心理学报 ›› 2023, Vol. 55 ›› Issue (10): 1712-1728.doi: 10.3724/SP.J.1041.2023.01712
收稿日期:
2023-03-02
发布日期:
2023-07-26
出版日期:
2023-10-25
通讯作者:
刘彦楼, E-mail: 基金资助:
LIU Yanlou1,2(), CHEN Qishan3,4, WANG Yiming2, JIANG Xiaotong2
Received:
2023-03-02
Online:
2023-07-26
Published:
2023-10-25
摘要:
心理学研究中, 不恰当的模型参数估计框架或收敛准则严重影响模型参数点估计的可靠性, 进而影响到研究结论的可靠性。本研究提出了基于MLE-EM的CDM模型参数估计新框架, 以及新收敛判断方法。通过模拟研究与实证数据分析的方式, 探索了新参数估计框架和新收敛判断方法的表现, 并与已有模型参数估计框架及收敛判断方法进行了比较。结果显示, 新的模型参数估计框架及收敛准则的表现优于已有的模型参数估计框架及收敛准则, 能有效提高模型参数点估计的可靠性。
中图分类号:
刘彦楼, 陈启山, 王一鸣, 姜晓彤. (2023). 模型参数点估计的可靠性:以CDM为例. 心理学报, 55(10), 1712-1728.
LIU Yanlou, CHEN Qishan, WANG Yiming, JIANG Xiaotong. (2023). On the reliability of point estimation of model parameters: Taking cognitive diagnostic models as an example. Acta Psychologica Sinica, 55(10), 1712-1728.
收敛准则 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gdp4 | 0 | −4948.024 | −4847.235 | −5054.561 | 34.436 | 0.540 | 180 | 848 | 62 | |
Gdp6 | 240 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.181 | 474 | 5752 | 61 | |
Gdp8 | 280 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 2.068 | 901 | 32057 | 61 | |
Gip4 | 0 | −4948.027 | −4847.234 | −5054.561 | 34.438 | 0.507 | 164 | 730 | 59 | |
Gip6 | 232 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.131 | 452 | 5680 | 61 | |
Gip8 | 279 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.847 | 863 | 28030 | 61 | |
Gll4 | 0 | −4948.024 | −4847.229 | −5054.558 | 34.438 | 0.520 | 169 | 844 | 60 | |
Gll6 | 48 | −4948.017 | −4847.226 | −5054.557 | 34.431 | 0.858 | 329 | 1819 | 61 | |
Gll8 | 273 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.217 | 531 | 6760 | 61 | |
Gcomp4 | 0 | −4948.022 | −4847.229 | −5054.558 | 34.436 | 0.566 | 190 | 848 | 62 | |
Gcomp6 | 240 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.189 | 478 | 5752 | 61 | |
Gcomp8 | 281 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 2.062 | 905 | 32057 | 61 | |
mdp4 | 0 | −4948.021 | −4847.234 | −5054.560 | 34.436 | 0.254 | 179 | 877 | 59 | |
mdp6 | 360 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.461 | 479 | 5803 | 59 | |
mdp8 | 498 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.735 | 953 | 32053 | 59 | |
mip4 | 0 | −4948.022 | −4847.234 | −5054.560 | 34.436 | 0.241 | 165 | 774 | 58 | |
mip6 | 346 | −4948.012 | −4847.226 | −5054.556 | 34.441 | 0.432 | 453 | 5730 | 59 | |
mip8 | 496 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.690 | 912 | 28026 | 59 | |
mll4 | 0 | −4948.021 | −4847.228 | −5054.557 | 34.437 | 0.240 | 168 | 923 | 57 | |
mll6 | 69 | −4948.018 | −4847.226 | −5054.556 | 34.435 | 0.349 | 335 | 1978 | 59 | |
mll8 | 485 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.495 | 585 | 6756 | 59 | |
mcomp4 | 0 | −4948.019 | −4847.228 | −5054.557 | 34.435 | 0.258 | 189 | 923 | 59 | |
mcomp6 | 363 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.462 | 485 | 5803 | 59 | |
mcomp8 | 500 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.734 | 958 | 32053 | 59 |
表1 饱和CDM生成数据, J = 16, N = 500条件下的模拟结果
收敛准则 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gdp4 | 0 | −4948.024 | −4847.235 | −5054.561 | 34.436 | 0.540 | 180 | 848 | 62 | |
Gdp6 | 240 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.181 | 474 | 5752 | 61 | |
Gdp8 | 280 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 2.068 | 901 | 32057 | 61 | |
Gip4 | 0 | −4948.027 | −4847.234 | −5054.561 | 34.438 | 0.507 | 164 | 730 | 59 | |
Gip6 | 232 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.131 | 452 | 5680 | 61 | |
Gip8 | 279 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.847 | 863 | 28030 | 61 | |
Gll4 | 0 | −4948.024 | −4847.229 | −5054.558 | 34.438 | 0.520 | 169 | 844 | 60 | |
Gll6 | 48 | −4948.017 | −4847.226 | −5054.557 | 34.431 | 0.858 | 329 | 1819 | 61 | |
Gll8 | 273 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.217 | 531 | 6760 | 61 | |
Gcomp4 | 0 | −4948.022 | −4847.229 | −5054.558 | 34.436 | 0.566 | 190 | 848 | 62 | |
Gcomp6 | 240 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 1.189 | 478 | 5752 | 61 | |
Gcomp8 | 281 | −4948.011 | −4847.226 | −5054.557 | 34.437 | 2.062 | 905 | 32057 | 61 | |
mdp4 | 0 | −4948.021 | −4847.234 | −5054.560 | 34.436 | 0.254 | 179 | 877 | 59 | |
mdp6 | 360 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.461 | 479 | 5803 | 59 | |
mdp8 | 498 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.735 | 953 | 32053 | 59 | |
mip4 | 0 | −4948.022 | −4847.234 | −5054.560 | 34.436 | 0.241 | 165 | 774 | 58 | |
mip6 | 346 | −4948.012 | −4847.226 | −5054.556 | 34.441 | 0.432 | 453 | 5730 | 59 | |
