心理学报 ›› 2023, Vol. 55 ›› Issue (8): 1383-1396.doi: 10.3724/SP.J.1041.2023.01383
• 研究报告 • 上一篇
收稿日期:
2023-01-04
发布日期:
2023-05-12
出版日期:
2023-08-25
通讯作者:
詹沛达, E-mail: 基金资助:
FU Yanbin, CHEN Qipeng, ZHAN Peida()
Received:
2023-01-04
Online:
2023-05-12
Published:
2023-08-25
摘要:
行动序列作为一种典型的过程数据, 可反映被试解决问题的详细步骤。鉴于行动或状态转移可区分正误, 本文基于二分类Logistic建模提出两个复杂度相对较低的行动序列模型——单/两参数行动序列模型(1P-/2P-ASM); 两者差异在于是否允许自由估计问题状态的区分度。通过实证研究和模拟研究对比探究两个新模型与基于多分类Logistic建模的序列作答模型(SRM)的表现。研究结果主要发现:(1)两个ASM能够获得与SRM几乎一致的问题解决能力估计值; (2)两个ASM的计算耗时明显低于SRM的; (3) 2P-ASM比1P-ASM的综合表现更优。总之, 两个模型复杂度相对低的ASM均能够实现对行动序列的有效分析, 有益于行动序列数据分析的落地。
中图分类号:
付颜斌, 陈琦鹏, 詹沛达. (2023). 问题解决任务中行动序列的二分类建模:单/两参数行动序列模型. 心理学报, 55(8), 1383-1396.
FU Yanbin, CHEN Qipeng, ZHAN Peida. (2023). Binary modeling of action sequences in problem-solving tasks: One- and two-parameter action sequence model. Acta Psychologica Sinica, 55(8), 1383-1396.
图4 二分类行动序列模型建模示意图 注:θn为被试n的问题解决能力; Sn1为学生 n在阶段1所处的问题状态, 依此类推; Sn1 → Sn2为学生 n从阶段1向阶段2转移的状态转移, 依此类推; Yn,S1→S2为二分编码后的状态转移, Yn,S1→S2 = 1表示被试n呈现了正确状态转移, Yn,S1→S2 = 0表示被试n呈现了错误状态转移; 不同学生的行动序列长度不同, 方框数不同。
当前问题状态 | 下一阶段可选问题状态(转移选项) | |||
---|---|---|---|---|
S | A (1) | F (0) | ||
A | B (1) | G (0) | S (0) | |
B | C (1) | H (0) | S (0) | |
C | D (1) | E (0) | S (0) | J (0) |
D | J (1) | E (0) | S (0) | |
E | D (1) | J (0) | S (0) | |
F | S (1) | G (0) | ||
G | S (1) | H (0) | ||
H | S (1) | I (0) | J (0) | |
I | S (1) | J (0) |
表1 PISA 2012购票任务所类比的“选择题”
当前问题状态 | 下一阶段可选问题状态(转移选项) | |||
---|---|---|---|---|
S | A (1) | F (0) | ||
A | B (1) | G (0) | S (0) | |
B | C (1) | H (0) | S (0) | |
C | D (1) | E (0) | S (0) | J (0) |
D | J (1) | E (0) | S (0) | |
E | D (1) | J (0) | S (0) | |
F | S (1) | G (0) | ||
G | S (1) | H (0) | ||
H | S (1) | I (0) | J (0) | |
I | S (1) | J (0) |
模型 | LOO | WAIC | ppp | 计算时间(秒) |
---|---|---|---|---|
1P-ASM | 11018.208 | 11007.133 | 0.511 | 647.5 |
2P-ASM | 10363.785 | 10275.475 | 0.518 | 958.5 |
SRM | 16804.501 | 16803.925 | 0.498 | 1958.6 |
表2 实证研究中三个模型对数据的拟合情况和计算耗时
模型 | LOO | WAIC | ppp | 计算时间(秒) |
---|---|---|---|---|
1P-ASM | 11018.208 | 11007.133 | 0.511 | 647.5 |
2P-ASM | 10363.785 | 10275.475 | 0.518 | 958.5 |
SRM | 16804.501 | 16803.925 | 0.498 | 1958.6 |
当前问题 状态 | 1P-ASM | 2P-ASM | |||||||
---|---|---|---|---|---|---|---|---|---|
