心理学报 ›› 2023, Vol. 55 ›› Issue (9): 1573-1586.doi: 10.3724/SP.J.1041.2023.01573
• 研究报告 • 上一篇
收稿日期:
2022-08-30
发布日期:
2023-06-09
出版日期:
2023-09-25
通讯作者:
詹沛达,王立君
E-mail:pdzhan@gmail.com;frankwlj@163.com
基金资助:
TIAN Yashu, ZHAN Peida(), WANG Lijun()
Received:
2022-08-30
Online:
2023-06-09
Published:
2023-09-25
Contact:
ZHAN Peida, WANG Lijun
E-mail:pdzhan@gmail.com;frankwlj@163.com
摘要:
对多模态数据的联合分析是改进结果评价、健全综合评价的主要途径。针对概率态认知诊断模型(CDM)仅能分析题目作答精度(RA)的局限, 本文基于联合-层级建模框架和联合-交叉负载建模框架提出三个可联合分析RA和题目作答时间(RT)的概率态联合CDM。模拟研究和实证研究结果表明:(1)新模型参数估计返真性良好, 额外引入RT有助于提高参数估计精度并提供有关个体加工速度的测量; (2)基于联合-交叉负载建模框架构建的模型对测验情境的兼容性优于基于联合-层级建模框架构建的模型; (3)概率态属性比确定态属性更精细地反映个体对属性的掌握情况。
中图分类号:
田亚淑, 詹沛达, 王立君. (2023). 联合作答精度和作答时间的概率态认知诊断模型. 心理学报, 55(9), 1573-1586.
TIAN Yashu, ZHAN Peida, WANG Lijun. (2023). Joint cognitive diagnostic modeling for probabilistic attributes incorporating item responses and response times. Acta Psychologica Sinica, 55(9), 1573-1586.
图1 联合-层级认知诊断建模框架中条件独立性假设示意图 注:RA = 作答精度; RT = 作答时间; θ = 能力; τ = 加工速度; α = 属性; ρ = 能力与加工速度的相关系数; 虚线表示模型的条件独立假设: a = 给定能力和加工速度后, RT和RA条件独立; b = 给定加工速度后, 能力和RT条件独立; c = 给定能力和加工速度后, 属性和RT条件独立; d = 给定能力后, 加工速度和RA条件独立; e = 给定能力后, 加工速度和属性条件独立。
N | I | ρθτ | JRT-PINC | HO-PINC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
θ | τ | θ | |||||||||
Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
200 | 15 | -0.5 | -0.001 | 0.458 | 0.887 | 0.000 | 0.121 | 0.896 | -0.002 | 0.479 | 0.875 |
-0.3 | -0.003 | 0.468 | 0.881 | 0.001 | 0.122 | 0.896 | -0.002 | 0.480 | 0.875 | ||
0.0 | -0.003 | 0.473 | 0.879 | -0.000 | 0.122 | 0.949 | -0.004 | 0.480 | 0.875 | ||
0.3 | -0.001 | 0.469 | 0.881 | -0.001 | 0.121 | 0.899 | -0.003 | 0.480 | 0.874 | ||
0.5 | -0.000 | 0.458 | 0.887 | -0.000 | 0.120 | 0.902 | -0.001 | 0.483 | 0.874 | ||
30 | -0.5 | -0.001 | 0.397 | 0.915 | -0.000 | 0.085 | 0.953 | -0.004 | 0.412 | 0.908 | |
-0.3 | 0.000 | 0.403 | 0.913 | -0.001 | 0.086 | 0.953 | -0.004 | 0.411 | 0.909 | ||
0.0 | -0.002 | 0.405 | 0.911 | -0.000 | 0.086 | 0.975 | -0.004 | 0.413 | 0.908 | ||
0.3 | -0.002 | 0.397 | 0.915 | -0.002 | 0.086 | 0.954 | -0.004 | 0.410 | 0.909 | ||
0.5 | -0.003 | 0.389 | 0.919 | -0.001 | 0.085 | 0.953 | -0.005 | 0.411 | 0.909 | ||
500 | 15 | -0.5 | -0.000 | 0.456 | 0.888 | -0.000 | 0.121 | 0.902 | 0.000 | 0.476 | 0.876 |
-0.3 | 0.000 | 0.467 | 0.881 | -0.001 | 0.122 | 0.901 | 0.000 | 0.477 | 0.876 | ||
0.0 | -0.000 | 0.473 | 0.878 | -0.000 | 0.122 | 0.948 | -0.001 | 0.476 | 0.875 | ||
0.3 | -0.001 | 0.470 | 0.880 | -0.001 | 0.122 | 0.901 | -0.001 | 0.478 | 0.875 | ||
0.5 | -0.000 | 0.460 | 0.885 | -0.001 | 0.121 | 0.903 | -0.001 | 0.478 | 0.876 | ||
30 | -0.5 | 0.000 | 0.391 | 0.918 | -0.000 | 0.088 | 0.948 | 0.000 | 0.407 | 0.911 | |
-0.3 | 0.002 | 0.400 | 0.914 | -0.001 | 0.088 | 0.948 | 0.000 | 0.407 | 0.911 | ||
0.0 | -0.001 | 0.402 | 0.913 | -0.000 | 0.089 | 0.973 | 0.000 | 0.405 | 0.912 | ||
0.3 | 0.000 | 0.397 | 0.915 | -0.001 | 0.088 | 0.948 | 0.000 | 0.405 | 0.912 | ||
0.5 | 0.001 | 0.387 | 0.920 | 0.000 | 0.088 | 0.948 | 0.000 | 0.405 | 0.912 |
表1 研究1中能力和加工速度参数估计返真性
N | I | ρθτ | JRT-PINC | HO-PINC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
θ | τ | θ | |||||||||
Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
200 | 15 | -0.5 | -0.001 | 0.458 | 0.887 | 0.000 | 0.121 | 0.896 | -0.002 | 0.479 | 0.875 |
-0.3 | -0.003 | 0.468 | 0.881 | 0.001 | 0.122 | 0.896 | -0.002 | 0.480 | 0.875 | ||
0.0 | -0.003 | 0.473 | 0.879 | -0.000 | 0.122 | 0.949 | -0.004 | 0.480 | 0.875 | ||
0.3 | -0.001 | 0.469 | 0.881 | -0.001 | 0.121 | 0.899 | -0.003 | 0.480 | 0.874 | ||
0.5 | -0.000 | 0.458 | 0.887 | -0.000 | 0.120 | 0.902 | -0.001 | 0.483 | 0.874 | ||
30 | -0.5 | -0.001 | 0.397 | 0.915 | -0.000 | 0.085 | 0.953 | -0.004 | 0.412 | 0.908 | |
-0.3 | 0.000 | 0.403 | 0.913 | -0.001 | 0.086 | 0.953 | -0.004 | 0.411 | 0.909 | ||
0.0 | -0.002 | 0.405 | 0.911 | -0.000 | 0.086 | 0.975 | -0.004 | 0.413 | 0.908 | ||
0.3 | -0.002 | 0.397 | 0.915 | -0.002 | 0.086 | 0.954 | -0.004 | 0.410 | 0.909 | ||
0.5 | -0.003 | 0.389 | 0.919 | -0.001 | 0.085 | 0.953 | -0.005 | 0.411 | 0.909 | ||
500 | 15 | -0.5 | -0.000 | 0.456 | 0.888 | -0.000 | 0.121 | 0.902 | 0.000 | 0.476 | 0.876 |
-0.3 | 0.000 | 0.467 | 0.881 | -0.001 | 0.122 | 0.901 | 0.000 | 0.477 | 0.876 | ||
0.0 | -0.000 | 0.473 | 0.878 | -0.000 | 0.122 | 0.948 | -0.001 | 0.476 | 0.875 | ||
0.3 | -0.001 | 0.470 | 0.880 | -0.001 | 0.122 | 0.901 | -0.001 | 0.478 | 0.875 | ||
0.5 | -0.000 | 0.460 | 0.885 | -0.001 | 0.121 | 0.903 | -0.001 | 0.478 | 0.876 | ||
30 | -0.5 | 0.000 | 0.391 | 0.918 | -0.000 | 0.088 | 0.948 | 0.000 | 0.407 | 0.911 | |
-0.3 | 0.002 | 0.400 | 0.914 | -0.001 | 0.088 | 0.948 | 0.000 | 0.407 | 0.911 | ||
0.0 | -0.001 | 0.402 | 0.913 | -0.000 | 0.089 | 0.973 | 0.000 | 0.405 | 0.912 | ||
0.3 | 0.000 | 0.397 | 0.915 | -0.001 | 0.088 | 0.948 | 0.000 | 0.405 | 0.912 | ||
0.5 | 0.001 | 0.387 | 0.920 | 0.000 | 0.088 | 0.948 | 0.000 | 0.405 | 0.912 |
N | I | ρθτ | RMSE | Cor | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JRT-PINC | HO-PINC | JRT-PINC | HO-PINC | |||||||||||||||||||
m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | |||
200 | 15 | -0.5 | 0.129 | 0.137 | 0.139 | 0.145 | 0.139 | 0.155 | 0.152 | 0.152 | 0.155 | 0.158 | 0.899 | 0.901 | 0.896 | 0.888 | 0.875 | 0.888 | 0.890 | 0.886 | 0.877 | 0.861 |
-0.3 | 0.130 | 0.136 | 0.144 | 0.150 | 0.141 | 0.158 | 0.148 | 0.153 | 0.158 | 0.160 | 0.895 | 0.897 | 0.892 | 0.883 | 0.869 | 0.887 | 0.891 | 0.885 | 0.876 | 0.860 | ||
0 | 0.132 | 0.137 | 0.144 | 0.148 | 0.141 | 0.161 | 0.147 | 0.155 | 0.157 | 0.157 | 0.894 | 0.896 | 0.890 | 0.881 | 0.867 | 0.886 | 0.891 | 0.885 | 0.876 | 0.861 | ||
0.3 | 0.127 | 0.138 | 0.145 | 0.151 | 0.143 | 0.154 | 0.148 | 0.159 | 0.158 | 0.157 | 0.896 | 0.896 | 0.890 | 0.882 | 0.869 | 0.887 | 0.891 | 0.884 | 0.876 | 0.862 | ||
0.5 | 0.128 | 0.139 | 0.144 | 0.147 | 0.142 | 0.159 | 0.151 | 0.158 | 0.157 | 0.161 | 0.898 | 0.899 | 0.894 | 0.886 | 0.874 | 0.884 | 0.889 | 0.883 | 0.874 | 0.860 | ||
30 | -0.5 | 0.097 | 0.108 | 0.124 | 0.127 | 0.133 | 0.117 | 0.125 | 0.142 | 0.144 | 0.151 | 0.946 | 0.940 | 0.928 | 0.912 | 0.890 | 0.940 | 0.933 | 0.920 | 0.904 | 0.881 | |
-0.3 | 0.100 | 0.110 | 0.126 | 0.128 | 0.132 | 0.120 | 0.124 | 0.142 | 0.143 | 0.148 | 0.945 | 0.939 | 0.927 | 0.911 | 0.887 | 0.940 | 0.933 | 0.921 | 0.905 | 0.882 | ||
0 | 0.103 | 0.110 | 0.128 | 0.130 | 0.134 | 0.122 | 0.126 | 0.142 | 0.148 | 0.153 | 0.944 | 0.938 | 0.925 | 0.909 | 0.885 | 0.939 | 0.933 | 0.920 | 0.903 | 0.879 | ||
0.3 | 0.097 | 0.110 | 0.123 | 0.131 | 0.129 | 0.121 | 0.126 | 0.140 | 0.148 | 0.150 | 0.946 | 0.939 | 0.928 | 0.912 | 0.890 | 0.940 | 0.933 | 0.921 | 0.905 | 0.881 | ||
0.5 | 0.096 | 0.110 | 0.124 | 0.127 | 0.126 | 0.120 | 0.127 | 0.143 | 0.144 | 0.148 | 0.947 | 0.940 | 0.929 | 0.915 | 0.894 | 0.940 | 0.933 | 0.921 | 0.905 | 0.881 | ||
500 | 15 | -0.5 | 0.111 | 0.131 | 0.130 | 0.139 | 0.139 | 0.132 | 0.140 | 0.141 | 0.145 | 0.160 | 0.906 | 0.905 | 0.901 | 0.890 | 0.874 | 0.896 | 0.896 | 0.892 | 0.879 | 0.861 |
-0.3 | 0.113 | 0.132 | 0.134 | 0.140 | 0.142 | 0.132 | 0.140 | 0.141 | 0.143 | 0.163 | 0.902 | 0.901 | 0.896 | 0.885 | 0.867 | 0.896 | 0.895 | 0.892 | 0.879 | 0.861 | ||
0 | 0.113 | 0.135 | 0.135 | 0.142 | 0.144 | 0.133 | 0.140 | 0.140 | 0.145 | 0.165 | 0.900 | 0.898 | 0.894 | 0.883 | 0.864 | 0.895 | 0.895 | 0.892 | 0.880 | 0.861 | ||
0.3 | 0.114 | 0.136 | 0.134 | 0.142 | 0.146 | 0.132 | 0.143 | 0.140 | 0.145 | 0.165 | 0.900 | 0.899 | 0.895 | 0.884 | 0.866 | 0.894 | 0.894 | 0.891 | 0.879 | 0.860 | ||