mip8 | 496 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.690 | 912 | 28026 | 59 | |
mll4 | 0 | −4948.021 | −4847.228 | −5054.557 | 34.437 | 0.240 | 168 | 923 | 57 | |
mll6 | 69 | −4948.018 | −4847.226 | −5054.556 | 34.435 | 0.349 | 335 | 1978 | 59 | |
mll8 | 485 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.495 | 585 | 6756 | 59 | |
mcomp4 | 0 | −4948.019 | −4847.228 | −5054.557 | 34.435 | 0.258 | 189 | 923 | 59 | |
mcomp6 | 363 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.462 | 485 | 5803 | 59 | |
mcomp8 | 500 | −4948.008 | −4847.226 | −5054.556 | 34.437 | 0.734 | 958 | 32053 | 59 |
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1000 | Gdp6 | 457 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.057 | 291 | 1924 | 6 |
Gdp8 | 487 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.660 | 508 | 6609 | 6 | |
Gll6 | 117 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.831 | 217 | 713 | 6 | |
Gll8 | 481 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.107 | 324 | 2512 | 6 | |
Gcomp6 | 457 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.066 | 295 | 1924 | 6 | |
Gcomp8 | 487 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.666 | 511 | 6609 | 6 | |
mdp6 | 460 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.468 | 288 | 1950 | 6 | |
mdp8 | 499 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.726 | 503 | 6628 | 6 | |
mll6 | 104 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.362 | 213 | 795 | 6 | |
mll8 | 494 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.489 | 323 | 2509 | 6 | |
mcomp6 | 461 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.471 | 291 | 1950 | 6 | |
mcomp8 | 500 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.728 | 507 | 6628 | 6 | |
4000 | Gdp6 | 469 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.588 | 223 | 321 | 0 |
Gdp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 3.840 | 354 | 506 | 0 | |
Gll6 | 200 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.334 | 195 | 282 | 0 | |
Gll8 | 499 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.947 | 261 | 376 | 0 | |
Gcomp6 | 475 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.596 | 224 | 322 | 0 | |
Gcomp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 3.825 | 356 | 511 | 0 | |
mdp6 | 463 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.612 | 209 | 312 | 0 | |
mdp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.376 | 341 | 490 | 0 | |
mll6 | 177 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.443 | 182 | 257 | 0 | |
mll8 | 499 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.774 | 247 | 352 | 0 | |
mcomp6 | 471 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.619 | 211 | 312 | 0 | |
mcomp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.372 | 342 | 490 | 0 |
表2 饱和CDM生成数据, J = 16, N = 1000及4000条件下的模拟结果
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1000 | Gdp6 | 457 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.057 | 291 | 1924 | 6 |
Gdp8 | 487 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.660 | 508 | 6609 | 6 | |
Gll6 | 117 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.831 | 217 | 713 | 6 | |
Gll8 | 481 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.107 | 324 | 2512 | 6 | |
Gcomp6 | 457 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.066 | 295 | 1924 | 6 | |
Gcomp8 | 487 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 1.666 | 511 | 6609 | 6 | |
mdp6 | 460 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.468 | 288 | 1950 | 6 | |
mdp8 | 499 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.726 | 503 | 6628 | 6 | |
mll6 | 104 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.362 | 213 | 795 | 6 | |
mll8 | 494 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.489 | 323 | 2509 | 6 | |
mcomp6 | 461 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.471 | 291 | 1950 | 6 | |
mcomp8 | 500 | −9929.201 | −9801.836 | −10105.797 | 49.742 | 0.728 | 507 | 6628 | 6 | |
4000 | Gdp6 | 469 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.588 | 223 | 321 | 0 |
Gdp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 3.840 | 354 | 506 | 0 | |
Gll6 | 200 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.334 | 195 | 282 | 0 | |
Gll8 | 499 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.947 | 261 | 376 | 0 | |
Gcomp6 | 475 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.596 | 224 | 322 | 0 | |
Gcomp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 3.825 | 356 | 511 | 0 | |
mdp6 | 463 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.612 | 209 | 312 | 0 | |