容易度 | 容易度 | 区分度 | |||||||
后验均值 | 后验标准差 | 95% HPD | 后验均值 | 后验标准差 | 95% HPD | 后验均值 | 后验标准差 | 95% HPD | |
S | 0.911 | 0.046 | (0.822, 1.001) | 0.969 | 0.057 | (0.860, 1.084) | 1.343 | 0.116 | (1.111, 1.570) |
A | 1.553 | 0.066 | (1.425, 1.682) | 1.547 | 0.077 | (1.401, 1.701) | 1.457 | 0.212 | (1.043, 1.870) |
B | 1.432 | 0.073 | (1.290, 1.577) | 1.354 | 0.082 | (1.198, 1.521) | 1.797 | 0.398 | (0.958, 2.566) |
C | 1.436 | 0.080 | (1.279, 1.599) | 1.207 | 0.148 | (0.940, 1.526) | 3.015 | 0.885 | (1.104, 4.759) |
E | 2.008 | 0.107 | (1.801, 2.215) | 1.734 | 0.159 | (1.456, 2.099) | 1.615 | 0.495 | (0.463, 2.576) |
D | 0.361 | 0.176 | (0.015, 0.702) | 0.472 | 0.283 | (−0.031, 1.064) | 1.472 | 0.952 | (0.225, 3.792) |
F | −1.705 | 0.107 | (−1.918, −1.492) | −1.590 | 0.123 | (−1.829, −1.348) | 1.438 | 0.250 | (0.982, 1.974) |
G | −1.888 | 0.111 | (−2.105, −1.677) | −1.747 | 0.147 | (−2.050, −1.480) | 2.115 | 0.354 | (1.495, 2.875) |
H | −0.749 | 0.075 | (−0.898, −0.599) | −0.292 | 0.172 | (−0.636, 0.037) | 2.229 | 0.426 | (1.400, 3.088) |
I | −0.368 | 0.157 | (−0.686, 0.062) | 0.760 | 0.470 | (−0.101, 1.753) | 3.127 | 0.933 | (1.525, 5.179) |
表3 实证研究中行动序列模型参数估计结果
当前问题 状态 | 1P-ASM | 2P-ASM | |||||||
---|---|---|---|---|---|---|---|---|---|
容易度 | 容易度 | 区分度 | |||||||
后验均值 | 后验标准差 | 95% HPD | 后验均值 | 后验标准差 | 95% HPD | 后验均值 | 后验标准差 | 95% HPD | |
S | 0.911 | 0.046 | (0.822, 1.001) | 0.969 | 0.057 | (0.860, 1.084) | 1.343 | 0.116 | (1.111, 1.570) |
A | 1.553 | 0.066 | (1.425, 1.682) | 1.547 | 0.077 | (1.401, 1.701) | 1.457 | 0.212 | (1.043, 1.870) |
B | 1.432 | 0.073 | (1.290, 1.577) | 1.354 | 0.082 | (1.198, 1.521) | 1.797 | 0.398 | (0.958, 2.566) |
C | 1.436 | 0.080 | (1.279, 1.599) | 1.207 | 0.148 | (0.940, 1.526) | 3.015 | 0.885 | (1.104, 4.759) |
E | 2.008 | 0.107 | (1.801, 2.215) | 1.734 | 0.159 | (1.456, 2.099) | 1.615 | 0.495 | (0.463, 2.576) |
D | 0.361 | 0.176 | (0.015, 0.702) | 0.472 | 0.283 | (−0.031, 1.064) | 1.472 | 0.952 | (0.225, 3.792) |
F | −1.705 | 0.107 | (−1.918, −1.492) | −1.590 | 0.123 | (−1.829, −1.348) | 1.438 | 0.250 | (0.982, 1.974) |
G | −1.888 | 0.111 | (−2.105, −1.677) | −1.747 | 0.147 | (−2.050, −1.480) | 2.115 | 0.354 | (1.495, 2.875) |
H | −0.749 | 0.075 | (−0.898, −0.599) | −0.292 | 0.172 | (−0.636, 0.037) | 2.229 | 0.426 | (1.400, 3.088) |
