心理学报 ›› 2020, Vol. 52 ›› Issue (12): 1452-1465.doi: 10.3724/SP.J.1041.2020.01452
• 研究报告 • 上一篇
收稿日期:
2019-10-14
发布日期:
2020-10-26
出版日期:
2020-12-25
通讯作者:
涂冬波
E-mail:tudongbo@aliyun.com
基金资助:
LUO Fen1,2, WANG Xiaoqing2, CAI Yan1, TU Dongbo1()
Received:
2019-10-14
Online:
2020-10-26
Published:
2020-12-25
Contact:
TU Dongbo
E-mail:tudongbo@aliyun.com
摘要:
双目标CD-CAT的测验结果既可用于形成性评估也可用于终结性评估。基尼指数可度量随机变量的不确定性程度, 值越小则随机变量的不确定程度越低。本文用基尼指数度量被试知识状态类别以及能力估计置信区间后验概率的变化, 提出基于基尼指数的选题策略。Monte Carlo实验表明与已有的选题策略相比, 新策略的知识状态分类精度和能力估计精度都较高, 同时能有效兼顾题库利用均匀性, 并能快速实时响应, 且受认知诊断模型和被试知识状态分布的影响较小, 可用于实际测验中含多种认知诊断模型的混合题库。
中图分类号:
罗芬, 王晓庆, 蔡艳, 涂冬波. (2020). 基于基尼指数的双目标CD-CAT选题策略. 心理学报, 52(12), 1452-1465.
LUO Fen, WANG Xiaoqing, CAI Yan, TU Dongbo. (2020). A new dual-objective CD-CAT item selection method based on the Gini index. Acta Psychologica Sinica, 52(12), 1452-1465.
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Mean/% | SD | Mean/% | SD | Mean/% | SD | Mean/% | SD | ||
G-DINA | HO | 97.00 | 0.009 | 89.28 | 0.025 | 96.10 | 0.010 | 85.04 | 0.024 |
MV-0.8 | 97.22 | 0.004 | 93.05 | 0.011 | 97.44 | 0.008 | 92.02 | 0.014 | |
MV-0.2 | 96.84 | 0.007 | 90.78 | 0.014 | 96.35 | 0.006 | 87.51 | 0.016 | |
DINA | HO | 97.45 | 0.010 | 90.99 | 0.032 | 97.18 | 0.011 | 75.31 | 0.060 |
MV-0.8 | 97.24 | 0.011 | 93.45 | 0.017 | 97.06 | 0.010 | 91.46 | 0.023 | |
MV-0.2 | 97.57 | 0.006 | 93.76 | 0.007 | 96.93 | 0.008 | 86.23 | 0.050 | |
R-RUM | HO | 95.41 | 0.010 | 87.61 | 0.021 | 95.38 | 0.010 | 76.64 | 0.028 |
MV-0.8 | 97.09 | 0.009 | 92.45 | 0.014 | 96.82 | 0.008 | 91.67 | 0.010 | |
MV-0.2 | 96.81 | 0.008 | 87.88 | 0.022 | 96.82 | 0.012 | 80.52 | 0.038 |
表1 20题各选题策略的模式判准率均值及标准差
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Mean/% | SD | Mean/% | SD | Mean/% | SD | Mean/% | SD | ||
G-DINA | HO | 97.00 | 0.009 | 89.28 | 0.025 | 96.10 | 0.010 | 85.04 | 0.024 |
MV-0.8 | 97.22 | 0.004 | 93.05 | 0.011 | 97.44 | 0.008 | 92.02 | 0.014 | |
MV-0.2 | 96.84 | 0.007 | 90.78 | 0.014 | 96.35 | 0.006 | 87.51 | 0.016 | |
DINA | HO | 97.45 | 0.010 | 90.99 | 0.032 | 97.18 | 0.011 | 75.31 | 0.060 |
MV-0.8 | 97.24 | 0.011 | 93.45 | 0.017 | 97.06 | 0.010 | 91.46 | 0.023 | |
MV-0.2 | 97.57 | 0.006 | 93.76 | 0.007 | 96.93 | 0.008 | 86.23 | 0.050 | |