mdp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.376 | 341 | 490 | 0 | |
mll6 | 177 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.443 | 182 | 257 | 0 | |
mll8 | 499 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.774 | 247 | 352 | 0 | |
mcomp6 | 471 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 1.619 | 211 | 312 | 0 | |
mcomp8 | 500 | −39831.617 | −39539.020 | −40187.183 | 102.360 | 2.372 | 342 | 490 | 0 |
N | 收敛准则 | ||||||||
---|---|---|---|---|---|---|---|---|---|
500 | Gdp8 | 485 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.551 | 77 | 311 |
Gll8 | 484 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.452 | 53 | 328 | |
Gcomp8 | 485 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.552 | 77 | 328 | |
mdp8 | 500 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.235 | 77 | 619 | |
mll8 | 499 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.203 | 54 | 609 | |
mcomp6 | 492 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.205 | 52 | 320 | |
mcomp8 | 500 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.235 | 77 | 619 | |
1000 | Gdp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.682 | 65 | 95 |
Gll8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.574 | 47 | 66 | |
Gcomp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.682 | 65 | 95 | |
mdp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.315 | 64 | 95 | |
mll8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.266 | 46 | 66 | |
mcomp6 | 498 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.263 | 44 | 64 | |
mcomp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.315 | 64 | 95 | |
4000 | Gdp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.998 | 60 | 71 |
Gll8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.811 | 48 | 55 | |
Gcomp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.993 | 60 | 71 | |
mdp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.463 | 58 | 72 | |
mll8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.210 | 46 | 56 | |
mcomp6 | 489 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.108 | 39 | 50 | |
mcomp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.457 | 58 | 72 |
表3 饱和CDM生成数据, J = 32条件下的模拟结果
N | 收敛准则 | ||||||||
---|---|---|---|---|---|---|---|---|---|
500 | Gdp8 | 485 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.551 | 77 | 311 |
Gll8 | 484 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.452 | 53 | 328 | |
Gcomp8 | 485 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.552 | 77 | 328 | |
mdp8 | 500 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.235 | 77 | 619 | |
mll8 | 499 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.203 | 54 | 609 | |
mcomp6 | 492 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.205 | 52 | 320 | |
mcomp8 | 500 | −9334.716 | −9163.342 | −9521.124 | 61.640 | 0.235 | 77 | 619 | |
1000 | Gdp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.682 | 65 | 95 |
Gll8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.574 | 47 | 66 | |
Gcomp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.682 | 65 | 95 | |
mdp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.315 | 64 | 95 | |
mll8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.266 | 46 | 66 | |
mcomp6 | 498 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.263 | 44 | 64 | |
mcomp8 | 500 | −18731.384 | −18516.735 | −19016.929 | 93.430 | 0.315 | 64 | 95 | |
4000 | Gdp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.998 | 60 | 71 |
Gll8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.811 | 48 | 55 | |
Gcomp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.993 | 60 | 71 | |
mdp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.463 | 58 | 72 | |
mll8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.210 | 46 | 56 | |
mcomp6 | 489 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.108 | 39 | 50 | |
mcomp8 | 500 | −75137.975 | −74638.007 | −75645.526 | 185.720 | 1.457 | 58 | 72 |
收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Gdp4 | 1 | −4775.050 | −4640.212 | −4885.902 | 39.080 | 0.560 | 184 | 870 | 585 |
Gdp6 | 22 | −4775.034 | −4640.210 | −4885.901 | 39.076 | 1.276 | 500 | 5131 | 589 |
Gdp8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.175 | 937 | 23818 | 591 |
Gip4 | 1 | −4775.051 | −4640.212 | −4885.904 | 39.081 | 0.543 | 176 | 795 | 585 |
Gip6 | 21 | −4775.034 | −4640.210 | −4885.901 | 39.075 | 1.231 | 485 | 5141 | 589 |
Gip8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.110 | 922 | 23818 | 591 |
Gll4 | 0 | −4775.048 | −4640.214 | −4885.902 | 39.080 | 0.516 | 161 | 714 | 584 |