I | −0.368 | 0.157 | (−0.686, 0.062) | 0.760 | 0.470 | (−0.101, 1.753) | 3.127 | 0.933 | (1.525, 5.179) |
问题状态 转移序列 | 频数 | SRM | 1P-ASM | 2P-ASM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
均值 | 中位数 | 标准差 | 均值 | 中位数 | 标准差 | 均值 | 中位数 | 标准差 | ||
SABCDJ | 737 | 0.837 | 0.837 | 0.011 | 0.821 | 0.821 | 0.009 | 0.666 | 0.665 | 0.012 |
SFSABCDJ | 35 | 0.525 | 0.525 | 0.007 | 0.676 | 0.677 | 0.007 | 0.604 | 0.603 | 0.010 |
SFGSABCDJ | 22 | 0.345 | 0.347 | 0.007 | 0.598 | 0.598 | 0.005 | 0.488 | 0.487 | 0.009 |
SABCEDJ | 23 | 0.279 | 0.279 | 0.007 | −0.017 | −0.018 | 0.005 | 0.257 | 0.258 | 0.008 |
SFGHSABCDJ | 52 | 0.152 | 0.151 | 0.006 | 0.304 | 0.304 | 0.004 | 0.295 | 0.296 | 0.009 |
SABCJ | 47 | 0.023 | 0.025 | 0.007 | −0.238 | −0.237 | 0.006 | −0.035 | −0.035 | 0.011 |
SABCEJ | 27 | −0.250 | −0.250 | 0.005 | −0.404 | −0.404 | 0.005 | −0.338 | −0.338 | 0.012 |
SABHJ | 117 | −0.364 | −0.364 | 0.007 | −0.506 | −0.506 | 0.006 | −0.359 | −0.358 | 0.010 |
SAGHJ | 65 | −0.662 | −0.662 | 0.008 | −0.741 | −0.742 | 0.008 | −0.594 | −0.594 | 0.010 |
SAGHIJ | 45 | −0.806 | −0.806 | 0.008 | −0.940 | −0.939 | 0.007 | −0.760 | −0.760 | 0.010 |
SFGHJ | 337 | −1.099 | −1.099 | 0.011 | −1.033 | −1.033 | 0.008 | −0.869 | −0.869 | 0.011 |
SFGHIJ | 95 | −1.228 | −1.227 | 0.011 | −1.201 | −1.201 | 0.008 | −1.020 | −1.021 | 0.010 |
表4 典型行动序列对应的问题解决能力估计值的描述统计
问题状态 转移序列 | 频数 | SRM | 1P-ASM | 2P-ASM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
均值 | 中位数 | 标准差 | 均值 | 中位数 | 标准差 | 均值 | 中位数 | 标准差 | ||
SABCDJ | 737 | 0.837 | 0.837 | 0.011 | 0.821 | 0.821 | 0.009 | 0.666 | 0.665 | 0.012 |
SFSABCDJ | 35 | 0.525 | 0.525 | 0.007 | 0.676 | 0.677 | 0.007 | 0.604 | 0.603 | 0.010 |
SFGSABCDJ | 22 | 0.345 | 0.347 | 0.007 | 0.598 | 0.598 | 0.005 | 0.488 | 0.487 | 0.009 |
SABCEDJ | 23 | 0.279 | 0.279 | 0.007 | −0.017 | −0.018 | 0.005 | 0.257 | 0.258 | 0.008 |
SFGHSABCDJ | 52 | 0.152 | 0.151 | 0.006 | 0.304 | 0.304 | 0.004 | 0.295 | 0.296 | 0.009 |
SABCJ | 47 | 0.023 | 0.025 | 0.007 | −0.238 | −0.237 | 0.006 | −0.035 | −0.035 | 0.011 |
SABCEJ | 27 | −0.250 | −0.250 | 0.005 | −0.404 | −0.404 | 0.005 | −0.338 | −0.338 | 0.012 |
SABHJ | 117 | −0.364 | −0.364 | 0.007 | −0.506 | −0.506 | 0.006 | −0.359 | −0.358 | 0.010 |