R-RUM | HO | 95.41 | 0.010 | 87.61 | 0.021 | 95.38 | 0.010 | 76.64 | 0.028 |
MV-0.8 | 97.09 | 0.009 | 92.45 | 0.014 | 96.82 | 0.008 | 91.67 | 0.010 | |
MV-0.2 | 96.81 | 0.008 | 87.88 | 0.022 | 96.82 | 0.012 | 80.52 | 0.038 |
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | ||
G-DINA | HO | 0.02 | 0.32 | 0.00 | 0.41 | 0.04 | 0.28 | 0.02 | 0.40 |
MV-0.8 | 0.00 | 0.29 | 0.01 | 0.29 | 0.02 | 0.29 | 0.02 | 0.30 | |
MV-0.2 | 0.03 | 0.27 | 0.02 | 0.32 | 0.07 | 0.27 | 0.05 | 0.42 | |
DINA | HO | -0.08 | 0.40 | -0.02 | 0.41 | -0.14 | 0.37 | -0.05 | 0.46 |
MV-0.8 | 0.02 | 0.34 | 0.01 | 0.32 | -0.03 | 0.35 | -0.08 | 0.35 | |
MV-0.2 | -0.12 | 0.38 | -0.09 | 0.36 | -0.24 | 0.42 | -0.28 | 0.52 | |
R-RUM | HO | -0.07 | 0.35 | -0.01 | 0.42 | -0.14 | 0.35 | -0.02 | 0.45 |
MV-0.8 | 0.00 | 0.30 | -0.02 | 0.30 | -0.03 | 0.30 | -0.03 | 0.32 | |
MV-0.2 | -0.04 | 0.31 | -0.01 | 0.43 | -0.10 | 0.29 | -0.05 | 0.51 |
表2 20题各选题策略的Bias和RMSE
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | ||
G-DINA | HO | 0.02 | 0.32 | 0.00 | 0.41 | 0.04 | 0.28 | 0.02 | 0.40 |
MV-0.8 | 0.00 | 0.29 | 0.01 | 0.29 | 0.02 | 0.29 | 0.02 | 0.30 | |
MV-0.2 | 0.03 | 0.27 | 0.02 | 0.32 | 0.07 | 0.27 | 0.05 | 0.42 | |
DINA | HO | -0.08 | 0.40 | -0.02 | 0.41 | -0.14 | 0.37 | -0.05 | 0.46 |
MV-0.8 | 0.02 | 0.34 | 0.01 | 0.32 | -0.03 | 0.35 | -0.08 | 0.35 | |
MV-0.2 | -0.12 | 0.38 | -0.09 | 0.36 | -0.24 | 0.42 | -0.28 | 0.52 | |
R-RUM | HO | -0.07 | 0.35 | -0.01 | 0.42 | -0.14 | 0.35 | -0.02 | 0.45 |
MV-0.8 | 0.00 | 0.30 | -0.02 | 0.30 | -0.03 | 0.30 | -0.03 | 0.32 | |
MV-0.2 | -0.04 | 0.31 | -0.01 | 0.43 | -0.10 | 0.29 | -0.05 | 0.51 |
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
χ2 | TOE | χ2 | TOE | χ2 | TOE | χ2 | TOE | ||
G-DINA | HO | 82.38 | 0.41 | 98.75 | 0.47 | 85.34 | 0.42 | 44.45 | 0.26 |
MV-0.8 | 69.37 | 0.36 | 77.30 | 0.39 | 77.11 | 0.39 | 53.26 | 0.29 | |
MV-0.2 | 72.50 | 0.37 | 91.36 | 0.44 | 82.94 | 0.41 | 37.08 | 0.23 | |
DINA | HO | 70.91 | 0.36 | 86.88 | 0.43 | 72.68 | 0.37 | 53.52 | 0.29 |
MV-0.8 | 56.55 | 0.31 | 66.74 | 0.35 | 58.98 | 0.32 | 59.31 | 0.32 | |
MV-0.2 | 72.11 | 0.37 | 83.17 | 0.41 | 67.31 | 0.35 | 58.41 | 0.31 | |
R-RUM | HO | 95.78 | 0.46 | 109.29 | 0.52 | 94.55 | 0.46 | 58.22 | 0.31 |
MV-0.8 | 85.70 | 0.42 | 84.99 | 0.42 | 87.92 | 0.43 | 56.27 | 0.30 | |