Gll6 | 12 | −4775.036 | −4640.210 | −4885.901 | 39.074 | 0.833 | 308 | 1461 | 588 |
Gll8 | 25 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 1.284 | 535 | 6486 | 589 |
Gcomp4 | 1 | −4775.048 | −4640.212 | −4885.902 | 39.080 | 0.574 | 189 | 870 | 588 |
Gcomp6 | 22 | −4775.034 | −4640.210 | −4885.901 | 39.076 | 1.279 | 501 | 5141 | 589 |
Gcomp8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.179 | 939 | 23818 | 591 |
mdp4 | 4 | −4774.975 | −4639.179 | −4885.899 | 39.103 | 0.221 | 185 | 739 | 486 |
mdp6 | 350 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.403 | 475 | 4339 | 484 |
mdp8 | 469 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.686 | 931 | 14029 | 483 |
mip4 | 4 | −4774.975 | −4639.179 | −4885.901 | 39.103 | 0.214 | 179 | 735 | 490 |
mip6 | 343 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.387 | 464 | 4303 | 484 |
mip8 | 469 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.647 | 916 | 14029 | 483 |
mll4 | 0 | −4774.980 | −4639.184 | −4885.898 | 39.102 | 0.201 | 161 | 910 | 473 |
mll6 | 72 | −4774.969 | −4639.178 | −4885.898 | 39.100 | 0.292 | 312 | 1471 | 482 |
mll8 | 458 | −4774.965 | −4639.178 | −4885.898 | 39.101 | 0.431 | 558 | 5066 | 486 |
mcomp4 | 4 | −4774.974 | −4639.179 | −4885.898 | 39.103 | 0.223 | 191 | 910 | 481 |
mcomp6 | 351 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.404 | 479 | 4339 | 484 |
mcomp8 | 473 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.684 | 936 | 14029 | 483 |
表4 HCDM生成数据, J = 16, N = 500条件下的模拟结果
收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Gdp4 | 1 | −4775.050 | −4640.212 | −4885.902 | 39.080 | 0.560 | 184 | 870 | 585 |
Gdp6 | 22 | −4775.034 | −4640.210 | −4885.901 | 39.076 | 1.276 | 500 | 5131 | 589 |
Gdp8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.175 | 937 | 23818 | 591 |
Gip4 | 1 | −4775.051 | −4640.212 | −4885.904 | 39.081 | 0.543 | 176 | 795 | 585 |
Gip6 | 21 | −4775.034 | −4640.210 | −4885.901 | 39.075 | 1.231 | 485 | 5141 | 589 |
Gip8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.110 | 922 | 23818 | 591 |
Gll4 | 0 | −4775.048 | −4640.214 | −4885.902 | 39.080 | 0.516 | 161 | 714 | 584 |
Gll6 | 12 | −4775.036 | −4640.210 | −4885.901 | 39.074 | 0.833 | 308 | 1461 | 588 |
Gll8 | 25 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 1.284 | 535 | 6486 | 589 |
Gcomp4 | 1 | −4775.048 | −4640.212 | −4885.902 | 39.080 | 0.574 | 189 | 870 | 588 |
Gcomp6 | 22 | −4775.034 | −4640.210 | −4885.901 | 39.076 | 1.279 | 501 | 5141 | 589 |
Gcomp8 | 27 | −4775.033 | −4640.210 | −4885.901 | 39.075 | 2.179 | 939 | 23818 | 591 |
mdp4 | 4 | −4774.975 | −4639.179 | −4885.899 | 39.103 | 0.221 | 185 | 739 | 486 |
mdp6 | 350 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.403 | 475 | 4339 | 484 |
mdp8 | 469 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.686 | 931 | 14029 | 483 |
mip4 | 4 | −4774.975 | −4639.179 | −4885.901 | 39.103 | 0.214 | 179 | 735 | 490 |
mip6 | 343 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.387 | 464 | 4303 | 484 |
mip8 | 469 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.647 | 916 | 14029 | 483 |
mll4 | 0 | −4774.980 | −4639.184 | −4885.898 | 39.102 | 0.201 | 161 | 910 | 473 |
mll6 | 72 | −4774.969 | −4639.178 | −4885.898 | 39.100 | 0.292 | 312 | 1471 | 482 |
mll8 | 458 | −4774.965 | −4639.178 | −4885.898 | 39.101 | 0.431 | 558 | 5066 | 486 |
mcomp4 | 4 | −4774.974 | −4639.179 | −4885.898 | 39.103 | 0.223 | 191 | 910 | 481 |
mcomp6 | 351 | −4774.968 | −4639.178 | −4885.898 | 39.100 | 0.404 | 479 | 4339 | 484 |
mcomp8 | 473 | −4774.964 | −4639.178 | −4885.898 | 39.101 | 0.684 | 936 | 14029 | 483 |
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1000 | Gdp6 | 9 | −9577.383 | −9408.520 | −9787.279 | 56.515 | 1.547 | 450 | 5095 | 491 |
Gdp8 | 12 | −9577.379 | −9408.520 | −9787.279 | 56.515 | 2.667 | 843 | 17947 | 494 | |
Gll6 | 3 | −9577.389 | −9408.520 | −9787.279 | 56.510 | 1.054 | 285 | 1685 | 491 | |
Gll8 | 11 | −9577.385 | −9408.520 | −9787.279 | 56.509 | 1.558 | 476 | 5786 | 495 | |
Gcomp6 | 9 | −9577.383 | −9408.520 | −9787.279 | 56.515 | 1.546 | 451 | 5095 | 491 | |
Gcomp8 | 12 | −9577.379 | −9408.520 | −9787.279 | 56.515 | 2.672 | 844 | 17947 | 494 | |
mdp6 | 366 | −9577.314 | −9408.518 | −9787.279 | 56.508 | 0.635 | 467 | 5512 | 416 | |
mdp8 | 484 | −9577.313 | −9408.518 | −9787.279 | 56.508 | 1.171 | 969 | 18411 | 411 | |
mll6 | 78 | −9577.319 | −9408.518 | −9787.279 | 56.503 | 0.410 | 285 | 1686 | 409 | |
mll8 | 470 | −9577.319 | −9408.518 | −9787.279 | 56.503 | 0.647 | 510 | 5843 | 415 | |