0.5 | 0.111 | 0.134 | 0.132 | 0.139 | 0.140 | 0.131 | 0.140 | 0.141 | 0.144 | 0.163 | 0.904 | 0.902 | 0.900 | 0.889 | 0.872 | 0.894 | 0.895 | 0.891 | 0.879 | 0.860 | ||
30 | -0.5 | 0.088 | 0.098 | 0.107 | 0.119 | 0.125 | 0.101 | 0.107 | 0.121 | 0.126 | 0.145 | 0.949 | 0.943 | 0.932 | 0.916 | 0.895 | 0.945 | 0.938 | 0.926 | 0.908 | 0.884 | |
-0.3 | 0.087 | 0.101 | 0.109 | 0.121 | 0.128 | 0.100 | 0.109 | 0.122 | 0.126 | 0.145 | 0.947 | 0.941 | 0.929 | 0.913 | 0.890 | 0.944 | 0.938 | 0.925 | 0.908 | 0.884 | ||
0 | 0.090 | 0.100 | 0.109 | 0.121 | 0.128 | 0.101 | 0.108 | 0.121 | 0.125 | 0.144 | 0.947 | 0.941 | 0.929 | 0.912 | 0.889 | 0.945 | 0.939 | 0.926 | 0.910 | 0.886 | ||
0.3 | 0.089 | 0.098 | 0.109 | 0.120 | 0.126 | 0.100 | 0.105 | 0.123 | 0.125 | 0.145 | 0.948 | 0.942 | 0.930 | 0.915 | 0.892 | 0.945 | 0.939 | 0.926 | 0.910 | 0.886 | ||
0.5 | 0.089 | 0.095 | 0.107 | 0.116 | 0.123 | 0.100 | 0.105 | 0.122 | 0.125 | 0.141 | 0.949 | 0.944 | 0.933 | 0.919 | 0.898 | 0.945 | 0.939 | 0.927 | 0.910 | 0.886 |
表2 研究1中概率态属性参数估计的返真性
N | I | ρθτ | RMSE | Cor | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JRT-PINC | HO-PINC | JRT-PINC | HO-PINC | |||||||||||||||||||
m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | |||
200 | 15 | -0.5 | 0.129 | 0.137 | 0.139 | 0.145 | 0.139 | 0.155 | 0.152 | 0.152 | 0.155 | 0.158 | 0.899 | 0.901 | 0.896 | 0.888 | 0.875 | 0.888 | 0.890 | 0.886 | 0.877 | 0.861 |
-0.3 | 0.130 | 0.136 | 0.144 | 0.150 | 0.141 | 0.158 | 0.148 | 0.153 | 0.158 | 0.160 | 0.895 | 0.897 | 0.892 | 0.883 | 0.869 | 0.887 | 0.891 | 0.885 | 0.876 | 0.860 | ||
0 | 0.132 | 0.137 | 0.144 | 0.148 | 0.141 | 0.161 | 0.147 | 0.155 | 0.157 | 0.157 | 0.894 | 0.896 | 0.890 | 0.881 | 0.867 | 0.886 | 0.891 | 0.885 | 0.876 | 0.861 | ||
0.3 | 0.127 | 0.138 | 0.145 | 0.151 | 0.143 | 0.154 | 0.148 | 0.159 | 0.158 | 0.157 | 0.896 | 0.896 | 0.890 | 0.882 | 0.869 | 0.887 | 0.891 | 0.884 | 0.876 | 0.862 | ||
0.5 | 0.128 | 0.139 | 0.144 | 0.147 | 0.142 | 0.159 | 0.151 | 0.158 | 0.157 | 0.161 | 0.898 | 0.899 | 0.894 | 0.886 | 0.874 | 0.884 | 0.889 | 0.883 | 0.874 | 0.860 | ||
30 | -0.5 | 0.097 | 0.108 | 0.124 | 0.127 | 0.133 | 0.117 | 0.125 | 0.142 | 0.144 | 0.151 | 0.946 | 0.940 | 0.928 | 0.912 | 0.890 | 0.940 | 0.933 | 0.920 | 0.904 | 0.881 | |
-0.3 | 0.100 | 0.110 | 0.126 | 0.128 | 0.132 | 0.120 | 0.124 | 0.142 | 0.143 | 0.148 | 0.945 | 0.939 | 0.927 | 0.911 | 0.887 | 0.940 | 0.933 | 0.921 | 0.905 | 0.882 | ||
0 | 0.103 | 0.110 | 0.128 | 0.130 | 0.134 | 0.122 | 0.126 | 0.142 | 0.148 | 0.153 | 0.944 | 0.938 | 0.925 | 0.909 | 0.885 | 0.939 | 0.933 | 0.920 | 0.903 | 0.879 | ||
0.3 | 0.097 | 0.110 | 0.123 | 0.131 | 0.129 | 0.121 | 0.126 | 0.140 | 0.148 | 0.150 | 0.946 | 0.939 | 0.928 | 0.912 | 0.890 | 0.940 | 0.933 | 0.921 | 0.905 | 0.881 | ||
0.5 | 0.096 | 0.110 | 0.124 | 0.127 | 0.126 | 0.120 | 0.127 | 0.143 | 0.144 | 0.148 | 0.947 | 0.940 | 0.929 | 0.915 | 0.894 | 0.940 | 0.933 | 0.921 | 0.905 | 0.881 | ||
500 | 15 | -0.5 | 0.111 | 0.131 | 0.130 | 0.139 | 0.139 | 0.132 | 0.140 | 0.141 | 0.145 | 0.160 | 0.906 | 0.905 | 0.901 | 0.890 | 0.874 | 0.896 | 0.896 | 0.892 | 0.879 | 0.861 |
-0.3 | 0.113 | 0.132 | 0.134 | 0.140 | 0.142 | 0.132 | 0.140 | 0.141 | 0.143 | 0.163 | 0.902 | 0.901 | 0.896 | 0.885 | 0.867 | 0.896 | 0.895 | 0.892 | 0.879 | 0.861 | ||
0 | 0.113 | 0.135 | 0.135 | 0.142 | 0.144 | 0.133 | 0.140 | 0.140 | 0.145 | 0.165 | 0.900 | 0.898 | 0.894 | 0.883 | 0.864 | 0.895 | 0.895 | 0.892 | 0.880 | 0.861 | ||
0.3 | 0.114 | 0.136 | 0.134 | 0.142 | 0.146 | 0.132 | 0.143 | 0.140 | 0.145 | 0.165 | 0.900 | 0.899 | 0.895 | 0.884 | 0.866 | 0.894 | 0.894 | 0.891 | 0.879 | 0.860 | ||
0.5 | 0.111 | 0.134 | 0.132 | 0.139 | 0.140 | 0.131 | 0.140 | 0.141 | 0.144 | 0.163 | 0.904 | 0.902 | 0.900 | 0.889 | 0.872 | 0.894 | 0.895 | 0.891 | 0.879 | 0.860 | ||
30 | -0.5 | 0.088 | 0.098 | 0.107 | 0.119 | 0.125 | 0.101 | 0.107 | 0.121 | 0.126 | 0.145 | 0.949 | 0.943 | 0.932 | 0.916 | 0.895 | 0.945 | 0.938 | 0.926 | 0.908 | 0.884 | |
-0.3 | 0.087 | 0.101 | 0.109 | 0.121 | 0.128 | 0.100 | 0.109 | 0.122 | 0.126 | 0.145 | 0.947 | 0.941 | 0.929 | 0.913 | 0.890 | 0.944 | 0.938 | 0.925 | 0.908 | 0.884 | ||
0 | 0.090 | 0.100 | 0.109 | 0.121 | 0.128 | 0.101 | 0.108 | 0.121 | 0.125 | 0.144 | 0.947 | 0.941 | 0.929 | 0.912 | 0.889 | 0.945 | 0.939 | 0.926 | 0.910 | 0.886 | ||
0.3 | 0.089 | 0.098 | 0.109 | 0.120 | 0.126 | 0.100 | 0.105 | 0.123 | 0.125 | 0.145 | 0.948 | 0.942 | 0.930 | 0.915 | 0.892 | 0.945 | 0.939 | 0.926 | 0.910 | 0.886 | ||
0.5 | 0.089 | 0.095 | 0.107 | 0.116 | 0.123 | 0.100 | 0.105 | 0.122 | 0.125 | 0.141 | 0.949 | 0.944 | 0.933 | 0.919 | 0.898 | 0.945 | 0.939 | 0.927 | 0.910 | 0.886 |
分析模型 | μφ | θ | τ | |||||
---|---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | |||
CJRT-PINC-θ | 0.1 | -0.006 | 0.295 | 0.958 | 0.000 | 0.138 | 0.969 | |
0.5 | -0.007 | 0.287 | 0.958 | -0.001 | 0.194 | 0.971 | ||
HO-PINC | 0.1 | -0.007 | 0.481 | 0.871 | - | - | - | |
0.5 | -0.008 | 0.503 | 0.864 | - | - | - |
表3 研究2 (子研究1)中被试参数估计返真性
分析模型 | μφ | θ | τ | |||||
---|---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | |||
CJRT-PINC-θ | 0.1 | -0.006 | 0.295 | 0.958 | 0.000 | 0.138 | 0.969 | |
0.5 | -0.007 | 0.287 | 0.958 | -0.001 | 0.194 | 0.971 | ||
HO-PINC | 0.1 | -0.007 | 0.481 | 0.871 | - | - | - | |
0.5 | -0.008 | 0.503 | 0.864 | - | - | - |
分析模型 | μφ | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | Bias | -0.005 | -0.005 | -0.001 | -0.014 | -0.012 |
RMSE | 0.097 | 0.113 | 0.101 | 0.119 | 0.102 | ||
Cor | 0.953 | 0.952 | 0.953 | 0.947 | 0.948 | ||
0.5 | Bias | -0.004 | -0.030 | -0.006 | -0.009 | -0.002 | |
RMSE | 0.097 | 0.118 | 0.107 | 0.111 | 0.098 | ||
Cor | 0.952 | 0.949 | 0.952 | 0.950 | 0.949 | ||
HO-PINC | 0.1 | Bias | 0.041 | 0.004 | -0.005 | -0.037 | -0.052 |
RMSE | 0.153 | 0.148 | 0.155 | 0.168 | 0.158 | ||
Cor | 0.885 | 0.887 | 0.882 | 0.870 | 0.857 | ||
0.5 | Bias | 0.041 | -0.003 | -0.009 | -0.040 | -0.051 | |
RMSE | 0.154 | 0.160 | 0.154 | 0.164 | 0.159 | ||
Cor | 0.880 | 0.879 | 0.878 | 0.866 | 0.849 |
表4 研究2 (子研究1)概率态属性参数估计返真性
分析模型 | μφ | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | Bias | -0.005 | -0.005 | -0.001 | -0.014 | -0.012 |
RMSE | 0.097 | 0.113 | 0.101 | 0.119 | 0.102 | ||
Cor | 0.953 | 0.952 | 0.953 | 0.947 | 0.948 | ||
0.5 | Bias | -0.004 | -0.030 | -0.006 | -0.009 | -0.002 | |
RMSE | 0.097 | 0.118 | 0.107 | 0.111 | 0.098 | ||
Cor | 0.952 | 0.949 | 0.952 | 0.950 | 0.949 | ||
HO-PINC | 0.1 | Bias | 0.041 | 0.004 | -0.005 | -0.037 | -0.052 |
RMSE | 0.153 | 0.148 | 0.155 | 0.168 | 0.158 | ||
Cor | 0.885 | 0.887 | 0.882 | 0.870 | 0.857 | ||
0.5 | Bias | 0.041 | -0.003 | -0.009 | -0.040 | -0.051 | |
RMSE | 0.154 | 0.160 | 0.154 | 0.164 | 0.159 | ||
Cor | 0.880 | 0.879 | 0.878 | 0.866 | 0.849 |
数据生成模型 | 数据分析模型 | DIC | ppp.RA | ppp.RT |
---|---|---|---|---|
JRT-PINC | JRT-PINC | 7935.189 | 0.479 | 0.790 |
CJRT-PINC-θ | 7935.783 | 0.499 | 0.792 | |
CJRT-PINC-m | 7947.637 | 0.502 | 0.792 | |
CJRT-PINC-θ | JRT-PINC | 8979.986 | 0.505 | 0.706 |
CJRT-PINC-θ | 7978.639 | 0.517 | 0.790 | |
CJRT-PINC-m | 8087.316 | 0.433 | 0.784 | |
CJRT-PINC-m | JRT-PINC | 8046.958 | 0.485 | 0.781 |
CJRT-PINC-θ | 7952.253 | 0.503 | 0.782 | |
CJRT-PINC-m | 7952.049 | 0.506 | 0.791 |
表5 研究3中模型-数据相对拟合情况
数据生成模型 | 数据分析模型 | DIC | ppp.RA | ppp.RT |
---|---|---|---|---|
JRT-PINC | JRT-PINC | 7935.189 | 0.479 | 0.790 |
CJRT-PINC-θ | 7935.783 | 0.499 | 0.792 | |
CJRT-PINC-m | 7947.637 | 0.502 | 0.792 | |
CJRT-PINC-θ | JRT-PINC | 8979.986 | 0.505 | 0.706 |
CJRT-PINC-θ | 7978.639 | 0.517 | 0.790 | |
CJRT-PINC-m | 8087.316 | 0.433 | 0.784 | |