MV-0.2 | 88.92 | 0.44 | 105.01 | 0.50 | 95.48 | 0.46 | 60.78 | 0.32 |
表3 20题各选题策略的题库使用均匀性指标
CDM模型 | 知识状态 生成模型 | 选题策略 | |||||||
---|---|---|---|---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||||||
χ2 | TOE | χ2 | TOE | χ2 | TOE | χ2 | TOE | ||
G-DINA | HO | 82.38 | 0.41 | 98.75 | 0.47 | 85.34 | 0.42 | 44.45 | 0.26 |
MV-0.8 | 69.37 | 0.36 | 77.30 | 0.39 | 77.11 | 0.39 | 53.26 | 0.29 | |
MV-0.2 | 72.50 | 0.37 | 91.36 | 0.44 | 82.94 | 0.41 | 37.08 | 0.23 | |
DINA | HO | 70.91 | 0.36 | 86.88 | 0.43 | 72.68 | 0.37 | 53.52 | 0.29 |
MV-0.8 | 56.55 | 0.31 | 66.74 | 0.35 | 58.98 | 0.32 | 59.31 | 0.32 | |
MV-0.2 | 72.11 | 0.37 | 83.17 | 0.41 | 67.31 | 0.35 | 58.41 | 0.31 | |
R-RUM | HO | 95.78 | 0.46 | 109.29 | 0.52 | 94.55 | 0.46 | 58.22 | 0.31 |
MV-0.8 | 85.70 | 0.42 | 84.99 | 0.42 | 87.92 | 0.43 | 56.27 | 0.30 | |
MV-0.2 | 88.92 | 0.44 | 105.01 | 0.50 | 95.48 | 0.46 | 60.78 | 0.32 |
CDM模型 | 知识状态 生成模型 | 选题策略 | |||
---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||
G-DINA | HO | 2.27 | 0.82 | 22.27 | 0.16 |
MV-0.8 | 2.27 | 0.82 | 21.95 | 0.16 | |
MV-0.2 | 2.27 | 0.81 | 22.18 | 0.16 | |
DINA | HO | 2.27 | 0.81 | 21.96 | 0.16 |
MV-0.8 | 2.28 | 0.80 | 21.91 | 0.16 | |
MV-0.2 | 2.26 | 0.78 | 22.04 | 0.16 | |
R-RUM | HO | 2.28 | 0.86 | 21.96 | 0.16 |
MV-0.8 | 2.27 | 0.81 | 22.14 | 0.16 | |
MV-0.2 | 2.26 | 0.81 | 22.01 | 0.16 |
表4 20题各选题策略的选题用时指标(单位:秒)
CDM模型 | 知识状态 生成模型 | 选题策略 | |||
---|---|---|---|---|---|
Gini | ASI | IPA | JSD | ||
G-DINA | HO | 2.27 | 0.82 | 22.27 | 0.16 |
MV-0.8 | 2.27 | 0.82 | 21.95 | 0.16 | |
MV-0.2 | 2.27 | 0.81 | 22.18 | 0.16 | |
DINA | HO | 2.27 | 0.81 | 21.96 | 0.16 |
MV-0.8 | 2.28 | 0.80 | 21.91 | 0.16 | |
MV-0.2 | 2.26 | 0.78 | 22.04 | 0.16 | |
R-RUM | HO | 2.28 | 0.86 | 21.96 | 0.16 |
MV-0.8 | 2.27 | 0.81 | 22.14 | 0.16 | |
MV-0.2 | 2.26 | 0.81 | 22.01 | 0.16 |
[1] | Bock R. D., & Mislevy R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6(4), 431-444. |
[2] | Breiman L., Friedman J., Stone C. J., & Olshen R. A. (1984). Classification and regression trees, Chapman & Hall / CRC, Boca Raton, FL. |
[3] |
Cai Y., Miao Y., & Tu D. B. (2016). The polytomously scored cognitive diagnosis computerized adaptive testing, Acta Psychologica Sinica, 48(10), 1338-1346.