mcomp6 | 370 | −9577.314 | −9408.518 | −9787.279 | 56.508 | 0.636 | 469 | 5512 | 416 | |
mcomp8 | 488 | −9577.313 | −9408.518 | −9787.279 | 56.508 | 1.173 | 972 | 18411 | 411 | |
4000 | Gdp6 | 14 | −38423.227 | −38076.036 | −38778.783 | 117.696 | 6.011 | 604 | 3920 | 424 |
Gdp8 | 23 | −38423.225 | −38076.036 | −38778.783 | 117.696 | 10.439 | 1132 | 12509 | 427 | |
Gll6 | 5 | −38423.228 | −38076.036 | −38778.783 | 117.696 | 3.937 | 375 | 2066 | 425 | |
Gll8 | 22 | −38423.226 | −38076.036 | −38778.783 | 117.697 | 6.492 | 698 | 4557 | 425 | |
Gcomp6 | 14 | −38423.227 | −38076.036 | −38778.783 | 117.696 | 6.082 | 612 | 3920 | 425 | |
Gcomp8 | 23 | −38423.225 | −38076.036 | −38778.783 | 117.696 | 10.473 | 1141 | 12509 | 427 | |
mdp6 | 276 | −38423.146 | −38076.034 | −38778.782 | 117.698 | 3.437 | 595 | 3957 | 356 | |
mdp8 | 473 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 6.393 | 1233 | 12714 | 355 | |
mll6 | 28 | −38423.146 | −38076.034 | −38778.782 | 117.697 | 2.253 | 374 | 2076 | 357 | |
mll8 | 460 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 3.831 | 733 | 4569 | 355 | |
mcomp6 | 276 | −38423.146 | −38076.034 | −38778.782 | 117.698 | 3.472 | 602 | 3957 | 356 | |
mcomp8 | 478 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 6.424 | 1241 | 12714 | 355 |
表5 HCDM生成数据, J = 16, N = 1000及4000条件下的模拟结果
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1000 | Gdp6 | 9 | −9577.383 | −9408.520 | −9787.279 | 56.515 | 1.547 | 450 | 5095 | 491 |
Gdp8 | 12 | −9577.379 | −9408.520 | −9787.279 | 56.515 | 2.667 | 843 | 17947 | 494 | |
Gll6 | 3 | −9577.389 | −9408.520 | −9787.279 | 56.510 | 1.054 | 285 | 1685 | 491 | |
Gll8 | 11 | −9577.385 | −9408.520 | −9787.279 | 56.509 | 1.558 | 476 | 5786 | 495 | |
Gcomp6 | 9 | −9577.383 | −9408.520 | −9787.279 | 56.515 | 1.546 | 451 | 5095 | 491 | |
Gcomp8 | 12 | −9577.379 | −9408.520 | −9787.279 | 56.515 | 2.672 | 844 | 17947 | 494 | |
mdp6 | 366 | −9577.314 | −9408.518 | −9787.279 | 56.508 | 0.635 | 467 | 5512 | 416 | |
mdp8 | 484 | −9577.313 | −9408.518 | −9787.279 | 56.508 | 1.171 | 969 | 18411 | 411 | |
mll6 | 78 | −9577.319 | −9408.518 | −9787.279 | 56.503 | 0.410 | 285 | 1686 | 409 | |
mll8 | 470 | −9577.319 | −9408.518 | −9787.279 | 56.503 | 0.647 | 510 | 5843 | 415 | |
mcomp6 | 370 | −9577.314 | −9408.518 | −9787.279 | 56.508 | 0.636 | 469 | 5512 | 416 | |
mcomp8 | 488 | −9577.313 | −9408.518 | −9787.279 | 56.508 | 1.173 | 972 | 18411 | 411 | |
4000 | Gdp6 | 14 | −38423.227 | −38076.036 | −38778.783 | 117.696 | 6.011 | 604 | 3920 | 424 |
Gdp8 | 23 | −38423.225 | −38076.036 | −38778.783 | 117.696 | 10.439 | 1132 | 12509 | 427 | |
Gll6 | 5 | −38423.228 | −38076.036 | −38778.783 | 117.696 | 3.937 | 375 | 2066 | 425 | |
Gll8 | 22 | −38423.226 | −38076.036 | −38778.783 | 117.697 | 6.492 | 698 | 4557 | 425 | |
Gcomp6 | 14 | −38423.227 | −38076.036 | −38778.783 | 117.696 | 6.082 | 612 | 3920 | 425 | |
Gcomp8 | 23 | −38423.225 | −38076.036 | −38778.783 | 117.696 | 10.473 | 1141 | 12509 | 427 | |
mdp6 | 276 | −38423.146 | −38076.034 | −38778.782 | 117.698 | 3.437 | 595 | 3957 | 356 | |
mdp8 | 473 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 6.393 | 1233 | 12714 | 355 | |
mll6 | 28 | −38423.146 | −38076.034 | −38778.782 | 117.697 | 2.253 | 374 | 2076 | 357 | |
mll8 | 460 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 3.831 | 733 | 4569 | 355 | |
mcomp6 | 276 | −38423.146 | −38076.034 | −38778.782 | 117.698 | 3.472 | 602 | 3957 | 356 | |
mcomp8 | 478 | −38423.145 | −38076.034 | −38778.782 | 117.698 | 6.424 | 1241 | 12714 | 355 |
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 | Gcomp8 | 83 | −8944.542 | −8746.172 | −9101.048 | 63.686 | 0.823 | 143 | 4521 | 1072 |
mdp8 | 416 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.309 | 162 | 3678 | 936 | |
mll8 | 417 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.241 | 109 | 1701 | 916 | |
mcomp6 | 390 | −8944.531 | −8746.349 | −9100.836 | 63.713 | 0.240 | 101 | 1575 | 921 | |
mcomp8 | 417 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.310 | 163 | 3678 | 936 | |
1000 | Gcomp8 | 44 | −17941.473 | −17692.040 | −18203.752 | 96.770 | 1.375 | 179 | 6530 | 998 |
mdp8 | 456 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.607 | 218 | 12877 | 810 | |
mll8 | 452 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.411 | 124 | 1840 | 805 | |
mcomp6 | 408 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.420 | 115 | 3035 | 809 | |
mcomp8 | 456 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.610 | 219 | 12877 | 810 | |
4000 | Gcomp8 | 51 | −71973.595 | −71443.652 | −72679.347 | 198.161 | 7.854 | 278 | 7908 | 913 |