CJRT-PINC-m | JRT-PINC | 8046.958 | 0.485 | 0.781 |
CJRT-PINC-θ | 7952.253 | 0.503 | 0.782 | |
CJRT-PINC-m | 7952.049 | 0.506 | 0.791 |
拟合指标 | 数据分析模型 | ||||
---|---|---|---|---|---|
HO-PINC | JRT-DINA | JRT-PINC | CJRT-PINC-θ | CJRT-PINC-m | |
DIC | 17410 | 50090 | 41772 | 41186 | 40746 |
ppp.RA | 0.728 | 0.611 | 0.571 | 0.638 | 0.404 |
ppp.RT | — | 0.594 | 0.596 | 0.604 | 0.603 |
表6 实证数据中模型-数据拟合指标
拟合指标 | 数据分析模型 | ||||
---|---|---|---|---|---|
HO-PINC | JRT-DINA | JRT-PINC | CJRT-PINC-θ | CJRT-PINC-m | |
DIC | 17410 | 50090 | 41772 | 41186 | 40746 |
ppp.RA | 0.728 | 0.611 | 0.571 | 0.638 | 0.404 |
ppp.RT | — | 0.594 | 0.596 | 0.604 | 0.603 |
题目 | 参数 | 后验均值 | 95% CI | 时间强度参数 | 失误参数 | 猜测参数 |
---|---|---|---|---|---|---|
CM015Q01 | φ1 | -0.027 | [-0.028, -0.025] | 4.228 | 0.022 | 0.353 |
CM015Q02D | φ2 | 0.338 | [0.337, 0.340] | 4.616 | 0.135 | 0.001 |
CM015Q03D | φ3 | 0.321 | [0.319, 0.323] | 4.686 | 0.092 | 0.008 |
CM020Q01 | φ4 | 0.066 | [0.065, 0.068] | 4.812 | 0.054 | 0.044 |
CM020Q02 | φ5 | 0.050 | [0.049, 0.052] | 3.864 | 0.030 | 0.364 |
CM020Q03 | φ6 | 0.106 | [0.104, 0.107] | 4.314 | 0.039 | 0.137 |
CM020Q04 | φ7 | -0.009 | [-0.011, -0.008] | 3.746 | 0.036 | 0.279 |
CM038Q03T | φ8 | 0.168 | [0.166, 0.169] | 4.226 | 0.075 | 0.439 |
CM038Q05 | φ9 | 0.193 | [0.192, 0.195] | 4.572 | 0.064 | 0.048 |
CM038Q06 | φ10 | 0.137 | [0.135, 0.139] | 4.462 | 0.054 | 0.021 |
表7 实证数据中CJRT-PINC-θ的交叉负载后验均值和可信区间及其他题目参数估计值
题目 | 参数 | 后验均值 | 95% CI | 时间强度参数 | 失误参数 | 猜测参数 |
---|---|---|---|---|---|---|
CM015Q01 | φ1 | -0.027 | [-0.028, -0.025] | 4.228 | 0.022 | 0.353 |
CM015Q02D | φ2 | 0.338 | [0.337, 0.340] | 4.616 | 0.135 | 0.001 |
CM015Q03D | φ3 | 0.321 | [0.319, 0.323] | 4.686 | 0.092 | 0.008 |
CM020Q01 | φ4 | 0.066 | [0.065, 0.068] | 4.812 | 0.054 | 0.044 |
CM020Q02 | φ5 | 0.050 | [0.049, 0.052] | 3.864 | 0.030 | 0.364 |
CM020Q03 | φ6 | 0.106 | [0.104, 0.107] | 4.314 | 0.039 | 0.137 |
CM020Q04 | φ7 | -0.009 | [-0.011, -0.008] | 3.746 | 0.036 | 0.279 |
CM038Q03T | φ8 | 0.168 | [0.166, 0.169] | 4.226 | 0.075 | 0.439 |
CM038Q05 | φ9 | 0.193 | [0.192, 0.195] | 4.572 | 0.064 | 0.048 |
CM038Q06 | φ10 | 0.137 | [0.135, 0.139] | 4.462 | 0.054 | 0.021 |
被试 | 诊断模型 | K1 | K2 | K3 | K4 | K5 | K6 | K7 | θ | τ |
---|---|---|---|---|---|---|---|---|---|---|
59 | HO-PINC | 0.071 | 0.731 | 0.337 | 0.529 | 0.498 | 0.459 | 0.337 | -0.193 | - |
JRT-PINC | 0.483 | 0.506 | 0.353 | 0.855 | 0.359 | 0.409 | 0.593 | -0.213 | 0.401 | |
CJRT-PINC-θ | 0.656 | 0.623 | 0.273 | 0.553 | 0.493 | 0.746 | 0.493 | -0.019 | 0.349 | |
JRT-DINA | 0 | 1 | 1 | 1 | 0 | 1 | 0 | -0.040 | 0.481 | |
299 | HO-PINC | 0.667 | 0.977 | 0.770 | 0.846 | 0.967 | 0.801 | 0.780 | 1.051 | - |
JRT-PINC | 0.711 | 0.907 | 0.587 | 0.968 | 0.870 | 0.555 | 0.790 | 1.058 | 0.325 | |
CJRT-PINC-θ | 0.850 | 0.928 | 0.558 | 0.681 | 0.901 | 0.867 | 0.739 | 0.975 | 0.283 | |
JRT-DINA | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0.784 | 0.478 | |
977 | HO-PINC | 0.667 | 0.976 | 0.771 | 0.844 | 0.965 | 0.798 | 0.778 | 1.059 | - |
JRT-PINC | 0.709 | 0.906 | 0.588 | 0.968 | 0.871 | 0.556 | 0.794 | 1.063 | 0.327 | |
CJRT-PINC-θ | 0.841 | 0.918 | 0.537 | 0.674 | 0.888 | 0.862 | 0.725 | 0.914 | 0.285 | |
JRT-DINA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.162 | 0.664 |
表8 实证数据中各模型对个体属性的诊断结果示例
被试 | 诊断模型 | K1 | K2 | K3 | K4 | K5 | K6 | K7 | θ | τ |
---|---|---|---|---|---|---|---|---|---|---|
59 | HO-PINC | 0.071 | 0.731 | 0.337 | 0.529 | 0.498 | 0.459 | 0.337 | -0.193 | - |
JRT-PINC | 0.483 | 0.506 | 0.353 | 0.855 | 0.359 | 0.409 | 0.593 | -0.213 | 0.401 | |
CJRT-PINC-θ | 0.656 | 0.623 | 0.273 | 0.553 | 0.493 | 0.746 | 0.493 | -0.019 | 0.349 | |
JRT-DINA | 0 | 1 | 1 | 1 | 0 | 1 | 0 | -0.040 | 0.481 | |
299 | HO-PINC | 0.667 | 0.977 | 0.770 | 0.846 | 0.967 | 0.801 | 0.780 | 1.051 | - |
JRT-PINC | 0.711 | 0.907 | 0.587 | 0.968 | 0.870 | 0.555 | 0.790 | 1.058 | 0.325 | |
CJRT-PINC-θ | 0.850 | 0.928 | 0.558 | 0.681 | 0.901 | 0.867 | 0.739 | 0.975 | 0.283 | |
JRT-DINA | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0.784 | 0.478 | |
977 | HO-PINC | 0.667 | 0.976 | 0.771 | 0.844 | 0.965 | 0.798 | 0.778 | 1.059 | - |
JRT-PINC | 0.709 | 0.906 | 0.588 | 0.968 | 0.871 | 0.556 | 0.794 | 1.063 | 0.327 | |
CJRT-PINC-θ | 0.841 | 0.918 | 0.537 | 0.674 | 0.888 | 0.862 | 0.725 | 0.914 | 0.285 | |
JRT-DINA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.162 | 0.664 |
模型 | 信息量 | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
JRT-PINC | 正常 | -0.000 | 0.458 | 0.887 | -0.000 | 0.120 | 0.902 |
低 | -0.003 | 0.459 | 0.888 | -0.002 | 0.122 | 0.901 | |
CJRT-PINC-θ | 正常 | -0.007 | 0.287 | 0.958 | -0.001 | 0.194 | 0.971 |
低 | -0.008 | 0.385 | 0.891 | 0.000 | 0.192 | 0.890 | |
CJRT-PINC-m | 正常 | -0.018 | 0.446 | 0.894 | -0.005 | 0.136 | 0.985 |
低 | -0.018 | 0.448 | 0.894 | -0.006 | 0.140 | 0.941 |
表S1.1 不同信息量先验分布下被试参数的估计一致性
模型 | 信息量 | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
JRT-PINC | 正常 | -0.000 | 0.458 | 0.887 | -0.000 | 0.120 | 0.902 |
低 | -0.003 | 0.459 | 0.888 | -0.002 | 0.122 | 0.901 | |
CJRT-PINC-θ | 正常 | -0.007 | 0.287 | 0.958 | -0.001 | 0.194 | 0.971 |
低 | -0.008 | 0.385 | 0.891 | 0.000 | 0.192 | 0.890 | |
CJRT-PINC-m | 正常 | -0.018 | 0.446 | 0.894 | -0.005 | 0.136 | 0.985 |
低 | -0.018 | 0.448 | 0.894 | -0.006 | 0.140 | 0.941 |
模型 | 信息量 | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
JRT-PINC | 正常 | Bias | 0.006 | 0.008 | 0.008 | -0.008 | -0.022 |
RMSE | 0.128 | 0.139 | 0.144 | 0.147 | 0.142 | ||
Cor | 0.898 | 0.899 | 0.894 | 0.886 | 0.874 | ||
低 | Bias | 0.007 | 0.007 | 0.004 | -0.011 | -0.016 | |
RMSE | 0.123 | 0.137 | 0.133 | 0.136 | 0.134 | ||
Cor | 0.890 | 0.889 | 0.886 | 0.879 | 0.866 | ||
CJRT-PINC-θ | 正常 | Bias | -0.004 | -0.030 | -0.006 | -0.009 | -0.002 |
RMSE | 0.097 | 0.118 | 0.107 | 0.111 | 0.098 | ||
Cor | 0.952 | 0.949 | 0.952 | 0.950 | 0.949 | ||
低 | Bias | 0.011 | -0.021 | -0.002 | -0.007 | -0.012 | |
RMSE | 0.122 | 0.136 | 0.12 | 0.125 | 0.112 | ||
Cor | 0.923 | 0.894 | 0.896 | 0.884 | 0.904 | ||
CJRT-PINC-m | 正常 | Bias | 0.012 | -0.010 | 0.002 | -0.009 | -0.005 |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.135 | ||
Cor | 0.907 | 0.910 | 0.906 | 0.897 | 0.882 | ||
低 | Bias | 0.009 | -0.010 | -0.001 | -0.012 | -0.010 | |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.136 | ||
Cor | 0.907 | 0.910 | 0.905 | 0.897 | 0.882 |
表S1.2 不同信息量先验分布下属性的估计一致性
模型 | 信息量 | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
JRT-PINC | 正常 | Bias | 0.006 | 0.008 | 0.008 | -0.008 | -0.022 |
RMSE | 0.128 | 0.139 | 0.144 | 0.147 | 0.142 | ||
Cor | 0.898 | 0.899 | 0.894 | 0.886 | 0.874 | ||
低 | Bias | 0.007 | 0.007 | 0.004 | -0.011 | -0.016 | |
RMSE | 0.123 | 0.137 | 0.133 | 0.136 | 0.134 | ||
Cor | 0.890 | 0.889 | 0.886 | 0.879 | 0.866 | ||
CJRT-PINC-θ | 正常 | Bias | -0.004 | -0.030 | -0.006 | -0.009 | -0.002 |
RMSE | 0.097 | 0.118 | 0.107 | 0.111 | 0.098 | ||
Cor | 0.952 | 0.949 | 0.952 | 0.950 | 0.949 | ||
低 | Bias | 0.011 | -0.021 | -0.002 | -0.007 | -0.012 | |
RMSE | 0.122 | 0.136 | 0.12 | 0.125 | 0.112 | ||
Cor | 0.923 | 0.894 | 0.896 | 0.884 | 0.904 | ||
CJRT-PINC-m | 正常 | Bias | 0.012 | -0.010 | 0.002 | -0.009 | -0.005 |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.135 | ||
Cor | 0.907 | 0.910 | 0.906 | 0.897 | 0.882 | ||
低 | Bias | 0.009 | -0.010 | -0.001 | -0.012 | -0.010 | |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.136 | ||
Cor | 0.907 | 0.910 | 0.905 | 0.897 | 0.882 |
模型 | 先验分布 | g | s | ξ | 1/σ2 | 交叉负载 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | ||
JRT-PINC | 正常 | 0.007 | 0.055 | 0.023 | 0.060 | -0.002 | 0.037 | 0.011 | 0.028 | - | - |
