心理学报 ›› 2022, Vol. 54 ›› Issue (9): 1137-1150.doi: 10.3724/SP.J.1041.2022.01137
• 研究报告 • 上一篇
收稿日期:
2021-12-31
发布日期:
2022-07-21
出版日期:
2022-09-25
通讯作者:
郭磊
E-mail:happygl1229@swu.edu.cn
基金资助:
SUN Xiaojian1,2,3, GUO Lei3,4()
Received:
2021-12-31
Online:
2022-07-21
Published:
2022-09-25
Contact:
GUO Lei
E-mail:happygl1229@swu.edu.cn
摘要:
选择题中的作答选项能提供额外诊断信息, 为充分利用选项信息, 研究提出认知诊断计算机自适应测验(CD-CAT)中两种处理选择题选项信息的非参数选题策略和变长终止规则。模拟研究的结果发现:(1)定长条件下两种非参数选题策略的分类准确性整体要高于参数选题策略; (2)两种非参数选题策略较参数选题策略具有更加均衡的题库使用情况; (3)非参数选题策略在两种新的变长终止规则下具有更高的分类准确率; (4)两种非参数选题策略均适用于选择题CD-CAT情境, 使用者可任选其一进行测验分析。
中图分类号:
孙小坚, 郭磊. (2022). 考虑题目选项信息的非参数认知诊断计算机自适应测验. 心理学报, 54(9), 1137-1150.
SUN Xiaojian, GUO Lei. (2022). Nonparametric cognitive diagnostic computerized adaptive testing using multiple-choice option information. Acta Psychologica Sinica, 54(9), 1137-1150.
题目 质量 | 测验 长度 | 诊断 方法 | 简单Q矩阵 | 复杂Q矩阵 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
χ2 | TOR | UIR | OIR | χ2 | TOR | UIR | OIR | |||
高 | 2K | HDDmc | 1.343 | 0.018 | 0.663 | 0.000 | 1.214 | 0.017 | 0.663 | 0.000 |
JDDmc | 1.325 | 0.017 | 0.667 | 0.000 | 1.210 | 0.017 | 0.659 | 0.000 | ||
JSD | 148.184 | 0.324 | 0.931 | 0.022 | 102.493 | 0.229 | 0.899 | 0.022 | ||
3K | HDDmc | 1.620 | 0.026 | 0.277 | 0.000 | 1.432 | 0.026 | 0.265 | 0.000 | |
JDDmc | 1.638 | 0.026 | 0.281 | 0.000 | 1.431 | 0.026 | 0.259 | 0.000 | ||
JSD | 171.692 | 0.381 | 0.905 | 0.045 | 121.801 | 0.277 | 0.869 | 0.043 | ||
4K | HDDmc | 1.932 | 0.035 | 0.096 | 0.000 | 1.659 | 0.035 | 0.078 | 0.000 | |
JDDmc | 1.932 | 0.035 | 0.093 | 0.000 | 1.660 | 0.035 | 0.077 | 0.000 | ||
JSD | 187.661 | 0.423 | 0.875 | 0.059 | 133.228 | 0.310 | 0.839 | 0.060 | ||
低 | 2K | HDDmc | 1.236 | 0.017 | 0.669 | 0.000 | 1.167 | 0.017 | 0.666 | 0.000 |
JDDmc | 1.216 | 0.017 | 0.660 | 0.000 | 1.135 | 0.017 | 0.668 | 0.000 | ||
JSD | 187.023 | 0.405 | 0.934 | 0.023 | 139.115 | 0.305 | 0.909 | 0.023 | ||
3K | HDDmc | 1.392 | 0.026 | 0.256 | 0.000 | 1.273 | 0.026 | 0.242 | 0.000 | |
JDDmc | 1.413 | 0.026 | 0.256 | 0.000 | 1.250 | 0.026 | 0.239 | 0.000 | ||
JSD | 194.582 | 0.429 | 0.902 | 0.039 | 152.600 | 0.342 | 0.873 | 0.043 | ||
4K | HDDmc | 1.581 | 0.035 | 0.064 | 0.000 | 1.418 | 0.034 | 0.064 | 0.000 | |
JDDmc | 1.581 | 0.035 | 0.065 | 0.000 | 1.425 | 0.034 | 0.065 | 0.000 | ||
JSD | 199.925 | 0.449 | 0.872 | 0.050 | 165.428 | 0.377 | 0.840 | 0.053 | ||
混合 | 2K | HDDmc | 1.260 | 0.017 | 0.664 | 0.000 | 1.169 | 0.017 | 0.665 | 0.000 |
JDDmc | 1.292 | 0.017 | 0.663 | 0.000 | 1.143 | 0.017 | 0.662 | 0.000 | ||
JSD | 173.083 | 0.376 | 0.938 | 0.028 | 142.062 | 0.311 | 0.918 | 0.021 | ||
3K | HDDmc | 1.509 | 0.026 | 0.264 | 0.000 | 1.343 | 0.026 | 0.249 | 0.000 | |
JDDmc | 1.537 | 0.026 | 0.268 | 0.000 | 1.378 | 0.026 | 0.255 | 0.000 | ||