doi: 10.3724/SP.J.1041.2016.01338 URL |
[蔡艳, 苗莹, 涂冬波. (2016). 多级评分的认知诊断计算机化适应测验. 心理学报, 48(10), 1338-1346.] | |
[4] | Chalmers R. P. (2012). Mirt: A multidimensional item response theory package for the renvironment. Journal of Statistical Software, 48(6), 1-29. |
[5] | Chang H. -H., & Ying Z. L. (1996). A global information approach to computerized adaptive testing. Applied Psychological Measurement, 20(3), 213-229. |
[6] | Chen P., Li Z., & Xin T. (2011). A note on the uniformity of item bank usage in cognitive diagnostic computerized adaptive testing. Studies of Psychology and Behavior, 37(1), 212-216. |
[ 陈平, 李珍, 辛涛.(2011). 认知诊断计算机化自适应测验的题库使用均匀性初探. 心理与行为研究, 37(1), 212-216.] | |
[7] | Cheng Y. (2007). The dual information method for item selection in cognitive diagnostic computerized adaptive testing (Unpublished Master’s thesis). University of Illinois at Urbana-Champaign. |
[8] | Cheng Y. (2009). When cognitive diagnosis meets computerized adaptive testing. Psychometrika. 74(4), 619-632. |
[9] | Cheng Y., & Chang H. -H. (2009). The maximum priority index method for severely constrained item selection in computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 62(2), 369-383. |
[10] |
Dai B. Y., Zhang M. Q., & Li G. M. (2016). Exploration of item selection in dual purpose cognitive diagnostic computerized adaptive testing: Based on the RRUM. Applied Psychological Measurement, 40(8), 625-640.
doi: 10.1177/0146621616666008 URL pmid: 29882535 |
[11] | Du X. X. (2010). A new strategy of item selection of cognitive diagnosis computerized adaptive testing (Unpublished Master’s thesis). Jiangxi Normal University, Nanchang, China. |
[ 杜宣宣. (2010). 具有认知诊断功能的计算机化自适应测验的选题策略研究(硕士学位论文). 江西师范大学, 南昌.] | |
[12] | de la Torre J., (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. |
[13] | de la Torre, J., & Douglas J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353. |
[14] | Fan Z. W., Wang C., Chang H. -H., & Douglas J. (2012). Utilizing response time distributions for item selection in CAT. Journal of Educational and Behavioral Statistics, 37(5), 655-670. |
[15] | Han Y. T., Gao X. L., Wang D. X., Cai Y., & Tu D. B. (2018). Item selection methods in multidimensional polytomous computerized adaptive testing. Journal of Psychological Science, 41(6), 1500-1507. |
[ 韩雨婷, 高旭亮, 汪大勋, 蔡艳, 涂冬波. (2018). 多级评分项目的多维CAT选题策略开发. 心理科学, 41(6), 1500-1507.] | |
[16] | Hartz S. M. (2002). A bayesian framework for the unified model for assessing cognitive abilities: blending theory with practicality (Unpublished Doctoral dissertation). University of Illinois at Urbana-Champaign, Urbana-Champaign, IL. |
[17] | Hsu C. -L., & Wang W. -C. (2015). Variable-length computerized adaptive testing using the higher order DINA model. Journal of Educational Measurement, 52(2), 125-143. |
[18] |
Hsu C. -L., & Wang W. -C. (2019). Multidimensional computerized adaptive testing using non-compensatory item response theory models. Applied Psychological Measurement, 43(6), 464-480.