SAGHJ | 65 | −0.662 | −0.662 | 0.008 | −0.741 | −0.742 | 0.008 | −0.594 | −0.594 | 0.010 |
SAGHIJ | 45 | −0.806 | −0.806 | 0.008 | −0.940 | −0.939 | 0.007 | −0.760 | −0.760 | 0.010 |
SFGHJ | 337 | −1.099 | −1.099 | 0.011 | −1.033 | −1.033 | 0.008 | −0.869 | −0.869 | 0.011 |
SFGHIJ | 95 | −1.228 | −1.227 | 0.011 | −1.201 | −1.201 | 0.008 | −1.020 | −1.021 | 0.010 |
样本量 | 序列长度 | 模型 | 均Bias | 均RMSE | Cor | ART(秒) |
---|---|---|---|---|---|---|
100 | 短 | 1P-ASM | −0.002 | 0.534 | 0.854 | 18.117 |
2P-ASM | −0.002 | 0.534 | 0.852 | 30.274 | ||
SRM | 0.007 | 0.515 | 0.863 | 1029.189 | ||
长 | 1P-ASM | −0.011 | 0.441 | 0.910 | 24.393 | |
2P-ASM | −0.011 | 0.408 | 0.917 | 37.100 | ||
SRM | −0.026 | 0.395 | 0.921 | 1321.361 | ||
200 | 短 | 1P-ASM | 0.007 | 0.523 | 0.855 | 41.923 |
2P-ASM | 0.007 | 0.518 | 0.858 | 66.395 | ||
SRM | 0.011 | 0.507 | 0.864 | 527.740 | ||
长 | 1P-ASM | 0.010 | 0.438 | 0.912 | 54.448 | |
2P-ASM | 0.010 | 0.395 | 0.921 | 76.707 | ||
SRM | 0.002 | 0.386 | 0.924 | 691.308 | ||
500 | 短 | 1P-ASM | −0.004 | 0.516 | 0.856 | 119.439 |
2P-ASM | −0.004 | 0.504 | 0.863 | 198.838 | ||
SRM | −0.001 | 0.500 | 0.865 | 590.051 | ||
长 | 1P-ASM | 0.005 | 0.444 | 0.907 | 160.661 | |
2P-ASM | 0.005 | 0.394 | 0.920 | 236.195 | ||
SRM | 0.002 | 0.391 | 0.921 | 801.767 |
表5 模拟研究中三个模型的问题解决能力参数的估计返真性和计算耗时
样本量 | 序列长度 | 模型 | 均Bias | 均RMSE | Cor | ART(秒) |
---|---|---|---|---|---|---|
100 | 短 | 1P-ASM | −0.002 | 0.534 | 0.854 | 18.117 |
2P-ASM | −0.002 | 0.534 | 0.852 | 30.274 | ||
SRM | 0.007 | 0.515 | 0.863 | 1029.189 | ||
长 | 1P-ASM | −0.011 | 0.441 | 0.910 | 24.393 | |
2P-ASM | −0.011 | 0.408 | 0.917 | 37.100 | ||
SRM | −0.026 | 0.395 | 0.921 | 1321.361 | ||
200 | 短 | 1P-ASM | 0.007 | 0.523 | 0.855 | 41.923 |
2P-ASM | 0.007 | 0.518 | 0.858 | 66.395 | ||
SRM | 0.011 | 0.507 | 0.864 | 527.740 | ||
长 | 1P-ASM | 0.010 | 0.438 | 0.912 | 54.448 | |
2P-ASM | 0.010 | 0.395 | 0.921 | 76.707 | ||
SRM | 0.002 | 0.386 | 0.924 | 691.308 | ||
500 | 短 | 1P-ASM | −0.004 | 0.516 | 0.856 | 119.439 |
2P-ASM | −0.004 | 0.504 | 0.863 | 198.838 | ||
SRM | −0.001 | 0.500 | 0.865 | 590.051 | ||
长 | 1P-ASM | 0.005 | 0.444 | 0.907 | 160.661 | |
2P-ASM | 0.005 | 0.394 | 0.920 | 236.195 | ||
SRM | 0.002 | 0.391 | 0.921 | 801.767 |
样本量 | 序列 长度 | 1P-ASM与SRM | 2P-ASM与SRM | ||||