JSD | 191.497 | 0.423 | 0.901 | 0.035 | 173.288 | 0.385 | 0.898 | 0.037 | ||
4K | HDDmc | 1.737 | 0.035 | 0.082 | 0.000 | 1.546 | 0.035 | 0.072 | 0.000 | |
JDDmc | 1.763 | 0.035 | 0.083 | 0.000 | 1.589 | 0.035 | 0.071 | 0.000 | ||
JSD | 192.640 | 0.434 | 0.868 | 0.051 | 181.812 | 0.411 | 0.867 | 0.052 |
表1 四个属性时3种策略的题库使用情况(多元正态阈值分布)
题目 质量 | 测验 长度 | 诊断 方法 | 简单Q矩阵 | 复杂Q矩阵 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
χ2 | TOR | UIR | OIR | χ2 | TOR | UIR | OIR | |||
高 | 2K | HDDmc | 1.343 | 0.018 | 0.663 | 0.000 | 1.214 | 0.017 | 0.663 | 0.000 |
JDDmc | 1.325 | 0.017 | 0.667 | 0.000 | 1.210 | 0.017 | 0.659 | 0.000 | ||
JSD | 148.184 | 0.324 | 0.931 | 0.022 | 102.493 | 0.229 | 0.899 | 0.022 | ||
3K | HDDmc | 1.620 | 0.026 | 0.277 | 0.000 | 1.432 | 0.026 | 0.265 | 0.000 | |
JDDmc | 1.638 | 0.026 | 0.281 | 0.000 | 1.431 | 0.026 | 0.259 | 0.000 | ||
JSD | 171.692 | 0.381 | 0.905 | 0.045 | 121.801 | 0.277 | 0.869 | 0.043 | ||
4K | HDDmc | 1.932 | 0.035 | 0.096 | 0.000 | 1.659 | 0.035 | 0.078 | 0.000 | |
JDDmc | 1.932 | 0.035 | 0.093 | 0.000 | 1.660 | 0.035 | 0.077 | 0.000 | ||
JSD | 187.661 | 0.423 | 0.875 | 0.059 | 133.228 | 0.310 | 0.839 | 0.060 | ||
低 | 2K | HDDmc | 1.236 | 0.017 | 0.669 | 0.000 | 1.167 | 0.017 | 0.666 | 0.000 |
JDDmc | 1.216 | 0.017 | 0.660 | 0.000 | 1.135 | 0.017 | 0.668 | 0.000 | ||
JSD | 187.023 | 0.405 | 0.934 | 0.023 | 139.115 | 0.305 | 0.909 | 0.023 | ||
3K | HDDmc | 1.392 | 0.026 | 0.256 | 0.000 | 1.273 | 0.026 | 0.242 | 0.000 | |
JDDmc | 1.413 | 0.026 | 0.256 | 0.000 | 1.250 | 0.026 | 0.239 | 0.000 | ||
JSD | 194.582 | 0.429 | 0.902 | 0.039 | 152.600 | 0.342 | 0.873 | 0.043 | ||
4K | HDDmc | 1.581 | 0.035 | 0.064 | 0.000 | 1.418 | 0.034 | 0.064 | 0.000 | |
JDDmc | 1.581 | 0.035 | 0.065 | 0.000 | 1.425 | 0.034 | 0.065 | 0.000 | ||
JSD | 199.925 | 0.449 | 0.872 | 0.050 | 165.428 | 0.377 | 0.840 | 0.053 | ||
混合 | 2K | HDDmc | 1.260 | 0.017 | 0.664 | 0.000 | 1.169 | 0.017 | 0.665 | 0.000 |
JDDmc | 1.292 | 0.017 | 0.663 | 0.000 | 1.143 | 0.017 | 0.662 | 0.000 | ||
JSD | 173.083 | 0.376 | 0.938 | 0.028 | 142.062 | 0.311 | 0.918 | 0.021 | ||
3K | HDDmc | 1.509 | 0.026 | 0.264 | 0.000 | 1.343 | 0.026 | 0.249 | 0.000 | |
JDDmc | 1.537 | 0.026 | 0.268 | 0.000 | 1.378 | 0.026 | 0.255 | 0.000 | ||
JSD | 191.497 | 0.423 | 0.901 | 0.035 | 173.288 | 0.385 | 0.898 | 0.037 | ||
4K | HDDmc | 1.737 | 0.035 | 0.082 | 0.000 | 1.546 | 0.035 | 0.072 | 0.000 | |
JDDmc | 1.763 | 0.035 | 0.083 | 0.000 | 1.589 | 0.035 | 0.071 | 0.000 | ||
JSD | 192.640 | 0.434 | 0.868 | 0.051 | 181.812 | 0.411 | 0.867 | 0.052 |
题目 质量 | 终止 规则 | 诊断 方法 | 简单Q矩阵a | 复杂Q矩阵a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Min | Max | UIR | PMR | M | Min | Max | UIR | PMR | |||
高 | MR | HDDmc | 9.274 | 7 | 25.033 | 0.520 | 0.712 | 9.369 | 7 | 26.333 | 0.661 | 0.775 |