doi: 10.1177/0146621618800280 URL pmid: 31452555 |
[19] |
Huang H. -Y. (2020). Utilizing response times in cognitive diagnostic computerized adaptive testing under the higher- order deterministic input, noisy ‘and’ gate model. British Journal of Mathematical and Statistical Psychology, 73(1), 109-141.
URL pmid: 30793768 |
[20] |
Junker B. W., & Sijtsma K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
doi: 10.1177/01466210122032064 URL |
[21] |
Kang H. -A., Zhang S. S., & Chang H. -H. (2017). Dual-objective item selection criteria in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 54(2), 165-183.
doi: 10.1111/jedm.12139 URL |
[22] |
Kaplan M., & de la Torre J. (2020). A blocked-CAT procedure for CD-CAT. Applied Psychological Measurement, 44(1), 49-64.
doi: 10.1177/0146621619835500 URL pmid: 31853158 |
[23] |
Kaplan M., de la Torre J., & Barrada J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
doi: 10.1177/0146621614554650 URL pmid: 29881001 |
[24] | Li H. (2012). Statistical learning method. Beijing: Tsinghua University Press. |
[ 李航. (2012). 统计学习方法. 北京: 清华大学出版社.] | |
[25] |
Lin C. -J., & Chang H. -H. (2019). Item selection criteria with practical constraints in cognitive diagnostic computerized adaptive testing. Educational and Psychological Measurement, 79(2), 335-357.
doi: 10.1177/0013164418790634 URL pmid: 30911196 |
[26] | Liu S. C., Cai Y., & Tu D. B. (2018). On-the-fly constraint- controlled assembly methods for multistage adaptive testing for cognitive diagnosis. Journal of Educational Measurement, 55(4), 595-613. |
[27] | Lord M. F. (1980). Applications of item response theory to practical testing problems. Hillsdale NJ: Erlbaum. |
[28] | Luo F., Wang X. Q., Ding S. L., & Xiong J. H. (2018). The design and selection strategies of adaptive multigroup Testing for Cognitive Diagnosis. Journal of Psychological Science, 41(3), 720-726. |
[ 罗芬, 王晓庆, 丁树良, 熊建华. (2018). 自适应分组认知诊断测验设计及其选题策略. 心理科学, 41(3), 720-726.] | |
[29] | Ma W. C., & de la Torre J. (2020). GDINA: The generalized DINA model framework. R package version 2.7.9, https:// CRAN.R-project.org/package=GDINA. |
[30] |
McGlohen M. K., & Chang H. -H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808-821.
doi: 10.3758/brm.40.3.808 URL pmid: 18697677 |
[31] | Nah F. F. -H. (2004). A study on tolerable waiting time: How long are web users willing to wait? Behaviour and Information Technology, 23(3), 153-163. |
[32] | Quinlan J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. |
[33] | Quinlan J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CA. |
[34] | Rupp A. A., Templin J., & Henson R. A. (2010). Diagnostic measurement: theory, method, and application. New York: The Guilford Press. |
[35] | Tatsuoka C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C: Applied Statistics, 51(3), 337-350. |
[36] | Tu D. B., & Cai Y. (2015). The Development of CD-CAT with polytomous attributes. Acta Psychologica Sinica, 47(11), 1405-1414. |
[ 涂冬波, 蔡艳. (2015). 基于属性多级化的认知诊断计算机化自适应测验设计与实现. 心理学报, 47(11), 1405-1414.] | |
[37] | Veerkamp W. J. J., & Berger M. P. F. (1994). Some new item selection criteria for adaptive testing (Research Rep. 94-6). Enschede, The Netherlands: University of Twente, Department of Educational Measurement and Data Analysis. |
[38] | Wang C., & Chang H. -H. (2011). Item selection in multidimensional computerized adaptive testing-gaining information from different angles. Psychometrika, 76(3), 363-384. |
[39] |
Wang C., Chang H. -H., & Douglas J. (2012). Combining CAT with cognitive diagnosis: A weighted item selection approach. Behavior Research Methods, 44(1), 95-109.