mdp8 | 443 | −71973.490 | −71443.649 | −72679.344 | 198.184 | 5.795 | 299 | 6037 | 714 | |
mll8 | 443 | −71973.494 | −71443.649 | −72679.344 | 198.185 | 3.729 | 191 | 1799 | 706 | |
mcomp6 | 373 | −71973.496 | −71443.649 | −72679.344 | 198.184 | 3.470 | 164 | 1833 | 717 | |
mcomp8 | 449 | −71973.490 | −71443.649 | −72679.344 | 198.184 | 5.896 | 303 | 6037 | 714 |
表6 HCDM生成数据, J = 32条件下的模拟结果
N | 收敛准则 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 | Gcomp8 | 83 | −8944.542 | −8746.172 | −9101.048 | 63.686 | 0.823 | 143 | 4521 | 1072 |
mdp8 | 416 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.309 | 162 | 3678 | 936 | |
mll8 | 417 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.241 | 109 | 1701 | 916 | |
mcomp6 | 390 | −8944.531 | −8746.349 | −9100.836 | 63.713 | 0.240 | 101 | 1575 | 921 | |
mcomp8 | 417 | −8944.529 | −8746.349 | −9100.836 | 63.714 | 0.310 | 163 | 3678 | 936 | |
1000 | Gcomp8 | 44 | −17941.473 | −17692.040 | −18203.752 | 96.770 | 1.375 | 179 | 6530 | 998 |
mdp8 | 456 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.607 | 218 | 12877 | 810 | |
mll8 | 452 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.411 | 124 | 1840 | 805 | |
mcomp6 | 408 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.420 | 115 | 3035 | 809 | |
mcomp8 | 456 | −17941.322 | −17692.038 | −18205.384 | 96.780 | 0.610 | 219 | 12877 | 810 | |
4000 | Gcomp8 | 51 | −71973.595 | −71443.652 | −72679.347 | 198.161 | 7.854 | 278 | 7908 | 913 |
mdp8 | 443 | −71973.490 | −71443.649 | −72679.344 | 198.184 | 5.795 | 299 | 6037 | 714 | |
mll8 | 443 | −71973.494 | −71443.649 | −72679.344 | 198.185 | 3.729 | 191 | 1799 | 706 | |
mcomp6 | 373 | −71973.496 | −71443.649 | −72679.344 | 198.184 | 3.470 | 164 | 1833 | 717 | |
mcomp8 | 449 | −71973.490 | −71443.649 | −72679.344 | 198.184 | 5.896 | 303 | 6037 | 714 |
GDINA框架 | mCDM框架 | ||||||||
---|---|---|---|---|---|---|---|---|---|
收敛准则 | LL | t | Itr | Cov | LL | t | Itr | ||
Gdp4 | −14307.9718 | 1.040 | 133 | 4 | mdp4 | −14248.5465 | 0.470 | 64 | 1 |
Gdp6 | −14307.9717 | 1.328 | 190 | 4 | mdp6 | −14248.5463 | 0.718 | 111 | 1 |
Gdp8 | −14307.9717 | 1.686 | 247 | 4 | mdp8 | −14248.5463 | 0.975 | 158 | 0 |
Gip4 | −14307.9719 | 0.914 | 123 | 4 | mip4 | −14248.5469 | 0.423 | 58 | 0 |
Gip6 | −14307.9717 | 1.299 | 181 | 4 | mip6 | −14248.5463 | 0.670 | 105 | 1 |
Gip8 | −14307.9717 | 1.631 | 238 | 4 | mip8 | −14248.5463 | 0.925 | 152 | 1 |
Gll4 | −14307.9720 | 0.891 | 119 | 4 | mll4 | −14248.5465 | 0.449 | 63 | 3 |
Gll6 | −14307.9717 | 1.128 | 148 | 4 | mll6 | −14248.5463 | 0.570 | 87 | 1 |
Gll8 | −14307.9717 | 1.245 | 177 | 4 | mll8 | −14248.5463 | 0.698 | 110 | 2 |
Grl4 | −14351.6261 | 0.264 | 20 | 4 | mrl4 | −14257.7213 | 0.168 | 13 | 0 |
Grl6 | −14308.0450 | 0.448 | 47 | 4 | mrl6 | −14248.6033 | 0.289 | 35 | 1 |
Grl8 | −14307.9725 | 0.856 | 111 | 4 | mrl8 | −14248.5469 | 0.415 | 58 | 0 |
Gcomp4 | −14307.9718 | 1.040 | 133 | 4 | mcomp4 | −14248.5465 | 0.470 | 64 | 1 |
Gcomp6 | −14307.9717 | 1.328 | 190 | 4 | mcomp6 | −14248.5463 | 0.718 | 111 | 1 |
Gcomp8 | −14307.9717 | 1.686 | 247 | 4 | mcomp8 | −14248.5463 | 0.975 | 158 | 0 |
表7 实证数据分析结果
GDINA框架 | mCDM框架 | ||||||||
---|---|---|---|---|---|---|---|---|---|
收敛准则 | LL | t | Itr | Cov | LL | t | Itr | ||
Gdp4 | −14307.9718 | 1.040 | 133 | 4 | mdp4 | −14248.5465 | 0.470 | 64 | 1 |
Gdp6 | −14307.9717 | 1.328 | 190 | 4 | mdp6 | −14248.5463 | 0.718 | 111 | 1 |
Gdp8 | −14307.9717 | 1.686 | 247 | 4 | mdp8 | −14248.5463 | 0.975 | 158 | 0 |
Gip4 | −14307.9719 | 0.914 | 123 | 4 | mip4 | −14248.5469 | 0.423 | 58 | 0 |
Gip6 | −14307.9717 | 1.299 | 181 | 4 | mip6 | −14248.5463 | 0.670 | 105 | 1 |
Gip8 | −14307.9717 | 1.631 | 238 | 4 | mip8 | −14248.5463 | 0.925 | 152 | 1 |
Gll4 | −14307.9720 | 0.891 | 119 | 4 | mll4 | −14248.5465 | 0.449 | 63 | 3 |
Gll6 | −14307.9717 | 1.128 | 148 | 4 | mll6 | −14248.5463 | 0.570 | 87 | 1 |
Gll8 | −14307.9717 | 1.245 | 177 | 4 | mll8 | −14248.5463 | 0.698 | 110 | 2 |
Grl4 | −14351.6261 | 0.264 | 20 | 4 | mrl4 | −14257.7213 | 0.168 | 13 | 0 |
Grl6 | −14308.0450 | 0.448 | 47 | 4 | mrl6 | −14248.6033 | 0.289 | 35 | 1 |
Grl8 | −14307.9725 | 0.856 | 111 | 4 | mrl8 | −14248.5469 | 0.415 | 58 | 0 |
Gcomp4 | −14307.9718 | 1.040 | 133 | 4 | mcomp4 | −14248.5465 | 0.470 | 64 | 1 |
Gcomp6 | −14307.9717 | 1.328 | 190 | 4 | mcomp6 | −14248.5463 | 0.718 | 111 | 1 |
Gcomp8 | −14307.9717 | 1.686 | 247 | 4 | mcomp8 | −14248.5463 | 0.975 | 158 | 0 |
[1] | American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). Washington. |
[2] |
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452-454.