---|---|---|---|---|---|---|---|
均CBias | 均CRMSE | Ccor | 均Cbias | 均CRMSE | Ccor | ||
100 | 短 | −0.009 | 0.126 | 0.991 | −0.009 | 0.129 | 0.989 |
长 | 0.015 | 0.200 | 0.986 | 0.015 | 0.098 | 0.995 | |
200 | 短 | −0.004 | 0.126 | 0.991 | −0.004 | 0.098 | 0.994 |
长 | 0.008 | 0.208 | 0.986 | 0.008 | 0.077 | 0.997 | |
500 | 短 | −0.002 | 0.126 | 0.990 | −0.002 | 0.060 | 0.998 |
长 | 0.003 | 0.211 | 0.986 | 0.003 | 0.042 | 0.999 |
表6 模拟研究中两个ASM和SRM的问题解决能力参数估计的一致性
样本量 | 序列 长度 | 1P-ASM与SRM | 2P-ASM与SRM | ||||
---|---|---|---|---|---|---|---|
均CBias | 均CRMSE | Ccor | 均Cbias | 均CRMSE | Ccor | ||
100 | 短 | −0.009 | 0.126 | 0.991 | −0.009 | 0.129 | 0.989 |
长 | 0.015 | 0.200 | 0.986 | 0.015 | 0.098 | 0.995 | |
200 | 短 | −0.004 | 0.126 | 0.991 | −0.004 | 0.098 | 0.994 |
长 | 0.008 | 0.208 | 0.986 | 0.008 | 0.077 | 0.997 | |
500 | 短 | −0.002 | 0.126 | 0.990 | −0.002 | 0.060 | 0.998 |
长 | 0.003 | 0.211 | 0.986 | 0.003 | 0.042 | 0.999 |
模型 | 正确状态转移 | 错误状态转移 | |||
---|---|---|---|---|---|
1 | 2 | 3 | … | K | |
序列作答模型 | P1 | P2 | P3 | … | PK |
状态作答模型 | P1 | ||||
行动序列模型 | P1 |
表A1 三种行动序列数据分析模型的对比
模型 | 正确状态转移 | 错误状态转移 | |||
---|---|---|---|---|---|
1 | 2 | 3 | … | K | |
序列作答模型 | P1 | P2 | P3 | … | PK |
状态作答模型 | P1 | ||||
行动序列模型 | P1 |
Cnt | SchoolID | StdID | Event | Time | Event Number | Action |
---|---|---|---|---|---|---|
ARE | 0000068 | 01770 | START_ITEM | 843.1000 | 1.00 | NULL |
ARE | 0000068 | 01770 | ACER_EVENT | 885.2000 | 2.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 892.3000 | 3.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 894.1000 | 4.00 | daily |
ARE | 0000068 | 01770 | ACER_EVENT | 904.5000 | 5.00 | Cancel |
ARE | 0000068 | 01770 | ACER_EVENT | 914.7000 | 6.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 915.0000 | 7.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 915.9000 | 8.00 | individual |
ARE | 0000068 | 01770 | ACER_EVENT | 917.5000 | 9.00 | trip_2 |
ARE | 0000068 | 01770 | ACER_EVENT | 923.0000 | 10.00 | Buy |
ARE | 0000068 | 01770 | END_ITEM | 928.5000 | 11.00 | NULL |
ARE | 0000068 | 01770 | END_ITEM | 928.5000 | 12.00 | NULL |
ARE | 0000068 | 01770 | ACER_EVENT | 923.0000 | 13.00 | Buy |
ARE | 0000068 | 01770 | ACER_EVENT | 917.5000 | 14.00 | trip_2 |
ARE | 0000068 | 01770 | ACER_EVENT | 915.9000 | 15.00 | individual |