低 | 0.014 | 0.056 | 0.035 | 0.067 | -0.003 | 0.038 | 0.012 | 0.028 | - | - | |
CJRT-PINC-θ | 正常 | 0.002 | 0.055 | 0.002 | 0.049 | 0.001 | 0.061 | 0.012 | 0.062 | -0.029 | 0.030 |
低 | 0.033 | 0.108 | 0.037 | 0.114 | 0.002 | 0.061 | -0.053 | 0.162 | 0.012 | 0.030 | |
CJRT-PINC-m | 正常 | 0.002 | 0.048 | 0.009 | 0.054 | 0.035 | 0.097 | 0.010 | 0.204 | -0.102 | 0.028 |
低 | 0.010 | 0.049 | 0.018 | 0.058 | 0.020 | 0.097 | -0.069 | 0.198 | 0.010 | 0.028 |
表S1.3 不同信息量先验分布下属性的估计一致性
模型 | 先验分布 | g | s | ξ | 1/σ2 | 交叉负载 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | ||
JRT-PINC | 正常 | 0.007 | 0.055 | 0.023 | 0.060 | -0.002 | 0.037 | 0.011 | 0.028 | - | - |
低 | 0.014 | 0.056 | 0.035 | 0.067 | -0.003 | 0.038 | 0.012 | 0.028 | - | - | |
CJRT-PINC-θ | 正常 | 0.002 | 0.055 | 0.002 | 0.049 | 0.001 | 0.061 | 0.012 | 0.062 | -0.029 | 0.030 |
低 | 0.033 | 0.108 | 0.037 | 0.114 | 0.002 | 0.061 | -0.053 | 0.162 | 0.012 | 0.030 | |
CJRT-PINC-m | 正常 | 0.002 | 0.048 | 0.009 | 0.054 | 0.035 | 0.097 | 0.010 | 0.204 | -0.102 | 0.028 |
低 | 0.010 | 0.049 | 0.018 | 0.058 | 0.020 | 0.097 | -0.069 | 0.198 | 0.010 | 0.028 |
N | I | ρθτ | JRT-PINC | HO-PINC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | |||
200 | 15 | -0.5 | 0.008 | 0.016 | 0.007 | -0.003 | -0.013 | 0.049 | 0.022 | 0.015 | -0.017 | -0.048 |
-0.3 | 0.009 | 0.010 | 0.005 | -0.007 | -0.016 | 0.051 | 0.015 | 0.012 | -0.022 | -0.051 | ||
0 | 0.008 | 0.014 | 0.000 | -0.007 | -0.018 | 0.056 | 0.019 | 0.009 | -0.017 | -0.049 | ||
0.3 | 0.004 | 0.010 | 0.006 | -0.011 | -0.018 | 0.045 | 0.022 | 0.011 | -0.017 | -0.053 | ||
0.5 | 0.006 | 0.008 | 0.008 | -0.008 | -0.022 | 0.051 | 0.019 | 0.017 | -0.014 | -0.059 | ||
30 | -0.5 | 0.002 | -0.007 | -0.016 | -0.002 | -0.005 | 0.004 | -0.014 | -0.026 | -0.029 | -0.040 | |
-0.3 | 0.004 | -0.003 | -0.016 | -0.006 | -0.003 | 0.006 | -0.008 | -0.026 | -0.033 | -0.035 | ||
0 | 0.004 | -0.006 | -0.017 | -0.008 | -0.001 | 0.005 | -0.013 | -0.031 | -0.034 | -0.033 | ||
0.3 | 0.005 | -0.010 | -0.013 | -0.007 | 0.001 | 0.008 | -0.018 | -0.029 | -0.037 | -0.032 | ||
0.5 | 0.004 | -0.009 | -0.013 | -0.004 | 0.004 | 0.008 | -0.017 | -0.028 | -0.030 | -0.029 | ||
500 | 15 | -0.5 | -0.008 | -0.006 | -0.012 | 0.022 | -0.024 | 0.019 | -0.000 | -0.020 | 0.010 | -0.054 |
-0.3 | -0.007 | -0.008 | -0.008 | 0.020 | -0.027 | 0.017 | -0.001 | -0.016 | 0.013 | -0.060 | ||
0 | -0.010 | -0.007 | -0.006 | 0.014 | -0.031 | 0.018 | -0.003 | -0.015 | 0.003 | -0.062 | ||
0.3 | -0.016 | -0.008 | -0.004 | 0.012 | -0.029 | 0.007 | -0.001 | -0.008 | -0.000 | -0.060 | ||
0.5 | -0.012 | -0.006 | -0.004 | 0.012 | -0.026 | 0.007 | -0.003 | -0.009 | 0.000 | -0.057 | ||
30 | -0.5 | 0.008 | 0.011 | -0.018 | 0.013 | -0.017 | 0.011 | 0.005 | -0.031 | -0.008 | -0.047 | |
-0.3 | 0.005 | 0.011 | -0.020 | 0.014 | -0.018 | 0.007 | 0.006 | -0.031 | -0.008 | -0.046 | ||
0 | 0.006 | 0.014 | -0.016 | 0.015 | -0.018 | 0.007 | 0.012 | -0.030 | -0.009 | -0.047 | ||
0.3 | 0.007 | 0.013 | -0.016 | 0.018 | -0.020 | 0.009 | 0.010 | -0.030 | -0.007 | -0.043 | ||
0.5 | 0.008 | 0.014 | -0.014 | 0.017 | -0.020 | 0.008 | 0.010 | -0.027 | -0.010 | -0.041 |
表S2.1 研究1中概率态属性参数估计的平均Bias
N | I | ρθτ | JRT-PINC | HO-PINC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m1 | m2 | m3 | m4 | m5 | m1 | m2 | m3 | m4 | m5 | |||
200 | 15 | -0.5 | 0.008 | 0.016 | 0.007 | -0.003 | -0.013 | 0.049 | 0.022 | 0.015 | -0.017 | -0.048 |
-0.3 | 0.009 | 0.010 | 0.005 | -0.007 | -0.016 | 0.051 | 0.015 | 0.012 | -0.022 | -0.051 | ||
0 | 0.008 | 0.014 | 0.000 | -0.007 | -0.018 | 0.056 | 0.019 | 0.009 | -0.017 | -0.049 | ||
0.3 | 0.004 | 0.010 | 0.006 | -0.011 | -0.018 | 0.045 | 0.022 | 0.011 | -0.017 | -0.053 | ||
0.5 | 0.006 | 0.008 | 0.008 | -0.008 | -0.022 | 0.051 | 0.019 | 0.017 | -0.014 | -0.059 | ||
30 | -0.5 | 0.002 | -0.007 | -0.016 | -0.002 | -0.005 | 0.004 | -0.014 | -0.026 | -0.029 | -0.040 | |
-0.3 | 0.004 | -0.003 | -0.016 | -0.006 | -0.003 | 0.006 | -0.008 | -0.026 | -0.033 | -0.035 | ||
0 | 0.004 | -0.006 | -0.017 | -0.008 | -0.001 | 0.005 | -0.013 | -0.031 | -0.034 | -0.033 | ||
0.3 | 0.005 | -0.010 | -0.013 | -0.007 | 0.001 | 0.008 | -0.018 | -0.029 | -0.037 | -0.032 | ||
0.5 | 0.004 | -0.009 | -0.013 | -0.004 | 0.004 | 0.008 | -0.017 | -0.028 | -0.030 | -0.029 | ||
500 | 15 | -0.5 | -0.008 | -0.006 | -0.012 | 0.022 | -0.024 | 0.019 | -0.000 | -0.020 | 0.010 | -0.054 |
-0.3 | -0.007 | -0.008 | -0.008 | 0.020 | -0.027 | 0.017 | -0.001 | -0.016 | 0.013 | -0.060 | ||
0 | -0.010 | -0.007 | -0.006 | 0.014 | -0.031 | 0.018 | -0.003 | -0.015 | 0.003 | -0.062 | ||
0.3 | -0.016 | -0.008 | -0.004 | 0.012 | -0.029 | 0.007 | -0.001 | -0.008 | -0.000 | -0.060 | ||
0.5 | -0.012 | -0.006 | -0.004 | 0.012 | -0.026 | 0.007 | -0.003 | -0.009 | 0.000 | -0.057 | ||
30 | -0.5 | 0.008 | 0.011 | -0.018 | 0.013 | -0.017 | 0.011 | 0.005 | -0.031 | -0.008 | -0.047 | |
-0.3 | 0.005 | 0.011 | -0.020 | 0.014 | -0.018 | 0.007 | 0.006 | -0.031 | -0.008 | -0.046 | ||
0 | 0.006 | 0.014 | -0.016 | 0.015 | -0.018 | 0.007 | 0.012 | -0.030 | -0.009 | -0.047 | ||
0.3 | 0.007 | 0.013 | -0.016 | 0.018 | -0.020 | 0.009 | 0.010 | -0.030 | -0.007 | -0.043 | ||
0.5 | 0.008 | 0.014 | -0.014 | 0.017 | -0.020 | 0.008 | 0.010 | -0.027 | -0.010 | -0.041 |
N | I | ρθτ | JRT-PINC | HO-PINC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g | s | ξ | 1/σ2 | g | s | |||||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | |||
200 | 15 | -0.5 | 0.004 | 0.055 | 0.022 | 0.056 | -0.001 | 0.037 | 0.011 | 0.028 | 0.055 | 0.077 | 0.118 | 0.138 |
-0.3 | 0.005 | 0.054 | 0.022 | 0.057 | -0.001 | 0.037 | 0.011 | 0.028 | 0.057 | 0.078 | 0.117 | 0.137 | ||
0 | 0.006 | 0.055 | 0.022 | 0.056 | -0.001 | 0.036 | 0.011 | 0.028 | 0.056 | 0.078 | 0.119 | 0.139 | ||
0.3 | 0.007 | 0.055 | 0.022 | 0.057 | -0.002 | 0.037 | 0.011 | 0.028 | 0.057 | 0.079 | 0.118 | 0.138 | ||
0.5 | 0.007 | 0.055 | 0.023 | 0.06 | -0.002 | 0.037 | 0.011 | 0.028 | 0.057 | 0.08 | 0.12 | 0.141 | ||
30 | -0.5 | 0.005 | 0.043 | 0.013 | 0.051 | -0.002 | 0.034 | 0.012 | 0.029 | 0.043 | 0.061 | 0.122 | 0.143 | |
-0.3 | 0.004 | 0.044 | 0.013 | 0.051 | -0.003 | 0.034 | 0.012 | 0.029 | 0.042 | 0.061 | 0.124 | 0.146 | ||
0 | 0.005 | 0.044 | 0.013 | 0.049 | -0.002 | 0.034 | 0.012 | 0.029 | 0.043 | 0.062 | 0.123 | 0.145 | ||
0.3 | 0.005 | 0.043 | 0.014 | 0.049 | -0.004 | 0.035 | 0.012 | 0.029 | 0.043 | 0.062 | 0.123 | 0.145 | ||
0.5 | 0.004 | 0.043 | 0.013 | 0.05 | -0.003 | 0.034 | 0.012 | 0.029 | 0.043 | 0.061 | 0.124 | 0.145 | ||
500 | 15 | -0.5 | 0.006 | 0.043 | 0.011 | 0.044 | 0 | 0.022 | 0.004 | 0.017 | 0.046 | 0.061 | 0.083 | 0.099 |
-0.3 | 0.006 | 0.044 | 0.01 | 0.043 | -0.001 | 0.022 | 0.004 | 0.017 | 0.047 | 0.061 | 0.083 | 0.099 | ||
0 | 0.007 | 0.044 | 0.009 | 0.045 | -0.000 | 0.022 | 0.004 | 0.017 | 0.049 | 0.063 | 0.084 | 0.101 | ||
0.3 | 0.008 | 0.045 | 0.01 | 0.045 | -0.001 | 0.022 | 0.004 | 0.017 | 0.049 | 0.063 | 0.082 | 0.1 | ||
0.5 | 0.006 | 0.044 | 0.008 | 0.045 | -0.000 | 0.022 | 0.004 | 0.017 | 0.049 | 0.064 | 0.083 | 0.1 | ||
30 | -0.5 | -0.000 | 0.029 | 0.002 | 0.037 | 0 | 0.021 | 0.005 | 0.017 | 0.027 | 0.039 | 0.08 | 0.095 | |
-0.3 | 0 | 0.029 | 0.003 | 0.036 | 0 | 0.022 | 0.005 | 0.017 | 0.027 | 0.039 | 0.08 | 0.096 | ||
0 | -0.001 | 0.029 | 0.003 | 0.037 | 0.001 | 0.021 | 0.005 | 0.017 | 0.027 | 0.039 | 0.079 | 0.094 | ||
0.3 | -0.001 | 0.029 | 0.001 | 0.035 | 0 | 0.022 | 0.005 | 0.017 | 0.026 | 0.038 | 0.078 | 0.093 | ||
0.5 | -0.002 | 0.029 | 0 | 0.035 | 0.001 | 0.022 | 0.005 | 0.017 | 0.026 | 0.038 | 0.078 | 0.093 |