JDDmc | 9.300 | 7 | 25.367 | 0.511 | 0.710 | 9.402 | 7 | 25.600 | 0.659 | 0.768 | ||
DR | HDDmc | 13.785 | 5 | 30.000 | 0.134 | 0.724 | 11.767 | 5 | 30.000 | 0.473 | 0.738 | |
JDDmc | 14.876 | 5 | 30.000 | 0.086 | 0.745 | 12.853 | 5 | 30.000 | 0.363 | 0.752 | ||
D1 | HDDmc | 5.308 | 5 | 8.733 | 0.849 | 0.496 | 5.289 | 5 | 9.400 | 0.751 | 0.514 | |
JDDmc | 5.303 | 5 | 8.667 | 0.846 | 0.490 | 5.293 | 5 | 9.200 | 0.752 | 0.508 | ||
D3 | HDDmc | 7.939 | 7 | 12.833 | 0.650 | 0.648 | 7.914 | 7 | 13.433 | 0.728 | 0.703 | |
JDDmc | 7.964 | 7 | 12.900 | 0.651 | 0.651 | 7.920 | 7 | 13.600 | 0.726 | 0.702 | ||
低 | MR | HDDmc | 10.204 | 7 | 28.667 | 0.414 | 0.450 | 10.482 | 7 | 29.167 | 0.577 | 0.509 |
JDDmc | 10.199 | 7 | 28.367 | 0.415 | 0.441 | 10.460 | 7 | 29.133 | 0.582 | 0.514 | ||
DR | HDDmc | 19.536 | 5 | 30.000 | 0.009 | 0.629 | 17.237 | 5 | 30.000 | 0.097 | 0.648 | |
JDDmc | 20.838 | 5 | 30.000 | 0.003 | 0.641 | 18.545 | 5 | 30.000 | 0.068 | 0.663 | ||
D1 | HDDmc | 5.431 | 5 | 9.333 | 0.839 | 0.288 | 5.430 | 5 | 10.300 | 0.750 | 0.303 | |
JDDmc | 5.423 | 5 | 9.333 | 0.841 | 0.293 | 5.418 | 5 | 10.367 | 0.751 | 0.310 | ||
D3 | HDDmc | 8.308 | 7 | 13.833 | 0.612 | 0.396 | 8.319 | 7 | 14.900 | 0.716 | 0.445 | |
JDDmc | 8.315 | 7 | 13.800 | 0.608 | 0.397 | 8.303 | 7 | 14.733 | 0.719 | 0.434 | ||
混合 | MR | HDDmc | 9.762 | 7 | 26.400 | 0.463 | 0.591 | 9.961 | 7 | 27.233 | 0.620 | 0.666 |
JDDmc | 9.765 | 7 | 25.867 | 0.466 | 0.595 | 9.915 | 7 | 27.733 | 0.619 | 0.665 | ||
DR | HDDmc | 16.321 | 5 | 30.000 | 0.042 | 0.720 | 13.902 | 5 | 30.000 | 0.277 | 0.711 | |
JDDmc | 17.570 | 5 | 30.000 | 0.027 | 0.729 | 15.141 | 5 | 30.000 | 0.192 | 0.724 | ||
D1 | HDDmc | 5.368 | 5 | 8.833 | 0.839 | 0.379 | 5.364 | 5 | 10.033 | 0.750 | 0.416 | |
JDDmc | 5.368 | 5 | 9.000 | 0.845 | 0.391 | 5.352 | 5 | 9.700 | 0.750 | 0.418 | ||
D3 | HDDmc | 8.138 | 7 | 13.200 | 0.633 | 0.521 | 8.135 | 7 | 14.467 | 0.722 | 0.585 | |
JDDmc | 8.131 | 7 | 13.233 | 0.629 | 0.530 | 8.125 | 7 | 13.867 | 0.723 | 0.589 |
表2 四个属性时两种非参方法的分类结果及题库使用情况(多元正态阈值分布)
题目 质量 | 终止 规则 | 诊断 方法 | 简单Q矩阵a | 复杂Q矩阵a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Min | Max | UIR | PMR | M | Min | Max | UIR | PMR | |||
高 | MR | HDDmc | 9.274 | 7 | 25.033 | 0.520 | 0.712 | 9.369 | 7 | 26.333 | 0.661 | 0.775 |
JDDmc | 9.300 | 7 | 25.367 | 0.511 | 0.710 | 9.402 | 7 | 25.600 | 0.659 | 0.768 | ||
DR | HDDmc | 13.785 | 5 | 30.000 | 0.134 | 0.724 | 11.767 | 5 | 30.000 | 0.473 | 0.738 | |
JDDmc | 14.876 | 5 | 30.000 | 0.086 | 0.745 | 12.853 | 5 | 30.000 | 0.363 | 0.752 | ||
D1 | HDDmc | 5.308 | 5 | 8.733 | 0.849 | 0.496 | 5.289 | 5 | 9.400 | 0.751 | 0.514 | |
JDDmc | 5.303 | 5 | 8.667 | 0.846 | 0.490 | 5.293 | 5 | 9.200 | 0.752 | 0.508 | ||
D3 | HDDmc | 7.939 | 7 | 12.833 | 0.650 | 0.648 | 7.914 | 7 | 13.433 | 0.728 | 0.703 | |
