improvement of emotion regulation in university students with depression tendency by working memory training. Acta Psychologica Sinica, 51(6), 648-661.
doi: 10.3724/SP.J.1041.2019.00648 |
[彭婉晴, 罗帏, 周仁来. (2019). 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据. 心理学报, 51(6), 648-661.]
doi: 10.3724/SP.J.1041.2019.00648 |
|
[68] | Picó-Pérez, M., Radua, J., Steward, T., Menchón, J. M., & Soriano-Mas, C. (2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 79(Pt B),96-104. |
[69] | Pierce, J. E., Haque, E., & Neta, M. (2022). Affective flexibility as a developmental building block of cognitive reappraisal: An fMRI study. Developmental Cognitive Neuroscience, 58, 101170. |
[70] | Qi, S. Q., Li, Y. P., Tang, X. M., Zeng, Q. H., Diao, L. T., Li, H., & Hu, W. P. (2017). The temporal dynamics of detached versus positive reappraisal: An ERP study. Cognitive, Affective, & Behavioral Neuroscience, 17( 3), 516-527. |
[71] | Ramezani, M., Johnsrude, I., Rasoulian, A., Bosma, R., Tong, R., Hollenstein, T.,... Abolmaesumi, P. (2014). Temporal- lobe morphology differs between healthy adolescents and those with early-onset of depression. NeuroImage: Clinical, 6, 145-155. |
[72] | Rodríguez, M. R., Nuevo, R., Chatterji, S., & Ayuso-Mateos, J. L. (2012). Definitions and factors associated with subthreshold depressive conditions: A systematic review. BMC Psychiatry, 12, 1-7. |
[73] | Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure & Function, 224(9), 3001-3018. |
[74] |
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059-1069.
doi: 10.1016/j.neuroimage.2009.10.003 pmid: 19819337 |
[75] | Shao, X., Sun, S., Li, J., Kong, W., Zhu, J., Li, X., & Hu, B. (2021). Analysis of functional brain network in MDD based on improved empirical mode decomposition with resting state EEG data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1546-1556. |
[76] |
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020-11025.
doi: 10.1073/pnas.1000446107 pmid: 20534464 |
[77] | Shiota, M. N., & Levenson, R. W. (2002). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. Journal of Personality and Social Psychology, 103(3), 416-429 |
[78] |
Shiota, M. N., & Levenson, R. W. (2009). Effects of aging on experimentally instructed detached reappraisal, positive reappraisal, and emotional behavior suppression. Psychology and Aging, 24(4), 890-900.
doi: 10.1037/a0017896 pmid: 20025404 |
[79] |
Shiota, M. N., & Levenson, R. W. (2012). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. Journal of Personality and Social Psychology, 103(3), 416-429.
doi: 10.1037/a0029208 pmid: 22746676 |
[80] |
Song, P., Lin, H., Liu, C., Jiang, Y., Lin, Y., Xue, Q., Xu, P., & Wang, Y. (2019). Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic module reconfiguration in brain networks. Frontiers in Neuroinformatics, 13, 22.
doi: 10.3389/fninf.2019.00022 pmid: 31001103 |
[81] |
Sullivan, S. K., & Strauss, G. P. (2017). Electrophysiological evidence for detrimental impact of a reappraisal emotion regulation strategy on subsequent cognitive control in schizophrenia. Journal of Abnormal Psychology, 126(5), 679-693.
doi: 10.1037/abn0000285 pmid: 28691849 |
[82] | Sun, X. F., Zheng, X. W., Xu, Y. H., Cui, L. Z., & Hu, B. (2021). Major depressive disorder recognition and cognitive analysis based on multi-layer brain functional connectivity networks. arXiv - CS - Machine Learning, 2111, 01351. |
[83] |
Sun, Y., Lv, J. J., Lan, F., & Zhang, L. N. (2020). Emotion regulation strategy of self-focused and situation-focused reappraisal and their impact on subsequent cognitive control. Acta Psychologica Sinica, 52(12), 1393-1406.
doi: 10.3724/SP.J.1041.2020.01393 |
[孙岩, 吕娇娇, 兰帆, 张丽娜. (2020). 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响. 心理学报, 52(12), 1393-1406.]
doi: 10.3724/SP.J.1041.2020.01393 |
|
[84] |
Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., & Gross, J. J. (2011). The temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. Biological Psychology, 87(1), 84-92.
doi: 10.1016/j.biopsycho.2011.02.009 pmid: 21354262 |
[85] |
Tuithof, M., Ten Have, M., van Dorsselaer, S., Kleinjan, M., Beekman, A., & de Graaf, R. (2018). Course of subthreshold depression into a depressive disorder and its risk factors. Journal of Affective Disorders, 241, 206-215.