表S2.2 研究1中题目参数的返真性
N | I | ρθτ | JRT-PINC | HO-PINC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g | s | ξ | 1/σ2 | g | s | |||||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | |||
200 | 15 | -0.5 | 0.004 | 0.055 | 0.022 | 0.056 | -0.001 | 0.037 | 0.011 | 0.028 | 0.055 | 0.077 | 0.118 | 0.138 |
-0.3 | 0.005 | 0.054 | 0.022 | 0.057 | -0.001 | 0.037 | 0.011 | 0.028 | 0.057 | 0.078 | 0.117 | 0.137 | ||
0 | 0.006 | 0.055 | 0.022 | 0.056 | -0.001 | 0.036 | 0.011 | 0.028 | 0.056 | 0.078 | 0.119 | 0.139 | ||
0.3 | 0.007 | 0.055 | 0.022 | 0.057 | -0.002 | 0.037 | 0.011 | 0.028 | 0.057 | 0.079 | 0.118 | 0.138 | ||
0.5 | 0.007 | 0.055 | 0.023 | 0.06 | -0.002 | 0.037 | 0.011 | 0.028 | 0.057 | 0.08 | 0.12 | 0.141 | ||
30 | -0.5 | 0.005 | 0.043 | 0.013 | 0.051 | -0.002 | 0.034 | 0.012 | 0.029 | 0.043 | 0.061 | 0.122 | 0.143 | |
-0.3 | 0.004 | 0.044 | 0.013 | 0.051 | -0.003 | 0.034 | 0.012 | 0.029 | 0.042 | 0.061 | 0.124 | 0.146 | ||
0 | 0.005 | 0.044 | 0.013 | 0.049 | -0.002 | 0.034 | 0.012 | 0.029 | 0.043 | 0.062 | 0.123 | 0.145 | ||
0.3 | 0.005 | 0.043 | 0.014 | 0.049 | -0.004 | 0.035 | 0.012 | 0.029 | 0.043 | 0.062 | 0.123 | 0.145 | ||
0.5 | 0.004 | 0.043 | 0.013 | 0.05 | -0.003 | 0.034 | 0.012 | 0.029 | 0.043 | 0.061 | 0.124 | 0.145 | ||
500 | 15 | -0.5 | 0.006 | 0.043 | 0.011 | 0.044 | 0 | 0.022 | 0.004 | 0.017 | 0.046 | 0.061 | 0.083 | 0.099 |
-0.3 | 0.006 | 0.044 | 0.01 | 0.043 | -0.001 | 0.022 | 0.004 | 0.017 | 0.047 | 0.061 | 0.083 | 0.099 | ||
0 | 0.007 | 0.044 | 0.009 | 0.045 | -0.000 | 0.022 | 0.004 | 0.017 | 0.049 | 0.063 | 0.084 | 0.101 | ||
0.3 | 0.008 | 0.045 | 0.01 | 0.045 | -0.001 | 0.022 | 0.004 | 0.017 | 0.049 | 0.063 | 0.082 | 0.1 | ||
0.5 | 0.006 | 0.044 | 0.008 | 0.045 | -0.000 | 0.022 | 0.004 | 0.017 | 0.049 | 0.064 | 0.083 | 0.1 | ||
30 | -0.5 | -0.000 | 0.029 | 0.002 | 0.037 | 0 | 0.021 | 0.005 | 0.017 | 0.027 | 0.039 | 0.08 | 0.095 | |
-0.3 | 0 | 0.029 | 0.003 | 0.036 | 0 | 0.022 | 0.005 | 0.017 | 0.027 | 0.039 | 0.08 | 0.096 | ||
0 | -0.001 | 0.029 | 0.003 | 0.037 | 0.001 | 0.021 | 0.005 | 0.017 | 0.027 | 0.039 | 0.079 | 0.094 | ||
0.3 | -0.001 | 0.029 | 0.001 | 0.035 | 0 | 0.022 | 0.005 | 0.017 | 0.026 | 0.038 | 0.078 | 0.093 | ||
0.5 | -0.002 | 0.029 | 0 | 0.035 | 0.001 | 0.022 | 0.005 | 0.017 | 0.026 | 0.038 | 0.078 | 0.093 |
N | I | ρθτ | Σitem | Σperson | 题目均值向量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | Σ12 | Σ22 | μζ | |||||
200 | 15 | -0.5 | 0.000 | 0.200 | 0.026 | -0.037 | -0.053 | 0.095 | -0.003 | 0.002 | 0.055 | -0.179 | -0.001 |
-0.3 | -0.025 | 0.226 | 0.031 | -0.065 | -0.056 | 0.095 | -0.002 | 0.002 | 0.073 | -0.194 | -0.001 | ||
0 | -0.027 | 0.230 | 0.030 | -0.082 | -0.052 | 0.095 | 0.001 | 0.003 | 0.078 | -0.190 | -0.012 | ||
0.3 | -0.025 | 0.225 | 0.032 | -0.079 | -0.052 | 0.095 | 0.003 | 0.003 | 0.085 | -0.203 | -0.002 | ||
0.5 | -0.002 | 0.197 | 0.026 | -0.031 | -0.042 | 0.094 | 0.002 | 0.003 | 0.083 | -0.198 | -0.002 | ||
30 | -0.5 | 0.033 | 0.106 | -0.006 | -0.092 | -0.013 | 0.046 | -0.006 | 0.005 | 0.050 | -0.124 | -0.002 | |
-0.3 | 0.037 | 0.103 | -0.004 | -0.087 | -0.017 | 0.046 | -0.007 | 0.005 | 0.045 | -0.119 | -0.003 | ||
0 | 0.022 | 0.114 | -0.002 | -0.107 | -0.015 | 0.046 | -0.004 | 0.005 | 0.059 | -0.142 | -0.007 | ||
0.3 | 0.043 | 0.088 | -0.003 | -0.078 | -0.012 | 0.046 | -0.002 | 0.005 | 0.050 | -0.140 | -0.004 | ||
0.5 | 0.044 | 0.085 | -0.003 | -0.071 | -0.012 | 0.046 | -0.000 | 0.005 | 0.041 | -0.127 | -0.003 | ||
500 | 15 | -0.5 | 0.096 | 0.053 | -0.004 | 0.087 | -0.009 | 0.096 | 0.002 | 0.002 | 0.053 | -0.090 | 0.000 |
-0.3 | 0.100 | 0.057 | -0.010 | 0.075 | -0.004 | 0.095 | 0.002 | 0.002 | 0.051 | -0.085 | -0.001 | ||
0 | 0.091 | 0.072 | -0.005 | 0.063 | -0.007 | 0.096 | 0.002 | 0.002 | 0.071 | -0.085 | -0.011 | ||
0.3 | 0.079 | 0.096 | -0.007 | 0.034 | -0.009 | 0.096 | 0.003 | 0.002 | 0.071 | -0.091 | -0.001 | ||
0.5 | 0.101 | 0.078 | -0.011 | 0.048 | -0.005 | 0.096 | 0.003 | 0.002 | 0.047 | -0.051 | -0.000 | ||
30 | -0.5 | 0.057 | -0.019 | -0.010 | 0.071 | 0.020 | 0.044 | -0.003 | 0.002 | -0.007 | 0.018 | 0.000 | |
-0.3 | 0.053 | -0.013 | -0.009 | 0.063 | 0.019 | 0.045 | -0.002 | 0.002 | -0.001 | -0.001 | 0.000 | ||
0 | 0.067 | -0.036 | -0.013 | 0.087 | 0.025 | 0.044 | -0.002 | 0.002 | -0.006 | 0.004 | -0.004 | ||
0.3 | 0.071 | -0.048 | -0.012 | 0.096 | 0.025 | 0.044 | -0.002 | 0.002 | -0.019 | 0.024 | 0.000 | ||
0.5 | 0.078 | -0.058 | -0.012 | 0.108 | 0.025 | 0.044 | -0.001 | 0.002 | -0.028 | 0.041 | 0.001 |
表S2.3 研究1中方差协方差矩阵和题目均值向量的平均Bias
N | I | ρθτ | Σitem | Σperson | 题目均值向量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | Σ12 | Σ22 | μζ | |||||
200 | 15 | -0.5 | 0.000 | 0.200 | 0.026 | -0.037 | -0.053 | 0.095 | -0.003 | 0.002 | 0.055 | -0.179 | -0.001 |
-0.3 | -0.025 | 0.226 | 0.031 | -0.065 | -0.056 | 0.095 | -0.002 | 0.002 | 0.073 | -0.194 | -0.001 | ||
0 | -0.027 | 0.230 | 0.030 | -0.082 | -0.052 | 0.095 | 0.001 | 0.003 | 0.078 | -0.190 | -0.012 | ||
0.3 | -0.025 | 0.225 | 0.032 | -0.079 | -0.052 | 0.095 | 0.003 | 0.003 | 0.085 | -0.203 | -0.002 | ||
0.5 | -0.002 | 0.197 | 0.026 | -0.031 | -0.042 | 0.094 | 0.002 | 0.003 | 0.083 | -0.198 | -0.002 | ||
30 | -0.5 | 0.033 | 0.106 | -0.006 | -0.092 | -0.013 | 0.046 | -0.006 | 0.005 | 0.050 | -0.124 | -0.002 | |
-0.3 | 0.037 | 0.103 | -0.004 | -0.087 | -0.017 | 0.046 | -0.007 | 0.005 | 0.045 | -0.119 | -0.003 | ||
0 | 0.022 | 0.114 | -0.002 | -0.107 | -0.015 | 0.046 | -0.004 | 0.005 | 0.059 | -0.142 | -0.007 | ||
0.3 | 0.043 | 0.088 | -0.003 | -0.078 | -0.012 | 0.046 | -0.002 | 0.005 | 0.050 | -0.140 | -0.004 | ||
0.5 | 0.044 | 0.085 | -0.003 | -0.071 | -0.012 | 0.046 | -0.000 | 0.005 | 0.041 | -0.127 | -0.003 | ||
500 | 15 | -0.5 | 0.096 | 0.053 | -0.004 | 0.087 | -0.009 | 0.096 | 0.002 | 0.002 | 0.053 | -0.090 | 0.000 |
-0.3 | 0.100 | 0.057 | -0.010 | 0.075 | -0.004 | 0.095 | 0.002 | 0.002 | 0.051 | -0.085 | -0.001 | ||
0 | 0.091 | 0.072 | -0.005 | 0.063 | -0.007 | 0.096 | 0.002 | 0.002 | 0.071 | -0.085 | -0.011 | ||
0.3 | 0.079 | 0.096 | -0.007 | 0.034 | -0.009 | 0.096 | 0.003 | 0.002 | 0.071 | -0.091 | -0.001 | ||
0.5 | 0.101 | 0.078 | -0.011 | 0.048 | -0.005 | 0.096 | 0.003 | 0.002 | 0.047 | -0.051 | -0.000 | ||
30 | -0.5 | 0.057 | -0.019 | -0.010 | 0.071 | 0.020 | 0.044 | -0.003 | 0.002 | -0.007 | 0.018 | 0.000 | |
-0.3 | 0.053 | -0.013 | -0.009 | 0.063 | 0.019 | 0.045 | -0.002 | 0.002 | -0.001 | -0.001 | 0.000 | ||
0 | 0.067 | -0.036 | -0.013 | 0.087 | 0.025 | 0.044 | -0.002 | 0.002 | -0.006 | 0.004 | -0.004 | ||
0.3 | 0.071 | -0.048 | -0.012 | 0.096 | 0.025 | 0.044 | -0.002 | 0.002 | -0.019 | 0.024 | 0.000 | ||
0.5 | 0.078 | -0.058 | -0.012 | 0.108 | 0.025 | 0.044 | -0.001 | 0.002 | -0.028 | 0.041 | 0.001 |
N | I | ρθτ | Σitem | Σperson | 题目均值向量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | Σ12 | Σ22 | μξ | |||||
200 | 15 | -0.5 | 0.325 | 0.438 | 0.081 | 0.471 | 0.122 | 0.095 | 0.018 | 0.007 | 0.195 | 0.296 | 0.012 |
-0.3 | 0.287 | 0.414 | 0.077 | 0.437 | 0.119 | 0.096 | 0.020 | 0.007 | 0.195 | 0.333 | 0.010 | ||
0 | 0.277 | 0.408 | 0.079 | 0.431 | 0.113 | 0.095 | 0.019 | 0.007 | 0.191 | 0.337 | 0.016 | ||
0.3 | 0.275 | 0.409 | 0.074 | 0.420 | 0.113 | 0.095 | 0.019 | 0.007 | 0.213 | 0.363 | 0.011 | ||
0.5 | 0.287 | 0.430 | 0.074 | 0.482 | 0.118 | 0.095 | 0.018 | 0.007 | 0.199 | 0.376 | 0.011 | ||
30 | -0.5 | 0.176 | 0.217 | 0.050 | 0.269 | 0.085 | 0.047 | 0.014 | 0.007 | 0.126 | 0.265 | 0.008 | |
-0.3 | 0.184 | 0.218 | 0.051 | 0.257 | 0.089 | 0.046 | 0.015 | 0.008 | 0.137 | 0.266 | 0.007 | ||
