[1] Chen, D., & Yan, C. (2021). Classification of attribute mastery patterns using deep learning.Open Journal of Modelling and Simulation, 9(2), 198-210. [2] Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns.Journal of Classification, 30(2), 225-250. [3] Chiu C.-Y., Douglas J. A., & Li X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications.Psychometrika, 74(4), 633-665. [4] Chiu C.-Y., Sun Y., & Bian Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method.Psychometrika, 83(2), 355-375. [5] Cui Y., Gierl M., & Guo Q. (2016). Statistical classification for cognitive diagnostic assessment: An artificial neural network approach.Educational Psychology, 36(6), 1065-1082. [6] DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the q-matrix.Applied Psychological Measurement, 35(1), 8-26. [7] DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468. [8] de la Torre, J. (2009). DINA model and parameter estimation: A didactic.Journal of Educational and Behavioral Statistics, 34(1), 115-130. [9] de la Torre, J., & Minchen, N. D. (2019). The G-DINA model framework. In M. von Davier & Y.-S. Lee (Eds.), Handbook of Diagnostic Classification Models: Methodology of Educational Measurement and Assessment (pp. 155-169). Springer, Cham. [10] de la Torre, J. (2011). The generalized DINA model framework.Psychometrika, 76(2), 179-199. [11] Gao X. L., Gong Y., & Wang F. (2021). Research progress in polytomous cognitive diagnosis model. Journal of Psychological Science, 44(2), 457-464. [高旭亮, 龚毅, 王芳. (2021). 多级评分认知诊断模型述评.心理科学, 44(2), 457-464.] [12] Guo L., Yang J., & Song N. (2020). Spectral clustering algorithm for cognitive diagnostic assessment. Frontiers in Psychology, 11, 944. [13] Guo, L., & Zhou, W. J. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items.Acta Psychologica Sinica, 53(9), 1032-1043. [郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法.心理学报, 53(9), 1032-1043.] [14] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. [15] Kang C. H., Ren P., & Zeng P. F. (2015). Nonparametric cognitive diagnosis: A cluster diagnostic method based on grade response items.Acta Psychologica Sinica, 47(8), 1077-1088. [康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法: 多级评分的聚类分析.心理学报, 47(8), 1077-1088.] [16] Kang C. H., Zhang S. J., Li Y. B., & Zeng P. F. (2019). The cognitive diagnosis of k-nearest neighbor algorithm and its application. Journal of Jiangxi Normal University (Natural Science), 43(2), 135-141+159. [康春花, 张淑君, 李元白, 曾平飞. (2019). KNN认知诊断法及其应用. 江西师范大学学报(自然科学版), 43(2), 135-141+159. ] [17] Liu, C., & Cheng, Y. (2018). An application of the support vector machine for attribute-by-attribute classification in cognitive diagnosis.Applied Psychological Measurement, 42(1), 58-72. [18] Liu, Q. (2021, August). Towards a new generation of cognitive diagnosis. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21(pp.4961-4964). Montreal, Canada. [19] Liu Y., Zhang T., Wang X., Yu G., & Li T. (2022). New development of cognitive diagnosis models. Frontiers of Computer Science, 17(1), 171604. [20] Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses.The British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. [21] Nájera P., Abad F. J., & Sorrel M. A. (2021). Determining the number of attributes in cognitive diagnosis modeling. Frontier of Psychology, 12, 614470. [22] Nie C., Sun X. J., & Xin T. (2021). Factors affecting the classification accuracy in cognitive diagnosis assessment based on BP neural network.Journal of China Examinations, (3), 28-35. [聂畅, 孙小坚, 辛涛. (2021). 基于BP神经网络的认知诊断评估分类准确率影响因素分析.中国考试, (3), 28-35.] [23] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning.IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. [24] Qin, H., & Guo, L. (2024). Using machine learning to improve Q-matrix validation.Behavior Research Methods, 56(3), 1916-1935. [25] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.Psychological Review, 65(6), 386-408. [26] Rumelhart D. E., Hinton G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1: Foundations, pp. 318-362). MIT Press. [27] Sen, S., & Cohen, A. S. (2021). Sample size requirements for applying diagnostic classification models. Frontiers in Psychology, 11, 621251. [28] Song L. H., Wang W. Y., & Ding S. L. (2024). Q-matrix theory and its applications in cognitive diagnostic assessment.Advances in Psychological Science, 32(6), 1010-1033. [宋丽红, 汪文义, 丁树良. (2024). 