JDDmc | 7.964 | 7 | 12.900 | 0.651 | 0.651 | 7.920 | 7 | 13.600 | 0.726 | 0.702 | ||
低 | MR | HDDmc | 10.204 | 7 | 28.667 | 0.414 | 0.450 | 10.482 | 7 | 29.167 | 0.577 | 0.509 |
JDDmc | 10.199 | 7 | 28.367 | 0.415 | 0.441 | 10.460 | 7 | 29.133 | 0.582 | 0.514 | ||
DR | HDDmc | 19.536 | 5 | 30.000 | 0.009 | 0.629 | 17.237 | 5 | 30.000 | 0.097 | 0.648 | |
JDDmc | 20.838 | 5 | 30.000 | 0.003 | 0.641 | 18.545 | 5 | 30.000 | 0.068 | 0.663 | ||
D1 | HDDmc | 5.431 | 5 | 9.333 | 0.839 | 0.288 | 5.430 | 5 | 10.300 | 0.750 | 0.303 | |
JDDmc | 5.423 | 5 | 9.333 | 0.841 | 0.293 | 5.418 | 5 | 10.367 | 0.751 | 0.310 | ||
D3 | HDDmc | 8.308 | 7 | 13.833 | 0.612 | 0.396 | 8.319 | 7 | 14.900 | 0.716 | 0.445 | |
JDDmc | 8.315 | 7 | 13.800 | 0.608 | 0.397 | 8.303 | 7 | 14.733 | 0.719 | 0.434 | ||
混合 | MR | HDDmc | 9.762 | 7 | 26.400 | 0.463 | 0.591 | 9.961 | 7 | 27.233 | 0.620 | 0.666 |
JDDmc | 9.765 | 7 | 25.867 | 0.466 | 0.595 | 9.915 | 7 | 27.733 | 0.619 | 0.665 | ||
DR | HDDmc | 16.321 | 5 | 30.000 | 0.042 | 0.720 | 13.902 | 5 | 30.000 | 0.277 | 0.711 | |
JDDmc | 17.570 | 5 | 30.000 | 0.027 | 0.729 | 15.141 | 5 | 30.000 | 0.192 | 0.724 | ||
D1 | HDDmc | 5.368 | 5 | 8.833 | 0.839 | 0.379 | 5.364 | 5 | 10.033 | 0.750 | 0.416 | |
JDDmc | 5.368 | 5 | 9.000 | 0.845 | 0.391 | 5.352 | 5 | 9.700 | 0.750 | 0.418 | ||
D3 | HDDmc | 8.138 | 7 | 13.200 | 0.633 | 0.521 | 8.135 | 7 | 14.467 | 0.722 | 0.585 | |
JDDmc | 8.131 | 7 | 13.233 | 0.629 | 0.530 | 8.125 | 7 | 13.867 | 0.723 | 0.589 |
题目 质量 | 终止 规则 | 诊断 方法 | 简单Q矩阵a | 复杂Q矩阵b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Min | Max | UIR | PMR | M | Min | Max | UIR | PMR | |||
高 | MR | HDDmc | 11.814 | 9 | 29.067 | 0.381 | 0.536 | 12.226 | 9 | 29.000 | 0.381 | 0.536 |
JDDmc | 11.845 | 9 | 28.967 | 0.380 | 0.529 | 12.218 | 9 | 29.400 | 0.380 | 0.529 | ||
DR | HDDmc | 12.628 | 7 | 30.000 | 0.351 | 0.485 | 11.571 | 7 | 30.000 | 0.351 | 0.485 | |
JDDmc | 16.169 | 7 | 30.000 | 0.113 | 0.603 | 14.532 | 7 | 30.000 | 0.113 | 0.603 | ||
D1 | HDDmc | 7.320 | 7 | 11.167 | 0.574 | 0.319 | 7.295 | 7 | 11.900 | 0.574 | 0.319 | |
JDDmc | 7.317 | 7 | 11.300 | 0.576 | 0.316 | 7.287 | 7 | 11.700 | 0.576 | 0.316 | ||
D3 | HDDmc | 9.988 | 9 | 15.767 | 0.493 | 0.440 | 10.015 | 9 | 17.533 | 0.493 | 0.440 | |
JDDmc | 9.984 | 9 | 15.600 | 0.496 | 0.442 | 9.992 | 9 | 16.533 | 0.496 | 0.442 | ||
低 | MR | HDDmc | 12.946 | 9 | 29.900 | 0.307 | 0.273 | 13.599 | 9 | 30.000 | 0.307 | 0.273 |
JDDmc | 12.934 | 9 | 29.867 | 0.308 | 0.274 | 13.463 | 9 | 30.000 | 0.308 | 0.274 | ||
DR | HDDmc | 16.994 | 7 | 30.000 | 0.098 | 0.353 | 15.286 | 7 | 30.000 | 0.098 | 0.353 | |
JDDmc | 21.679 | 7 | 30.000 | 0.014 | 0.457 | 19.653 | 7 | 30.000 | 0.014 | 0.457 | ||
D1 | HDDmc | 7.428 | 7 | 12.000 | 0.572 | 0.141 | 7.434 | 7 | 12.900 | 0.572 | 0.141 | |