0 | 0.197 | 0.231 | 0.048 | 0.269 | 0.081 | 0.047 | 0.017 | 0.008 | 0.145 | 0.242 | 0.010 | ||
0.3 | 0.191 | 0.218 | 0.046 | 0.250 | 0.081 | 0.047 | 0.018 | 0.008 | 0.152 | 0.242 | 0.009 | ||
0.5 | 0.192 | 0.218 | 0.046 | 0.248 | 0.078 | 0.046 | 0.017 | 0.007 | 0.158 | 0.259 | 0.008 | ||
500 | 15 | -0.5 | 0.285 | 0.325 | 0.067 | 0.415 | 0.089 | 0.096 | 0.010 | 0.004 | 0.206 | 0.388 | 0.005 |
-0.3 | 0.284 | 0.331 | 0.066 | 0.432 | 0.084 | 0.095 | 0.011 | 0.005 | 0.191 | 0.368 | 0.005 | ||
0 | 0.267 | 0.336 | 0.063 | 0.444 | 0.083 | 0.096 | 0.011 | 0.006 | 0.191 | 0.352 | 0.012 | ||
0.3 | 0.278 | 0.352 | 0.066 | 0.423 | 0.094 | 0.096 | 0.010 | 0.006 | 0.212 | 0.386 | 0.005 | ||
0.5 | 0.294 | 0.365 | 0.064 | 0.463 | 0.089 | 0.096 | 0.010 | 0.006 | 0.208 | 0.388 | 0.005 | ||
30 | -0.5 | 0.163 | 0.195 | 0.036 | 0.290 | 0.071 | 0.045 | 0.008 | 0.004 | 0.114 | 0.261 | 0.004 | |
-0.3 | 0.163 | 0.189 | 0.035 | 0.280 | 0.069 | 0.045 | 0.008 | 0.004 | 0.112 | 0.239 | 0.004 | ||
0 | 0.174 | 0.202 | 0.036 | 0.288 | 0.071 | 0.044 | 0.010 | 0.004 | 0.120 | 0.261 | 0.006 | ||
0.3 | 0.170 | 0.197 | 0.036 | 0.295 | 0.071 | 0.045 | 0.010 | 0.004 | 0.123 | 0.248 | 0.005 | ||
0.5 | 0.173 | 0.202 | 0.037 | 0.311 | 0.072 | 0.044 | 0.008 | 0.003 | 0.124 | 0.235 | 0.005 |
表S2.4 研究1中方差协方差矩阵和题目均值向量的平均RMSE
N | I | ρθτ | Σitem | Σperson | 题目均值向量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | Σ12 | Σ22 | μξ | |||||
200 | 15 | -0.5 | 0.325 | 0.438 | 0.081 | 0.471 | 0.122 | 0.095 | 0.018 | 0.007 | 0.195 | 0.296 | 0.012 |
-0.3 | 0.287 | 0.414 | 0.077 | 0.437 | 0.119 | 0.096 | 0.020 | 0.007 | 0.195 | 0.333 | 0.010 | ||
0 | 0.277 | 0.408 | 0.079 | 0.431 | 0.113 | 0.095 | 0.019 | 0.007 | 0.191 | 0.337 | 0.016 | ||
0.3 | 0.275 | 0.409 | 0.074 | 0.420 | 0.113 | 0.095 | 0.019 | 0.007 | 0.213 | 0.363 | 0.011 | ||
0.5 | 0.287 | 0.430 | 0.074 | 0.482 | 0.118 | 0.095 | 0.018 | 0.007 | 0.199 | 0.376 | 0.011 | ||
30 | -0.5 | 0.176 | 0.217 | 0.050 | 0.269 | 0.085 | 0.047 | 0.014 | 0.007 | 0.126 | 0.265 | 0.008 | |
-0.3 | 0.184 | 0.218 | 0.051 | 0.257 | 0.089 | 0.046 | 0.015 | 0.008 | 0.137 | 0.266 | 0.007 | ||
0 | 0.197 | 0.231 | 0.048 | 0.269 | 0.081 | 0.047 | 0.017 | 0.008 | 0.145 | 0.242 | 0.010 | ||
0.3 | 0.191 | 0.218 | 0.046 | 0.250 | 0.081 | 0.047 | 0.018 | 0.008 | 0.152 | 0.242 | 0.009 | ||
0.5 | 0.192 | 0.218 | 0.046 | 0.248 | 0.078 | 0.046 | 0.017 | 0.007 | 0.158 | 0.259 | 0.008 | ||
500 | 15 | -0.5 | 0.285 | 0.325 | 0.067 | 0.415 | 0.089 | 0.096 | 0.010 | 0.004 | 0.206 | 0.388 | 0.005 |
-0.3 | 0.284 | 0.331 | 0.066 | 0.432 | 0.084 | 0.095 | 0.011 | 0.005 | 0.191 | 0.368 | 0.005 | ||
0 | 0.267 | 0.336 | 0.063 | 0.444 | 0.083 | 0.096 | 0.011 | 0.006 | 0.191 | 0.352 | 0.012 | ||
0.3 | 0.278 | 0.352 | 0.066 | 0.423 | 0.094 | 0.096 | 0.010 | 0.006 | 0.212 | 0.386 | 0.005 | ||
0.5 | 0.294 | 0.365 | 0.064 | 0.463 | 0.089 | 0.096 | 0.010 | 0.006 | 0.208 | 0.388 | 0.005 | ||
30 | -0.5 | 0.163 | 0.195 | 0.036 | 0.290 | 0.071 | 0.045 | 0.008 | 0.004 | 0.114 | 0.261 | 0.004 | |
-0.3 | 0.163 | 0.189 | 0.035 | 0.280 | 0.069 | 0.045 | 0.008 | 0.004 | 0.112 | 0.239 | 0.004 | ||
0 | 0.174 | 0.202 | 0.036 | 0.288 | 0.071 | 0.044 | 0.010 | 0.004 | 0.120 | 0.261 | 0.006 | ||
0.3 | 0.170 | 0.197 | 0.036 | 0.295 | 0.071 | 0.045 | 0.010 | 0.004 | 0.123 | 0.248 | 0.005 | ||
0.5 | 0.173 | 0.202 | 0.037 | 0.311 | 0.072 | 0.044 | 0.008 | 0.003 | 0.124 | 0.235 | 0.005 |
分析模型 | μφ | 指标 | g | s | ξ | φ | 1/σ2 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | 平均Bias | 0.005 | 0.011 | 0.000 | -0.007 | 0.010 |
平均RMSE | 0.053 | 0.055 | 0.049 | 0.046 | 0.028 | ||
0.5 | 平均Bias | 0.002 | 0.002 | 0.001 | -0.029 | 0.012 | |
平均RMSE | 0.055 | 0.049 | 0.061 | 0.062 | 0.030 | ||
HO-PINC | 0.1 | 平均Bias | 0.061 | 0.113 | |||
平均RMSE | 0.081 | 0.134 | |||||
0.5 | 平均Bias | 0.065 | 0.111 | ||||
平均RMSE | 0.084 | 0.131 |
表S3.1 研究2 (子研究1)中题目参数的返真性
分析模型 | μφ | 指标 | g | s | ξ | φ | 1/σ2 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | 平均Bias | 0.005 | 0.011 | 0.000 | -0.007 | 0.010 |
平均RMSE | 0.053 | 0.055 | 0.049 | 0.046 | 0.028 | ||
0.5 | 平均Bias | 0.002 | 0.002 | 0.001 | -0.029 | 0.012 | |
平均RMSE | 0.055 | 0.049 | 0.061 | 0.062 | 0.030 | ||
HO-PINC | 0.1 | 平均Bias | 0.061 | 0.113 | |||
平均RMSE | 0.081 | 0.134 | |||||
0.5 | 平均Bias | 0.065 | 0.111 | ||||
平均RMSE | 0.084 | 0.131 |
μφ | 指标 | Σitem | 题目均值向量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | μζ | ||||
0.1 | 平均Bias | -0.054 | 0.241 | 0.025 | -0.124 | -0.042 | 0.094 | 0.081 | -0.093 | 0.000 |
平均RMSE | 0.310 | 0.406 | 0.080 | 0.367 | 0.121 | 0.095 | 0.228 | 0.395 | 0.027 | |
0.5 | 平均Bias | -0.023 | 0.172 | 0.009 | 0.058 | -0.010 | 0.094 | 0.042 | 0.043 | 0.001 |
平均RMSE | 0.252 | 0.374 | 0.078 | 0.472 | 0.123 | 0.094 | 0.216 | 0.411 | 0.045 |
表S3.2 研究2 (子研究1)中题目参数方差协方差矩阵和均值向量的返真性
μφ | 指标 | Σitem | 题目均值向量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | μζ | ||||
0.1 | 平均Bias | -0.054 | 0.241 | 0.025 | -0.124 | -0.042 | 0.094 | 0.081 | -0.093 | 0.000 |
平均RMSE | 0.310 | 0.406 | 0.080 | 0.367 | 0.121 | 0.095 | 0.228 | 0.395 | 0.027 | |
0.5 | 平均Bias | -0.023 | 0.172 | 0.009 | 0.058 | -0.010 | 0.094 | 0.042 | 0.043 | 0.001 |
平均RMSE | 0.252 | 0.374 | 0.078 | 0.472 | 0.123 | 0.094 | 0.216 | 0.411 | 0.045 |
分析模型 | μφ | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
CJRT-PINC-m | 0.1 | -0.007 | 0.461 | 0.887 | 0.000 | 0.135 | 0.978 |
0.5 | -0.018 | 0.446 | 0.894 | -0.005 | 0.136 | 0.985 | |
HO-PINC | 0.1 | -0.009 | 0.482 | 0.876 | |||
0.5 | -0.020 | 0.480 | 0.875 |
表S3.3 研究2 (子研究2)中被试参数估计返真性
分析模型 | μφ | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
CJRT-PINC-m | 0.1 | -0.007 | 0.461 | 0.887 | 0.000 | 0.135 | 0.978 |
0.5 | -0.018 | 0.446 | 0.894 | -0.005 | 0.136 | 0.985 | |
HO-PINC | 0.1 | -0.009 | 0.482 | 0.876 | |||
0.5 | -0.020 | 0.480 | 0.875 |
分析模型 | μφ | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
CJRT-PINC-m | 0.1 | Bias | 0.006 | -0.014 | -0.021 | 0.012 | -0.026 |
RMSE | 0.129 | 0.131 | 0.140 | 0.154 | 0.144 | ||
Cor | 0.904 | 0.905 | 0.901 | 0.888 | 0.873 | ||
0.5 | Bias | 0.012 | -0.010 | 0.002 | -0.009 | -0.005 | |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.135 | ||
Cor | 0.907 | 0.910 | 0.906 | 0.897 | 0.882 | ||
HO-PINC | 0.1 | Bias | 0.040 | 0.016 | -0.006 | -0.009 | -0.054 |
RMSE | 0.153 | 0.145 | 0.149 | 0.154 | 0.159 | ||
Cor | 0.891 | 0.894 | 0.888 | 0.877 | 0.861 | ||
0.5 | Bias | 0.038 | 0.012 | -0.006 | -0.021 | -0.065 | |
RMSE | 0.154 | 0.148 | 0.154 | 0.156 | 0.159 | ||
Cor | 0.889 | 0.892 | 0.886 | 0.876 | 0.859 |
表S3.4 研究2 (子研究2)概率态属性参数估计返真性
分析模型 | μφ | 指标 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|---|
CJRT-PINC-m | 0.1 | Bias | 0.006 | -0.014 | -0.021 | 0.012 | -0.026 |
RMSE | 0.129 | 0.131 | 0.140 | 0.154 | 0.144 | ||
Cor | 0.904 | 0.905 | 0.901 | 0.888 | 0.873 | ||
0.5 | Bias | 0.012 | -0.010 | 0.002 | -0.009 | -0.005 | |
RMSE | 0.127 | 0.124 | 0.132 | 0.135 | 0.135 | ||
Cor | 0.907 | 0.910 | 0.906 | 0.897 | 0.882 | ||
HO-PINC | 0.1 | Bias | 0.040 | 0.016 | -0.006 | -0.009 | -0.054 |
RMSE | 0.153 | 0.145 | 0.149 | 0.154 | 0.159 | ||
Cor | 0.891 | 0.894 | 0.888 | 0.877 | 0.861 | ||
0.5 | Bias | 0.038 | 0.012 | -0.006 | -0.021 | -0.065 | |
RMSE | 0.154 | 0.148 | 0.154 | 0.156 | 0.159 | ||
Cor | 0.889 | 0.892 | 0.886 | 0.876 | 0.859 |
分析模型 | μφ | 指标 | g | s | ξ | κ | 1/σ2 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | 平均Bias | -0.005 | -0.001 | 0.026 | -0.071 | 0.010 |
平均RMSE | 0.058 | 0.050 | 0.103 | 0.201 | 0.029 | ||
0.5 | 平均Bias | 0.002 | 0.009 | 0.035 | -0.102 | 0.010 | |
平均RMSE | 0.048 | 0.054 | 0.097 | 0.204 | 0.028 | ||
HO-PINC | 0.1 | 平均Bias | 0.057 | 0.114 | |||