doi: 10.3758/s13428-011-0143-3 URL pmid: 21853408 |
[40] | Wang C., Chang H. -H., & Huebner A. (2011). Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 48(3), 255-273. |
[41] | Wang C., Zheng C. J., & Chang H. -H. (2014). An enhanced approach to combine item response theory with cognitive diagnosis in adaptive testing. Journal of Educational Measurement, 51(4), 358-380. |
[42] | Xu X. L., Chang H. -H., & Douglas J. (2003, April). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the annual meeting of National Council on Measurement in Education, Chicago, IL. |
[43] | Zhang X. G. (2010). Pattern recognition (Third Edition). Beijing: Tsinghua University Press. |
[ 张学工. (2010). 模式识别(第三版). 北京: 清华大学出版社.] | |
[44] |
Zheng C. J., & Chang H. -H. (2016). High-efficiency response distribution-based item selection algorithms for short-length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624.
URL pmid: 29881073 |
[45] |
Zheng C. J., He G., & Gao C. L. (2018). The information product methods: A unified approach to dual-purpose computerized adaptive testing. Applied Psychological Measurement, 42(4), 321-324.
doi: 10.1177/0146621617730392 URL pmid: 29882539 |
[46] |
Zheng C. J., & Wang C. (2017). Application of binary searching for item exposure control in cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 41(7), 561-576.
doi: 10.1177/0146621617707509 URL pmid: 29881106 |
[47] | Zhou Z. H. (2016). Machine learning. Beijing: Tsinghua University Press. |
[ 周志华. (2016). 机器学习. 北京: 清华大学出版社.] |
[1] | 田亚淑, 詹沛达, 王立君. 联合作答精度和作答时间的概率态认知诊断模型[J]. 心理学报, 2023, 55(9): 1573-1586. |
[2] | 付颜斌, 陈琦鹏, 詹沛达. 问题解决任务中行动序列的二分类建模:单/两参数行动序列模型[J]. 心理学报, 2023, 55(8): 1383-1396. |
[3] | 游晓锋, 杨建芹, 秦春影, 刘红云. 认知诊断测评中缺失数据的处理:随机森林阈值插补法[J]. 心理学报, 2023, 55(7): 1192-1206. |
[4] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
[5] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
[6] | 童昊, 喻晓锋, 秦春影, 彭亚风, 钟小缘. 多级计分测验中基于残差统计量的被试拟合研究[J]. 心理学报, 2022, 54(9): 1122-1136. |
[7] | 孙小坚, 郭磊. 考虑题目选项信息的非参数认知诊断计算机自适应测验[J]. 心理学报, 2022, 54(9): 1137-1150. |
[8] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
[9] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[10] | 宋枝璘, 郭磊, 郑天鹏. 认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法[J]. 心理学报, 2022, 54(4): 426-440. |
[11] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[12] | 郭磊, 周文杰. 基于选项层面的认知诊断非参数方法[J]. 心理学报, 2021, 53(9): 1032-1043. |
[13] | 任赫, 陈平. 两种新的多维计算机化分类测验终止规则[J]. 心理学报, 2021, 53(9): 1044-1058. |
[14] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[15] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报, 2020, 52(1): 93-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||