JDDmc | 7.436 | 7 | 11.800 | 0.569 | 0.146 | 7.427 | 7 | 12.967 | 0.569 | 0.146 | ||
D3 | HDDmc | 10.332 | 9 | 16.533 | 0.484 | 0.210 | 10.396 | 9 | 17.833 | 0.484 | 0.210 | |
JDDmc | 10.352 | 9 | 16.867 | 0.482 | 0.213 | 10.404 | 9 | 18.367 | 0.482 | 0.213 | ||
混合 | MR | HDDmc | 12.468 | 9 | 29.633 | 0.335 | 0.400 | 12.834 | 9 | 29.833 | 0.335 | 0.400 |
JDDmc | 12.438 | 9 | 29.633 | 0.337 | 0.389 | 12.954 | 9 | 29.967 | 0.337 | 0.389 | ||
DR | HDDmc | 14.683 | 7 | 30.000 | 0.204 | 0.423 | 12.770 | 7 | 30.000 | 0.204 | 0.423 | |
JDDmc | 19.093 | 7 | 30.000 | 0.036 | 0.559 | 16.560 | 7 | 30.000 | 0.036 | 0.559 | ||
D1 | HDDmc | 7.385 | 7 | 11.533 | 0.570 | 0.212 | 7.376 | 7 | 12.733 | 0.570 | 0.212 | |
JDDmc | 7.390 | 7 | 11.533 | 0.573 | 0.210 | 7.367 | 7 | 12.933 | 0.573 | 0.210 | ||
D3 | HDDmc | 10.202 | 9 | 16.233 | 0.486 | 0.314 | 10.198 | 9 | 17.533 | 0.486 | 0.314 | |
JDDmc | 10.179 | 9 | 16.500 | 0.488 | 0.309 | 10.234 | 9 | 17.800 | 0.488 | 0.309 |
表3 六个属性时两种非参方法的分类结果及题库使用情况(多元正态阈值分布)
题目 质量 | 终止 规则 | 诊断 方法 | 简单Q矩阵a | 复杂Q矩阵b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Min | Max | UIR | PMR | M | Min | Max | UIR | PMR | |||
高 | MR | HDDmc | 11.814 | 9 | 29.067 | 0.381 | 0.536 | 12.226 | 9 | 29.000 | 0.381 | 0.536 |
JDDmc | 11.845 | 9 | 28.967 | 0.380 | 0.529 | 12.218 | 9 | 29.400 | 0.380 | 0.529 | ||
DR | HDDmc | 12.628 | 7 | 30.000 | 0.351 | 0.485 | 11.571 | 7 | 30.000 | 0.351 | 0.485 | |
JDDmc | 16.169 | 7 | 30.000 | 0.113 | 0.603 | 14.532 | 7 | 30.000 | 0.113 | 0.603 | ||
D1 | HDDmc | 7.320 | 7 | 11.167 | 0.574 | 0.319 | 7.295 | 7 | 11.900 | 0.574 | 0.319 | |
JDDmc | 7.317 | 7 | 11.300 | 0.576 | 0.316 | 7.287 | 7 | 11.700 | 0.576 | 0.316 | ||
D3 | HDDmc | 9.988 | 9 | 15.767 | 0.493 | 0.440 | 10.015 | 9 | 17.533 | 0.493 | 0.440 | |
JDDmc | 9.984 | 9 | 15.600 | 0.496 | 0.442 | 9.992 | 9 | 16.533 | 0.496 | 0.442 | ||
低 | MR | HDDmc | 12.946 | 9 | 29.900 | 0.307 | 0.273 | 13.599 | 9 | 30.000 | 0.307 | 0.273 |
JDDmc | 12.934 | 9 | 29.867 | 0.308 | 0.274 | 13.463 | 9 | 30.000 | 0.308 | 0.274 | ||
DR | HDDmc | 16.994 | 7 | 30.000 | 0.098 | 0.353 | 15.286 | 7 | 30.000 | 0.098 | 0.353 | |
JDDmc | 21.679 | 7 | 30.000 | 0.014 | 0.457 | 19.653 | 7 | 30.000 | 0.014 | 0.457 | ||
D1 | HDDmc | 7.428 | 7 | 12.000 | 0.572 | 0.141 | 7.434 | 7 | 12.900 | 0.572 | 0.141 | |
JDDmc | 7.436 | 7 | 11.800 | 0.569 | 0.146 | 7.427 | 7 | 12.967 | 0.569 | 0.146 | ||
D3 | HDDmc | 10.332 | 9 | 16.533 | 0.484 | 0.210 | 10.396 | 9 | 17.833 | 0.484 | 0.210 | |
JDDmc | 10.352 | 9 | 16.867 | 0.482 | 0.213 | 10.404 | 9 | 18.367 | 0.482 | 0.213 | ||
混合 | MR | HDDmc | 12.468 | 9 | 29.633 | 0.335 | 0.400 | 12.834 | 9 | 29.833 | 0.335 | 0.400 |
JDDmc | 12.438 | 9 | 29.633 | 0.337 | 0.389 | 12.954 | 9 | 29.967 | 0.337 | 0.389 | ||