doi: 10.1038/533452a URL |
[3] |
Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer research. Nature, 483 (7391), 531-533.
doi: 10.1038/483531a |
[4] |
Chiu, C. Y., Köhn, H. F., & Ma, W. (2023). Commentary on “Extending the Basic Local Independence Model to Polytomous Data” by Stefanutti, de Chiusole, Anselmi, and Spoto. Psychometrika, 88(2), 656-671.
doi: 10.1007/s11336-022-09873-7 |
[5] |
DeCarlo, T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-Matrix. Applied Psychological Measurement, 35(1), 8-26.
doi: 10.1177/0146621610377081 URL |
[6] | DeCarlo, T. (2019). Insights from reparameterized DINA and beyond. In M. von Davier & Y.-S. Lee (Eds.). Handbook of diagnostic classification models (pp. 549-572). Springer. |
[7] | de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. |
[8] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[9] |
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.
doi: 10.1111/rssb.1977.39.issue-1 URL |
[10] | Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Cambridge University Press. |
[11] | George, A. C., Robitzsch, A., Kiefer, T., Groß, J., & Ünlü, A. (2016). The R package CDM for cognitive diagnosis models. Journal of Statistical Software, 74(2), 1-24. |
[12] | Gu, Y., & Xu, G. (2019). Learning attribute patterns in high-dimensional structured latent attribute models. Journal of Machine Learning Research, 20(115), 1-58. |
[13] | Gu, Y., & Xu, G. (2020). Partial identifiability of restricted latent class models. The Annals of Statistics, 48(4), 2082-2107. |
[14] |
Hu, C., Wang, F., Guo, J., Song, M., Sui, J., & Peng. K. 2014). The replication crisis in psychological research. Advances in Psychological Science, 24(9), 1504-1518.
doi: 10.3724/SP.J.1042.2016.01504 URL |
[胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518.]
doi: 10.3724/SP.J.1042.2016.01504 |
|
[15] |
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.
doi: 10.1371/journal.pmed.0020124 pmid: 16060722 |
[16] |
Ioannidis, J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology, 19(5), 640-648.
doi: 10.1097/EDE.0b013e31818131e7 pmid: 18633328 |
[17] | Khorramdel, L., Shin, H. J., & von Davier, M. (2019). GDM software mdltm Including parallel EM algorithm. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models (pp. 603-628). Springer. |
[18] |
Liu, R. (2018). Misspecification of attribute structure in diagnostic measurement. Educational and psychological measurement, 78(4), 605-634.
doi: 10.1177/0013164417702458 pmid: 30147119 |
[19] |
Liu, Y. (2022). Standard errors and confidence intervals for cognitive diagnostic models: Parallel bootstrap methods. Acta Psychologica Sinica, 54(6), 703-724.
doi: 10.3724/SP.J.1041.2022.00703 |
[刘彦楼. (2022). 认知诊断模型的标准误与置信区间估计:并行自助法. 心理学报, 54(6), 703-724.]
doi: 10.3724/SP.J.1041.2022.00703 |
|
[20] | Liu, Y., Tian, W., & Xin, T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3-26. |
[21] |
Liu, Y., Xin, T., & Jiang, Y. (2022). Structural parameter standard error estimation method in diagnostic classification models: Estimation and application. Multivariate Behavioral Research, 57(5), 784-803.
doi: 10.1080/00273171.2021.1919048 URL |
[22] |
Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275.
doi: 10.1111/bmsp.2016.69.issue-3 URL |
[23] | Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1-26. |
[24] | Ma, W., de la Torre, J., Sorrel, M., & Jiang, Z. (2022). GDINA: The generalized DINA model framework. R package version 2.9.3. https://CRAN.R-project.org/package=GDINA |
[25] |
Ma, W., & Guo, W. (2019). Cognitive diagnosis models for multiple strategies. British Journal of Mathematical and Statistical Psychology, 72(2), 370-392.
doi: 10.1111/bmsp.12155 |
[26] |
Ma, W., & Jiang, Z. (2021). Estimating cognitive diagnosis models in small samples: Bayes modal estimation and monotonic constraints. Applied Psychological Measurement, 45(2), 95-111.
doi: 10.1177/0146621620977681 pmid: 33627916 |
[27] |
Paek, I., & Cai, L. (2013). A comparison of item parameter standard error estimation procedures for unidimensional and multidimensional item response theory modeling. Educational and Psychological Measurement, 74(1), 58-76.