平均RMSE | 0.078 | 0.134 | |||||
0.5 | 平均Bias | 0.064 | 0.110 | ||||
平均RMSE | 0.082 | 0.132 |
表S3.5 研究2 (子研究2)中题目参数的返真性
分析模型 | μφ | 指标 | g | s | ξ | κ | 1/σ2 |
---|---|---|---|---|---|---|---|
CJRT-PINC-θ | 0.1 | 平均Bias | -0.005 | -0.001 | 0.026 | -0.071 | 0.010 |
平均RMSE | 0.058 | 0.050 | 0.103 | 0.201 | 0.029 | ||
0.5 | 平均Bias | 0.002 | 0.009 | 0.035 | -0.102 | 0.010 | |
平均RMSE | 0.048 | 0.054 | 0.097 | 0.204 | 0.028 | ||
HO-PINC | 0.1 | 平均Bias | 0.057 | 0.114 | |||
平均RMSE | 0.078 | 0.134 | |||||
0.5 | 平均Bias | 0.064 | 0.110 | ||||
平均RMSE | 0.082 | 0.132 |
μα | 指标 | Σitem | 题目均值向量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | μζ | ||||
0.1 | 平均Bias | -0.115 | 0.319 | 0.048 | -0.167 | -0.050 | 0.087 | -0.018 | 0.150 | 0.026 |
平均RMSE | 0.275 | 0.429 | 0.100 | 0.393 | 0.112 | 0.090 | 0.243 | 0.431 | 0.067 | |
0.5 | 平均Bias | 0.058 | 0.120 | 0.014 | 0.059 | -0.031 | 0.105 | 0.029 | -0.008 | 0.035 |
平均RMSE | 0.363 | 0.466 | 0.079 | 0.670 | 0.130 | 0.107 | 0.170 | 0.368 | 0.062 |
表S3.6 研究2 (子研究2)中题目参数方差协方差矩阵和均值向量的返真性
μα | 指标 | Σitem | 题目均值向量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Σ11 | Σ12 | Σ13 | Σ22 | Σ23 | Σ33 | μζ | ||||
0.1 | 平均Bias | -0.115 | 0.319 | 0.048 | -0.167 | -0.050 | 0.087 | -0.018 | 0.150 | 0.026 |
平均RMSE | 0.275 | 0.429 | 0.100 | 0.393 | 0.112 | 0.090 | 0.243 | 0.431 | 0.067 | |
0.5 | 平均Bias | 0.058 | 0.120 | 0.014 | 0.059 | -0.031 | 0.105 | 0.029 | -0.008 | 0.035 |
平均RMSE | 0.363 | 0.466 | 0.079 | 0.670 | 0.130 | 0.107 | 0.170 | 0.368 | 0.062 |
数据生成模型 | 数据分析模型 | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
JRT-PINC | JRT-PINC | 0.000 | 0.457 | 0.887 | -0.001 | 0.120 | 0.951 |
CJRT-PINC-θ | -0.002 | 0.475 | 0.878 | -0.002 | 0.181 | 0.885 | |
CJRT-PINC-m | -0.001 | 0.475 | 0.877 | -0.003 | 0.132 | 0.943 | |
CJRT-PINC-θ | JRT-PINC | 0.007 | 0.412 | 0.910 | -0.013 | 0.496 | 0.600 |
CJRT-PINC-θ | 0.009 | 0.286 | 0.959 | -0.016 | 0.194 | 0.886 | |
CJRT-PINC-m | 0.010 | 0.302 | 0.954 | -0.016 | 0.356 | 0.740 | |
CJRT-PINC-m | JRT-PINC | 0.003 | 0.475 | 0.879 | 0.008 | 0.171 | 0.902 |
CJRT-PINC-θ | 0.008 | 0.466 | 0.884 | 0.004 | 0.143 | 0.936 | |
CJRT-PINC-m | 0.005 | 0.456 | 0.889 | 0.005 | 0.143 | 0.937 |
表S4.1 研究3中被试参数的返真性
数据生成模型 | 数据分析模型 | θ | τ | ||||
---|---|---|---|---|---|---|---|
Bias | RMSE | Cor | Bias | RMSE | Cor | ||
JRT-PINC | JRT-PINC | 0.000 | 0.457 | 0.887 | -0.001 | 0.120 | 0.951 |
CJRT-PINC-θ | -0.002 | 0.475 | 0.878 | -0.002 | 0.181 | 0.885 | |
CJRT-PINC-m | -0.001 | 0.475 | 0.877 | -0.003 | 0.132 | 0.943 | |
CJRT-PINC-θ | JRT-PINC | 0.007 | 0.412 | 0.910 | -0.013 | 0.496 | 0.600 |
CJRT-PINC-θ | 0.009 | 0.286 | 0.959 | -0.016 | 0.194 | 0.886 | |
CJRT-PINC-m | 0.010 | 0.302 | 0.954 | -0.016 | 0.356 | 0.740 | |
CJRT-PINC-m | JRT-PINC | 0.003 | 0.475 | 0.879 | 0.008 | 0.171 | 0.902 |
CJRT-PINC-θ | 0.008 | 0.466 | 0.884 | 0.004 | 0.143 | 0.936 | |
CJRT-PINC-m | 0.005 | 0.456 | 0.889 | 0.005 | 0.143 | 0.937 |
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.006 | 0.007 | 0.008 | -0.008 | -0.022 |
CJRT-PINC-θ | 0.005 | 0.005 | 0.007 | -0.006 | -0.023 | |
CJRT-PINC-m | 0.015 | 0.011 | 0.010 | -0.004 | -0.028 | |
CJRT-PINC-θ | JRT-PINC | -0.017 | -0.014 | -0.019 | -0.024 | -0.026 |
CJRT-PINC-θ | -0.016 | -0.009 | -0.018 | -0.018 | -0.017 | |
CJRT-PINC-m | 0.016 | 0.012 | 0.029 | 0.020 | -0.038 | |
CJRT-PINC-m | JRT-PINC | 0.031 | 0.001 | -0.020 | 0.002 | -0.015 |
CJRT-PINC-θ | 0.026 | 0.009 | -0.024 | 0.002 | -0.020 | |
CJRT-PINC-m | 0.033 | 0.011 | -0.016 | -0.001 | -0.013 |
表S4.2 研究3中属性参数的的平均Bias
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.006 | 0.007 | 0.008 | -0.008 | -0.022 |
CJRT-PINC-θ | 0.005 | 0.005 | 0.007 | -0.006 | -0.023 | |
CJRT-PINC-m | 0.015 | 0.011 | 0.010 | -0.004 | -0.028 | |
CJRT-PINC-θ | JRT-PINC | -0.017 | -0.014 | -0.019 | -0.024 | -0.026 |
CJRT-PINC-θ | -0.016 | -0.009 | -0.018 | -0.018 | -0.017 | |
CJRT-PINC-m | 0.016 | 0.012 | 0.029 | 0.020 | -0.038 | |
CJRT-PINC-m | JRT-PINC | 0.031 | 0.001 | -0.020 | 0.002 | -0.015 |
CJRT-PINC-θ | 0.026 | 0.009 | -0.024 | 0.002 | -0.020 | |
CJRT-PINC-m | 0.033 | 0.011 | -0.016 | -0.001 | -0.013 |
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.126 | 0.138 | 0.142 | 0.147 | 0.143 |
CJRT-PINC-θ | 0.128 | 0.140 | 0.146 | 0.148 | 0.145 | |
CJRT-PINC-m | 0.132 | 0.143 | 0.144 | 0.151 | 0.147 | |
CJRT-PINC-θ | JRT-PINC | 0.116 | 0.131 | 0.139 | 0.137 | 0.133 |
CJRT-PINC-θ | 0.088 | 0.103 | 0.146 | 0.109 | 0.103 | |
CJRT-PINC-m | 0.156 | 0.142 | 0.110 | 0.130 | 0.150 | |
CJRT-PINC-m | JRT-PINC | 0.139 | 0.150 | 0.151 | 0.146 | 0.143 |
CJRT-PINC-θ | 0.134 | 0.149 | 0.149 | 0.142 | 0.141 | |
CJRT-PINC-m | 0.137 | 0.143 | 0.142 | 0.139 | 0.136 |
表S4.3 研究3中属性参数的的平均RMSE
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.126 | 0.138 | 0.142 | 0.147 | 0.143 |
CJRT-PINC-θ | 0.128 | 0.140 | 0.146 | 0.148 | 0.145 | |
CJRT-PINC-m | 0.132 | 0.143 | 0.144 | 0.151 | 0.147 | |
CJRT-PINC-θ | JRT-PINC | 0.116 | 0.131 | 0.139 | 0.137 | 0.133 |
CJRT-PINC-θ | 0.088 | 0.103 | 0.146 | 0.109 | 0.103 | |
CJRT-PINC-m | 0.156 | 0.142 | 0.110 | 0.130 | 0.150 | |
CJRT-PINC-m | JRT-PINC | 0.139 | 0.150 | 0.151 | 0.146 | 0.143 |
CJRT-PINC-θ | 0.134 | 0.149 | 0.149 | 0.142 | 0.141 | |
CJRT-PINC-m | 0.137 | 0.143 | 0.142 | 0.139 | 0.136 |
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.899 | 0.899 | 0.895 | 0.887 | 0.874 |
CJRT-PINC-θ | 0.894 | 0.894 | 0.888 | 0.880 | 0.866 | |
CJRT-PINC-m | 0.893 | 0.894 | 0.889 | 0.879 | 0.865 | |
CJRT-PINC-θ | JRT-PINC | 0.917 | 0.916 | 0.913 | 0.907 | 0.896 |
CJRT-PINC-θ | 0.956 | 0.955 | 0.954 | 0.953 | 0.949 | |
CJRT-PINC-m | 0.938 | 0.945 | 0.952 | 0.950 | 0.937 | |
CJRT-PINC-m | JRT-PINC | 0.895 | 0.893 | 0.891 | 0.881 | 0.866 |
CJRT-PINC-θ | 0.901 | 0.900 | 0.897 | 0.888 | 0.873 | |
CJRT-PINC-m | 0.903 | 0.903 | 0.901 | 0.892 | 0.877 |
表S4.4 研究3中属性参数的的Cor
数据生成模型 | 数据分析模型 | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|---|
JRT-PINC | JRT-PINC | 0.899 | 0.899 | 0.895 | 0.887 | 0.874 |
CJRT-PINC-θ | 0.894 | 0.894 | 0.888 | 0.880 | 0.866 | |
CJRT-PINC-m | 0.893 | 0.894 | 0.889 | 0.879 | 0.865 | |
CJRT-PINC-θ | JRT-PINC | 0.917 | 0.916 | 0.913 | 0.907 | 0.896 |
CJRT-PINC-θ | 0.956 | 0.955 | 0.954 | 0.953 | 0.949 | |
CJRT-PINC-m | 0.938 | 0.945 | 0.952 | 0.950 | 0.937 | |
CJRT-PINC-m | JRT-PINC | 0.895 | 0.893 | 0.891 | 0.881 | 0.866 |
CJRT-PINC-θ | 0.901 | 0.900 | 0.897 | 0.888 | 0.873 | |
CJRT-PINC-m | 0.903 | 0.903 | 0.901 | 0.892 | 0.877 |
题目 | K1 | K2 | K3 | K4 | K5 | K6 | K7 |
---|---|---|---|---|---|---|---|
CM015Q01 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
CM015Q02D | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
CM015Q03D | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
CM020Q01 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q02 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q03 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q04 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM038Q03T | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
CM038Q05 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
CM038Q06 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
表S5.1 研究3实证数据Q矩阵
题目 | K1 | K2 | K3 | K4 | K5 | K6 | K7 |
---|---|---|---|---|---|---|---|
CM015Q01 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
CM015Q02D | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
CM015Q03D | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