DR | HDDmc | 14.683 | 7 | 30.000 | 0.204 | 0.423 | 12.770 | 7 | 30.000 | 0.204 | 0.423 | |
JDDmc | 19.093 | 7 | 30.000 | 0.036 | 0.559 | 16.560 | 7 | 30.000 | 0.036 | 0.559 | ||
D1 | HDDmc | 7.385 | 7 | 11.533 | 0.570 | 0.212 | 7.376 | 7 | 12.733 | 0.570 | 0.212 | |
JDDmc | 7.390 | 7 | 11.533 | 0.573 | 0.210 | 7.367 | 7 | 12.933 | 0.573 | 0.210 | ||
D3 | HDDmc | 10.202 | 9 | 16.233 | 0.486 | 0.314 | 10.198 | 9 | 17.533 | 0.486 | 0.314 | |
JDDmc | 10.179 | 9 | 16.500 | 0.488 | 0.309 | 10.234 | 9 | 17.800 | 0.488 | 0.309 |
[1] |
Bradshaw, L., & Templin, J. (2014). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403-425.
doi: 10.1007/s11336-013-9350-4 pmid: 25205005 |
[2] |
Chang, H.-H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1), 1-20.
doi: 10.1007/s11336-014-9401-5 URL |
[3] |
Chang, Y.-P., Chiu, C.-Y., & Tsai, R.-C. (2019). Nonparametric CAT for CD in educational settings with small samples. Applied Psychological Measurement, 43(7), 543-561.
doi: 10.1177/0146621618813113 URL |
[4] | Chen, P., Li, Z., & Xin, T. (2011). A note on the uniformity of item bank usage in cognitive diagnostic computerized adaptive testing. Studies of Psychology and Behavior, 9(2), 125-132. |
[陈平, 李珍, 辛涛. (2011). 认知诊断计算机化自适应测验的题库使用均匀性初探. 心理与行为研究, 9(2), 125-132.] | |
[5] |
Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632.
doi: 10.1007/s11336-009-9123-2 URL |
[6] |
Chiu, C. Y., & Chang, Y. P. (2021). Advances in CD-CAT: The general nonparametric item selection method. Psychometrika, 86(4), 1039-1057.
doi: 10.1007/s11336-021-09792-z URL |
[7] |
Chiu, C. Y., Douglas, J. A., & Li, X. D. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633-665.
doi: 10.1007/s11336-009-9125-0 URL |
[8] |
Chiu, C. Y., Sun, Y., & Bian, Y. H. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375.
doi: 10.1007/s11336-017-9595-4 URL |
[9] |
de la Torre, J. (2009). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163-183.
doi: 10.1177/0146621608320523 URL |
[10] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[11] | Gao, Y., Zhai, X., Cui, Y., Xin, T., & Bulut, O. (2021). Re-validating a learning progression of buoyancy for middle school students: A longitudinal study. Research in Science Education. Advance online publication. https://doi.org/10.1007/s11165-021-10021-x. |
[12] | Guo, L., Yang, J., & Song, N. Q. (2018). Application of spectral clustering algorithm under various attribute hierarchical structures for cognitive diagnostic assessment. Journal of Psychological Science, 41(3), 735-742. |
[郭磊, 杨静, 宋乃庆. (2018). 谱聚类算法在不同属性层级结构诊断评估中的应用. 心理科学, 41(3), 735-742.] | |
[13] |
Guo, L., Zheng, C., Bian, Y. (2015). Exposure control methods and termination rules in variable-length cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 47(1), 129-140.