认知诊断评估中Q矩阵理论及应用.心理科学进展, 32(6), 1010-1033.] [29] Sorrel M. A., Escudero S., Nájera P., Kreitchmann R. S., & Vázquez-Lira R. (2023). Exploring approaches for estimating parameters in cognitive diagnosis models with small sample sizes. Psych, 5(2), 336-349. [30] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., & Salakhutdinov R. (2014). Dropout: A simple way to prevent neural networks from overfitting.The Journal of Machine Learning Research, 15(1), 1929-1958. [31] Tan C., Sun F., Kong T., Zhang W., Yang C., & Liu C. (2018). A survey on deep transfer learning. In V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglogiannis (Eds.), Artificial neural networks and machine learning- ICANN 2018 (Vol. 11141, pp. 270-279). Springer. [32] Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment(pp. 327-359). Lawrence Erlbaum Associates, Inc. [33] Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. [34] Tian Y. S., Zhan P. D., & Wang L. J. (2023). Joint cognitive diagnostic modeling for probabilistic attributes incorporating item responses and response times.Acta Psychologica Sinica, 55(9), 1573-1586. [田亚淑, 詹沛达, 王立君. (2023). 联合作答精度和作答时间的概率态认知诊断模型.心理学报, 55(9), 1573-1586.] [35] Wang D., Ma W., Cai Y., & Tu D. (2024). A general nonparametric classification method for multiple strategies in cognitive diagnostic assessment. Behavior Research Methods, 56(2), 723-735. [36] Wang D. X., Xiao Q. W., Tan Q. R., Cai Y., & Tu D. B. (2023). A non-parametric multi-strategy cognitive diagnosis method.Journal of Psychological Science, 46(4), 971-979. [汪大勋, 肖清文, 谭青蓉, 蔡艳, 涂冬波. (2023). 非补偿的非参数化多策略认知诊断方法:NCNPMSC方法开发.心理科学, 46(4), 971-979.] [37] Wang F., Liu Q., Chen E., Huang Z., Chen Y., Yin Y., … Wang S. (2020, April). Neural cognitive diagnosis for intelligent education systems. In Proceedings of the 34th AAAI conference on artificial intelligence (Vol. 34, No. 04, pp. 6153-6161). New York, NA. [38] Wang, M., & Deng, W. (2018). Deep visual domain adaptation: A survey. Neurocomputing, 312, 135-153. [39] Wang W., Song L., Chen P., Meng Y., & Ding S. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52(4), 457-476. [40] Wang W. Y., Ding S. L., Song L. H., Kuang Z., & Gao, H Y. (2016). Application of neural networks and support vector machines to cognitive diagnosis.Journal of Psychological Science, 39(4), 777-782. [汪文义, 丁树良, 宋丽红, 邝铮, 曹慧媛. (2016). 神经网络和支持向量机在认知诊断中的应用.心理科学, 39(4), 777-782.] [41] Wang W. Y., Song L. H., Ding S. L., Wang T., & Xiong J. (2021). A probabilistic representation approach for the nonparametric classification method to cognitive diagnosis. Journal of Psychological Science, 44(5), 1249-1258. [汪文义, 宋丽红, 丁树良, 汪腾, 熊建. (2021). 非参数认知诊断方法下诊断结果的概率化表征.心理科学, 44(5), 1249-1258.] [42] Wen H., Liu Y., & Zhao N. (2020). Longitudinal cognitive diagnostic assessment based on the HMM/ANN model. Frontiers in Psychology, 11, 2145. [43] Xin T., Wang C., Chen P., & Liu Y. (2022). Editorial: Cognitive diagnostic models: Methods for practical applications. Frontiers in Psychology, 13, 895399. [44] Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models.Psychometrika, 81(3), 625-649. [45] Xu H. Y., Chen Q. P., Liu Y. H., & Zhan P. D. (2023). Nonparametric diagnostic classification for polytomous attributes: A comparison of 18 distance discriminant methods.Journal of Psychological Science, 46(6), 1486-1494. [徐慧颖, 陈琦鹏, 刘耀辉, 詹沛达. (2023). 多分属性的非参数诊断分类:18种距离判别法的对比.心理科学, 46(6), 1486-1494.] [46] Xue, K., & Bradshaw, L. P. (2021). A semi-supervised learning-based diagnostic classification method using artificial neural networks. Frontiers in Psychology, 11, 618336. [47] Yamaguchi, K. (2023). On the boundary problems in diagnostic classification models. Behaviormetrika, 50(1), 399-429. [48] Zhan P., Man K., Wind S. A., & Malone J. (2022). Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis.Journal of Educational and Behavioral Statistics, 47(6), 736-776. [49] Zhang W., Meng L., & Liang B. (2022). EW-KNN: Evaluating information technology courses in high school with a non-parametric cognitive diagnosis method.Interactive Learning Environments, 31(10), 6783-6798. [50] Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., & He Q. (2021). A comprehensive survey on transfer learning.Proceedings of the IEEE, 109(1), 43-76. |