CM020Q01 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q02 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q03 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM020Q04 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CM038Q03T | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
CM038Q05 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
CM038Q06 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
[1] |
Bolsinova M., de Boeck P., & Tijmstra J. (2017). Modelling conditional dependence between response time and accuracy. Psychometrika, 82, 1126-1148.
doi: 10.1007/s11336-016-9537-6 pmid: 27738955 |
[2] |
Bolsinova M., & Tijmstra J. (2018). Improving precision of ability estimation: Getting more from response times. British Journal of Mathematical and Statistical Psychology, 71(1), 13-38.
doi: 10.1111/bmsp.2018.71.issue-1 URL |
[3] |
Bradshaw L., & Levy R. (2019). Interpreting probabilistic classifications from diagnostic psychometric models. Educational Measurement: Issues and Practice, 38(2), 79-88.
doi: 10.1111/emip.2019.38.issue-2 URL |
[4] |
de Boeck P., & Jeon M. (2019). An overview of models for response times and processes in cognitive tests. Frontiers in Psychology, 10, 102.
doi: 10.3389/fpsyg.2019.00102 pmid: 30787891 |
[5] |
de la Torre J., & Douglas J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353.
doi: 10.1007/BF02295640 URL |
[6] |
Guo L. Shang P., & Xia L. (2017). Advantages and illustrations of application of response time model in psychological and educational testing. Advances in Psychological Science, 25(4), 701-712.
doi: 10.3724/SP.J.1042.2017.00701 |
[郭磊, 尚鹏丽, 夏凌翔. (2017). 心理与教育测验中反应时模型应用的优势与举例. 心理科学进展, 25(4), 701-712.]
doi: 10.3724/SP.J.1042.2017.00701 |
|
[7] |
Huang H.-Y. (2020). Utilizing response times in cognitive diagnostic computerized adaptive testing under the higher-order deterministic input, noisy ‘and’ gate model. British Journal of Mathematical and Statistical Psychology, 73(1), 109-141.
doi: 10.1111/bmsp.v73.1 URL |
[8] | Liu Q., Wu R. Z., Chen E. H., Xu G. D., Su Y., Chen Z. G., & Hu G. P. (2018). Fuzzy cognitive diagnosis for modelling examinee performance. ACM Transactions on Intelligent Systems and Technology, 9(4), Article 48. |
[9] | Mao X. (2014). The attribute mastery probability cognitive diagnostic model. Journal of Sichuan Normal University (National Science), 37(3), 437-443. |
[毛秀珍. (2014). 基于属性掌握概率的认知诊断模型. 四川师范大学学报(自然科学版), 37(3), 437-443.] | |
[10] |
Meng X., Tao J., & Chang H.-H. (2015). A conditional joint modeling approach for locally dependent item responses and response times. Journal of Educational Measurement, 52(1), 1-27.
doi: 10.1111/jedm.12060 URL |
[11] | OECD. (2013). PISA 2012 assessment and analytical framework: mathematics, reading, science, problem solving and financial literacy. OECD Publishing. |
[12] |
Peng S., Cai Y., Wang D., Luo F., & Tu D. (2022). A generalized diagnostic classification modeling framework integrating differential speediness: Advantages and illustrations in psychological and educational testing. Multivariate Behavioral Research, 57(6), 940-959.
doi: 10.1080/00273171.2021.1928474 URL |
[13] |
Ranger J. (2013). A note on the hierarchical model for responses and response times in tests of van der Linden (2007). Psychometrika, 78(3), 538-544
doi: 10.1007/s11336-013-9324-6 pmid: 25106399 |
[14] | Tang F., & Zhan P. (2021). Does diagnostic feedback promote learning? Evidence from a longitudinal cognitive diagnostic assessment. AERA Open, 7(1), 1-15. |
[15] |
Tatsuoka K. K. (1983). Rule Space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354.
doi: 10.1111/jedm.1983.20.issue-4 URL |
[16] | van der Linden W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181-204. |
[17] |
van der Linden W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287-308.
doi: 10.1007/s11336-006-1478-z URL |
[18] |
Wang C., & Xu G. (2015). A mixture hierarchical model for response times and response accuracy. British Journal of Mathematical and Statistical Psychology, 68(3), 456-477.
doi: 10.1111/bmsp.2015.68.issue-3 URL |
[19] |
Xu G., & Zhang S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625-649.
doi: 10.1007/s11336-015-9471-z pmid: 26155755 |
[20] |
Yan J. H. (2010). Cognitive styles affect choice response time and accuracy. Personality and Individual Differences, 48, 747-751.
doi: 10.1016/j.paid.2010.01.021 URL |
[21] | Zhan P. (2021). Refined learning tracking with a longitudinal probabilistic diagnostic model. Educational Measurement: Issues and Practice, 40(1), 44-58. |
[22] |
Zhan P. (2022). Joint-cross-loading multimodal cognitive diagnostic modeling incorporating visual fixation counts. Acta Psychologica Sinica, 54(11), 1416-1423.
doi: 10.3724/SP.J.1041.2022.01416 |
[詹沛达. (2022). 引入眼动注视点的联合-交叉负载多模态认知诊断建模. 心理学报, 54(11), 1416-1423.]
doi: 10.3724/SP.J.1041.2022.01416 |
|
[23] | Zhan P., & Bian Y. (2015). The probabilistic-inputs, noisy “and” gate model. Journal of Psychological Science, 38(5), 1230-1238. |
[詹沛达, 边玉芳. (2015). 概率性输入, 噪音“与”门(PINA)模型. 心理科学, 38(5), 1230-1238.] | |
[24] |
Zhan P., Jiao H., & Liao D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286.
doi: 10.1111/bmsp.2018.71.issue-2 URL |
[25] | Zhan P., Jiao H., Man K., & Wang L. (2019). Using JAGS for Bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473-503. |
[26] | Zhan P., Man K., Wind S. A., & Malone J. (2022). Cognitive diagnosis modelling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis. Journal of Educational and Behavioral Statistic, 47(6), 736rnal. |
[27] | Zhan P., Tian Y., Yu Z., Li F., & Wang L. (2020). A comparative study of probabilistic logic and fuzzy logic in refined learning diagnosis. Journal of Psychological Science, 43, 1258-1266. |
[詹沛达, 田亚淑, 于照辉, 李菲茗, 王立君. (2020). 概率逻辑与模糊逻辑在精细化学习诊断中的对比研究. 心理科学, 43, 1258-1266.] | |
[28] |
Zhan P., Wang W. C., Jiao H., & Bian Y. F. (2018). Probabilistic-input, noisy conjunctive models for cognitive diagnosis. Frontiers in Psychology, 9, 997.
doi: 10.3389/fpsyg.2018.00997 pmid: 29962994 |
[29] | Zhang L., Zhong Z., Liu H., & You X. (2022). Exploration and reflection on teachers' performance appraisal in the context of educational evaluation reform-based on the perspective of value-added evaluation. Educational Science Research, 8, 23-39. |
[张莉娜, 钟祖荣, 刘红云, 游晓锋. (2022). 教育评价改革背景下教师绩效考评的探索与思考——基于增值评价的视角. 教育科学研究, 8, 23-39.] | |
[30] | Zheng T., Zhou W., & Guo L. (2023). Cognitive diagnosis modelling based on response times. Journal of Psychological Science, 46(2), 478-490. |
[郑天鹏, 周文杰, 郭磊. (2023). 基于题目作答时间信息的认知诊断模型. 心理科学, 46(2), 478-490.] |
[1] | 游晓锋, 杨建芹, 秦春影, 刘红云. 认知诊断测评中缺失数据的处理:随机森林阈值插补法[J]. 心理学报, 2023, 55(7): 1192-1206. |
[2] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
[3] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
[4] | 孙小坚, 郭磊. 考虑题目选项信息的非参数认知诊断计算机自适应测验[J]. 心理学报, 2022, 54(9): 1137-1150. |
[5] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
[6] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[7] | 宋枝璘, 郭磊, 郑天鹏. 认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法[J]. 心理学报, 2022, 54(4): 426-440. |
[8] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[9] | 郭磊, 周文杰. 基于选项层面的认知诊断非参数方法[J]. 心理学报, 2021, 53(9): 1032-1043. |
[10] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[11] | 詹沛达, Hong Jiao, Kaiwen Man. 多维对数正态作答时间模型:对潜在加工速度多维性的探究[J]. 心理学报, 2020, 52(9): 1132-1142. |
[12] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
[13] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报, 2020, 52(1): 93-106. |
[14] | 詹沛达, 于照辉, 李菲茗, 王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
[15] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||