doi: 10.3724/SP.J.1041.2015.00129 URL |
[郭磊, 郑蝉金, 边玉芳. (2015). 变长CD-CAT中的曝光控制与终止规则. 心理学报, 47(1), 129-140.] | |
[14] |
Guo, L., Zheng, C., Bian, Y., Song, N., & Xia, L. (2016). New item selection methods in cognitive diagnostic computerized adaptive testing: Combining item discrimination indices. Acta Psychologica Sinica, 48(7), 903-914.
doi: 10.3724/SP.J.1041.2016.00903 URL |
[郭磊, 郑蝉金, 边玉芳, 宋乃庆, 夏凌翔. (2016). 认知诊断计算机化自适应测验中新的选题策略: 结合项目区分度指标. 心理学报, 48(7), 903-914.] | |
[15] |
Guo, L., & Zhou, W. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items. Acta Psychologica Sinica, 53(9), 1032-1043.
doi: 10.3724/SP.J.1041.2021.01032 URL |
[郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法. 心理学报, 53(9), 1032-1043.] | |
[16] | He, M. (2021). Research on nonparametric cognitive diagnosis method and item selection strategy of nonparametric CD-CAT (Unpublished master's thesis). Sichuan Normal University, Chengdu, China. |
[何明霜. (2021). 非参数认知诊断方法与非参数 CD-CAT 选题策略研究 (硕士毕业论文). 四川师范大学, 成都.] | |
[17] |
Hsu, C.-L., Wang, W.-C., & Chen, S.-Y. (2013). Variable- length computerized adaptive testing based on cognitive diagnosis models. Applied Psychological Measurement, 37(7), 563-582.
doi: 10.1177/0146621613488642 URL |
[18] |
Huang, H.-Y. (2018). Effects of item calibration errors on computerized adaptive testing under cognitive diagnosis models. Journal of Classification, 35(3), 437-465.
doi: 10.1007/s00357-018-9265-y URL |
[19] |
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37-50.
doi: 10.1111/j.1469-8137.1912.tb05611.x URL |
[20] |
Kang, C. H., Ren, P., & Zeng, P. F. (2015). Nonparametric cognitive diagnosis: A cluster diagnostic method based on grade response items. Acta Psychologica Sinica, 47(8), 1077-1088.
doi: 10.3724/SP.J.1041.2015.01077 URL |
[康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法:多级评分的聚类分析. 心理学报, 47(8), 1077-1088.] | |
[21] | Kang, C. H., Yang, Y. K., & Zeng, P. F. (2019). Approach to cognitive diagnosis: The Manhattan distance discriminating method. Journal of Psychological Science, 42(2), 455-462. |
[康春花, 杨亚坤, 曾平飞. (2019). 一种混合计分的非参数认知诊断方法:曼哈顿距离判别法. 心理科学, 42(2), 455-462.] | |
[22] |
Kaplan, M., de la Torre, J., & Barrada, J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
doi: 10.1177/0146621614554650 URL |
[23] |
Kosub, S. (2019). A note on the triangle inequality for the Jaccard distance. Pattern Recognition Letters, 120, 36-38.
doi: 10.1016/j.patrec.2018.12.007 |
[24] |
Liu, C., & Cheng, Y. (2018). An application of the support vector machine for attribute-by-attribute classification in cognitive diagnosis. Applied Psychological Measurement, 42(1), 58-72.
doi: 10.1177/0146621617712246 pmid: 29881112 |
[25] |
Liu, C.-W., Andersson, B., & Skrondal, A. (2020). A constrained Metropolis-Hastings Robbins-Monro algorithm for Q matrix estimation in DINA models. Psychometrika, 85(2), 322-357.
doi: 10.1007/s11336-020-09707-4 URL |
[26] |
Liu, H. Y., You, X. F., Wang, W.-Y., Ding, S.-L., & Chang, H.-H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of Classification, 30(2), 152-172.
doi: 10.1007/s00357-013-9128-5 URL |
[27] | Liu, T. (2016). Using distractor information in computerized adaptive testing (Unpublished doctoral dissertation). Beijing Normal University, Beijing. |
[刘拓. (2016). 干扰项信息在计算机化自适应测验中的利用 (博士学位论文). 北京师范大学, 北京.] | |
[28] |
Luo, Z., Li, Y., Yu, X., Gao, C., & Peng, Y. (2015). A simple cognitive diagnosis method based on Q-matrix theory. Acta Psychologica Sinica, 47(2), 264-272.