doi: S0165-0327(18)30657-8 pmid: 30130686 |
[86] | van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519-534. |
[87] | Wang, C. F., Zhang, Q., & Zhang, X. X. (2021). The differences in regulatory effect and success degree of negative emotions between detached and positive cognitive reappraisals in juveniles, youths, diddle and elderly peoples. Journal of Psychological Science, 44(6), 1376-1382. |
[王彩凤, 张奇, 张笑笑. (2021). 积极与分离认知重评负性情绪调节效果和成功程度的差异:青年、中老年和少年的实验结果. 心理科学, 44(6), 1376-1382.] | |
[88] |
Willroth, E. C., & Hilimire, M. R. (2016). Differential effects of self- and situation-focused reappraisal. Emotion, 16(4), 468-474.
doi: 10.1037/emo0000139 pmid: 26641270 |
[89] |
Wong, N. M., Liu, H. L., Lin, C., Huang, C. M., Wai, Y. Y., Lee, S. H., & Lee, T. M. (2016). Loneliness in late-life depression: Structural and functional connectivity during affective processing. Psychological Medicine, 46(12), 2485-2499.
doi: 10.1017/S0033291716001033 pmid: 27328861 |
[90] |
Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., & Gong, Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70(4), 334-342.
doi: 10.1016/j.biopsych.2011.05.018 pmid: 21791259 |
[91] | Zhang, K., Wang, C. M., & Wang, J. X. (2016). The Effect of Reappraisal and Distraction for Patients of Depression:ERPs Study. Psychological Exploration, (3), 245-250. |
[张阔, 王春梅, 王敬欣. (2016). 抑郁症患者认知重评和分心情绪调节的有效性: ERPs研究. 心理学探新, (3), 245-250.] | |
[92] | Zhang, R., Kranz, G. S., Zou, W., Deng, Y., Huang, X., Lin, K., & Lee, T. (2020). Rumination network dysfunction in major depression: A brain connectome study. Progress in Neuro- psychopharmacology & Biological Psychiatry, 98, 109819. |
[93] |
Zhang, T., Zhao, B., Shi, C., Nie, B., Liu, H., Yang, X.,... Shan, B. (2020). Subthreshold depression may exist on a spectrum with major depressive disorder: Evidence from gray matter volume and morphological brain network. Journal of Affective Disorders, 266, 243-251.
doi: S0165-0327(19)31640-4 pmid: 32056884 |
[94] | Zhang, W., Zou, Y., Zhao, F., Yang, Y., Mao, N., Li, Y., Huang, G., Yao, Z., & Hu, B. (2022). Brain network alterations in rectal cancer survivors with depression tendency: Evaluation with multimodal magnetic resonance imaging. Frontiers in Neurology, 13, 791298. |
[1] | 姚雨佳, 颜之悦, 林慧慧, 陈静全, 宣雨阳. 人际距离和策略创造性对人际情绪调节的影响[J]. 心理学报, 2025, 57(1): 125-134. |
[2] | 肖程元, 赵世瑞, 袁加锦. 积极认知重评对负性信息传播的调控及多维证据[J]. 心理学报, 2024, 56(11): 1471-1487. |
[3] | 郭晓栋, 郑泓, 阮盾, 胡丁鼎, 王毅, 王艳郁, 陈楚侨. 认知和情感共情与负性情绪:情绪调节的作用机制[J]. 心理学报, 2023, 55(6): 892-904. |
[4] | 高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. 腹内侧前额叶在内隐认知重评中的因果作用[J]. 心理学报, 2023, 55(2): 210-223. |
[5] | 张妮, 刘文, 刘方, 郭鑫. 8~12岁儿童抑郁与认知重评的关系:悲伤面孔注意偏向的中介作用[J]. 心理学报, 2022, 54(1): 25-39. |
[6] | 袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455. |
[7] | 孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406. |
[8] | 孙岩, 薄思雨, 吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25. |
[9] | 彭婉晴, 罗帏, 周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661. |
[10] | 李红, 杨小光, 郑文瑜, 王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647. |
[11] | 张丹丹, 刘珍莉, 陈钰, 买晓琴. 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用:一项tDCS研究[J]. 心理学报, 2019, 51(2): 207-2015. |
[12] | 杨青青, 胡娜, 陈旭, 牛娟, 翟晶. 恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316. |
[13] | 侯璐璐, 江琦, 王焕贞, 李长燃. 特质愤怒对攻击行为的影响: 基于综合认知模型的视角[J]. 心理学报, 2017, 49(12): 1548-1558. |
[14] | 陈颖媛;邹智敏;潘俊豪. 资质过剩感影响组织公民行为的情绪路径[J]. 心理学报, 2017, 49(1): 72-82. |
[15] | 蔡阿燕;杨洁敏;许爽;袁加锦. 表达抑制调节负性情绪的男性优势 ——来自事件相关电位的证据[J]. 心理学报, 2016, 48(5): 482-494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||