doi: 10.1177/0013164413500277 URL |
[28] |
Paulsen, J., & Valdivia, D. S. (2022). Examining cognitive diagnostic modeling in classroom assessment conditions. The Journal of Experimental Education, 90(4), 916-933.
doi: 10.1080/00220973.2021.1891008 URL |
[29] | Philipp, M., Strobl, C., de la Torre, J., & Zeileis, A. (2018). On the estimation of standard errors in cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 43(1), 88-115. |
[30] | Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2022). CDM: Cognitive Diagnosis Modeling. R package version 8.2-6. http://CRAN.R-project.org/package=CDM |
[31] | Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. Guilford Press. |
[32] |
Rupp, A. A., & van Rijn, P. W. (2018). GDINA and CDM packages in R. Measurement: Interdisciplinary Research and Perspectives, 16(1), 71-77.
doi: 10.1080/15366367.2018.1437243 URL |
[33] |
Sen, S., & Terzi, R. (2020). A comparison of software packages available for dina model estimation. Applied Psychological Measurement, 44(2), 150-164.
doi: 10.1177/0146621619843822 URL |
[34] |
Sorrel, M. A., Olea, J., Abad, F. J., de la Torre, J., Aguado, D., & Lievens, F. (2016). Validity and reliability of situational judgment test scores: A new approach based on cognitive diagnosis models. Organizational Research Methods, 19(3), 506-532.
doi: 10.1177/1094428116630065 URL |
[35] |
Tajika, A., Ogawa, Y., Takeshima, N., Hayasaka, Y., & Furukawa, T. A. (2015). Replication and contradiction of highly cited research papers in psychiatry: 10-year follow-up. The British Journal of Psychiatry, 207(4), 357-362.
doi: 10.1192/bjp.bp.113.143701 URL |
[36] |
Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317-339.
doi: 10.1007/s11336-013-9362-0 pmid: 24478021 |
[37] |
Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32(2), 37-50.
doi: 10.1111/emip.2013.32.issue-2 URL |
[38] |
Tian, W., Xin, T., & Kang, C. (2014). The data-augmentation techniques in item response modeling: Current approaches and new developments. Advances in Psychological Science, 22(6), 1036-1046.
doi: 10.3724/SP.J.1042.2014.01036 |
[田伟, 辛涛, 康春花. (2014). 项目反应理论中潜在心理特质“填补”的参数估计方法及其演变. 心理科学进展, 22(6), 1036-1046.]
doi: 10.3724/SP.J.1042.2014.01036 |
|
[39] |
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287-307.
doi: 10.1348/000711007X193957 URL |
[40] |
Wu, Z., Deloria-Knoll, M., & Zeger, S. L. (2017). Nested partially latent class models for dependent binary data; estimating disease etiology. Biostatistics, 18(2), 200-213.
doi: 10.1093/biostatistics/kxw037 pmid: 27549120 |
[41] | Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report Series, 2008(1), i-18. |
[42] |
Yamaguchi, K. (2023). On the boundary problems in diagnostic classification models. Behaviormetrika, 50(1), 399-429.
doi: 10.1007/s41237-022-00187-7 |
[43] |
Yuan, L., Liu, Y., Chen, P., & Xin, T. (2022). Development of a new learning progression verification method based on the hierarchical diagnostic classification model: Taking grade 5 students’ fractional operations as an example. Educational Measurement: Issues and Practice, 41(3), 69-82.
doi: 10.1111/emip.v41.3 URL |
[44] |
Zeng, Z., Gu, Y., & Xu, G. (2023). A Tensor-EM method for large-scale latent class analysis with binary responses. Psychometrika, 88(2), 580-612.
doi: 10.1007/s11336-022-09887-1 |
[1] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
[2] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[3] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
[4] | 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598. |
[5] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
[6] | 蔡艳;涂冬波. 属性多级化的认知诊断模型拓展及其Q矩阵设计[J]. 心理学报, 2015, 47(10): 1300-1308. |
[7] | 蔡艳;涂冬波;丁树良. 五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较[J]. 心理学报, 2013, 45(11): 1295-1304. |
[8] | 杜文久;周娟;李洪波. 二参数逻辑斯蒂模型项目参数的估计精度[J]. 心理学报, 2013, 45(10): 1179-1186. |
[9] | 杜文久;肖涵敏. 多维项目反应理论等级反应模型[J]. 心理学报, 2012, 44(10): 1402-1407. |
[10] | 刘红云,骆方,王玥,张玉. 多维测验项目参数的估计:基于SEM与MIRT方法的比较[J]. 心理学报, 2012, 44(1): 121-132. |
[11] | 涂冬波,蔡艳,戴海琦,丁树良. 一种多级评分的认知诊断模型:P-DINA模型的开发[J]. 心理学报, 2010, 42(10): 1011-1020. |
[12] | 罗,欢,丁树良,汪文义,喻晓锋,曹慧媛1. 属性不等权重的多级评分属性层级方法[J]. 心理学报, 2010, 42(04): 528-538. |
[13] | 丁树良,罗芬,戴海琦,朱玮. 多题多做测验模型及其应用[J]. 心理学报, 2007, 39(04): 730-736. |
[14] | 朱玮,丁树良,陈小攀. IRT中最小化χ2/EM参数估计方法[J]. 心理学报, 2006, 38(03): 453-460. |
[15] | 罗照盛,漆书青,戴海琦,丁树良. 项目反应理论多级记分模型参数估计的实现[J]. 心理学报, 2003, 35(04): 555-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||