doi: 10.3724/SP.J.1041.2015.00264 URL |
[罗照盛, 李喻骏, 喻晓锋, 高椿雷, 彭亚风. (2015). 一种基于 Q 矩阵理论朴素的认知诊断方法. 心理学报, 47(2), 264-272.] | |
[29] |
Mao, X. Z., & Xin, T. (2013). A comparison of item selection methods for controlling exposure rate in cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 45(6), 694-703.
doi: 10.3724/SP.J.1041.2013.00694 URL |
[毛秀珍, 辛涛. (2013). 认知诊断CAT中项目曝光控制方法的比较. 心理学报, 45(6), 694-703.] | |
[30] |
Ozaki, K. (2015). DINA models for multiple-choice items with few parameters: Considering incorrect answers. Applied Psychological Measurement, 39(6), 431-447.
doi: 10.1177/0146621615574693 URL |
[31] | Sun, X., Andersson, B., & Xin, T. (2021). A new method to balance measurement accuracy and attribute coverage in cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 45(7-8), 463-476. |
[32] | Sun, X., Liu, Y., Xin, T., & Song, N. (2020). The impact of item calibration error on variable-length cognitive diagnostic computerized adaptive testing. Frontiers in Psychology, 141(11), Article e575141. https://10.3389/fpsyg.2020.575141 |
[33] | Sun, X., Mao, X., Song, N., & Xin, T. (2021). New methods for item exposure control in cognitive diagnostic computerized adaptive testing. Journal of Psychological Science, 44(1), 205-213. |
[孙小坚, 毛秀珍, 宋乃庆, 辛涛. (2021). 定长CD-CAT中两种新的题目曝光控制方法. 心理科学, 44(1), 205-213.] | |
[34] | Sun, X., Wang, Y., Zhang, S., & Xin, T. (2019). New methods to balance attribute coverage for cognitive diagnostic computerized adaptive testing. Journal of Psychological Science, 42(5), 1236-1244. |
[孙小坚, 王钰彤, 张世夷, 辛涛. (2019). 认知诊断计算机自适应测验中平衡属性收敛的新方法. 心理科学, 42(5), 1236-1244.] | |
[35] | Wang, W. Y., Ding, S. L., Song, L. H., Kuang, Z., & Cao, H. Y. (2016). Application of neural networks and support vector machines to cognitive diagnosis. Journal of Psychological Science, 39(4), 777-782. |
[汪文义, 丁树良, 宋丽红, 邝铮, 曹慧媛. (2016). 神经网络和支持向量机在认知诊断中的应用. 心理科学, 39(4), 777-782.] | |
[36] | Xin, T., Le, M., & Guo, Y., & Jiang, Y. (2015). The approach to establishing achievement standard: The learning progressions based on cognition diagnostic. Journal of Educational Studies, 5, 72-79. |
[辛涛, 乐美玲, 郭艳芳, 姜宇. (2015). 学业质量标准的建立途径:基于认知诊断的学习进阶方法. 教育学报, 5, 72-79.] | |
[37] |
Xu, G., Wang, C., & Shang, Z. (2016). On initial item selection in cognitive diagnostic computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 69(3), 291-315.
doi: 10.1111/bmsp.12072 URL |
[38] | Xu, X. L., Chang, H.-H., & Douglas, J. (2003). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the Paper presented at the annual meeting of National Council on Measurement in Education, Montreal, Canada. |
[39] |
Yamaguchi, K. (2020). Variational Bayesian inference for the multiple-choice DINA model. Behaviormetrika, 47(1), 159-187.
doi: 10.1007/s41237-020-00104-w URL |
[40] |
Yang, J., Chang, H.-H., Tao, J., & Shi, N. (2020). Stratified item selection methods in cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 44(5), 346-361.
doi: 10.1177/0146621619893783 URL |
[41] |
Yigit, H. D., Sorrel, M. A., & de la Torre, J. (2019). Computerized adaptive testing for cognitively based multiple-choice data. Applied Psychological Measurement, 43(5), 388-401.
doi: 10.1177/0146621618798665 URL |
[42] | Zhang, S. (2019). Applying npCD-CAT based on MDD to the field of number and algebra (Unpublished master's thesis). Zhejiang Normal University, Jinhua, China. |
[张淑君. (2019). 基于MDD的npCD-CAT研究及其在数与代数领域的应用 (硕士毕业论文). 浙江师范大学, 金华.] | |
[43] |
Zheng, C. J., & Chang, H.-H. (2016). High-efficiency response distribution-based item selection algorithms for short-length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624.
doi: 10.1177/0146621616665196 URL |
[1] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[2] | 郭磊;郑蝉金;边玉芳. 变长CD-CAT中的曝光控制与终止规则[J]. 心理学报, 2015, 47(1): 129-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||