ARE | 0000068 | 01770 | ACER_EVENT | 915.0000 | 16.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 914.7000 | 17.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 904.5000 | 18.00 | Cancel |
ARE | 0000068 | 01770 | ACER_EVENT | 894.1000 | 19.00 | daily |
ARE | 0000068 | 01770 | ACER_EVENT | 892.3000 | 20.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 885.2000 | 21.00 | country_trains |
表A2 异常行动序列示例
Cnt | SchoolID | StdID | Event | Time | Event Number | Action |
---|---|---|---|---|---|---|
ARE | 0000068 | 01770 | START_ITEM | 843.1000 | 1.00 | NULL |
ARE | 0000068 | 01770 | ACER_EVENT | 885.2000 | 2.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 892.3000 | 3.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 894.1000 | 4.00 | daily |
ARE | 0000068 | 01770 | ACER_EVENT | 904.5000 | 5.00 | Cancel |
ARE | 0000068 | 01770 | ACER_EVENT | 914.7000 | 6.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 915.0000 | 7.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 915.9000 | 8.00 | individual |
ARE | 0000068 | 01770 | ACER_EVENT | 917.5000 | 9.00 | trip_2 |
ARE | 0000068 | 01770 | ACER_EVENT | 923.0000 | 10.00 | Buy |
ARE | 0000068 | 01770 | END_ITEM | 928.5000 | 11.00 | NULL |
ARE | 0000068 | 01770 | END_ITEM | 928.5000 | 12.00 | NULL |
ARE | 0000068 | 01770 | ACER_EVENT | 923.0000 | 13.00 | Buy |
ARE | 0000068 | 01770 | ACER_EVENT | 917.5000 | 14.00 | trip_2 |
ARE | 0000068 | 01770 | ACER_EVENT | 915.9000 | 15.00 | individual |
ARE | 0000068 | 01770 | ACER_EVENT | 915.0000 | 16.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 914.7000 | 17.00 | country_trains |
ARE | 0000068 | 01770 | ACER_EVENT | 904.5000 | 18.00 | Cancel |
ARE | 0000068 | 01770 | ACER_EVENT | 894.1000 | 19.00 | daily |
ARE | 0000068 | 01770 | ACER_EVENT | 892.3000 | 20.00 | full_fare |
ARE | 0000068 | 01770 | ACER_EVENT | 885.2000 | 21.00 | country_trains |
模型 | 统计量 | |
---|---|---|
SRM | 观测值 | |
抽样值 | ||
1P-ASM | 观测值 | |
抽样值 | ||
2P-ASM | 观测值 | |
抽样值 |
表A3 ppp值计算逻辑
模型 | 统计量 | |
---|---|---|
SRM | 观测值 | |
抽样值 | ||
1P-ASM | 观测值 | |
抽样值 | ||
2P-ASM | 观测值 | |
抽样值 |
状态转移 倾向参数 | 短序列 | 长序列 | 状态转移 倾向参数 | 短序列 | 长序列 | 状态转移 倾向参数 | 短序列 | 长序列 |
---|---|---|---|---|---|---|---|---|
0.496 | 0.410 | 0.472 | 0.585 | −1.001 | 0.965 | |||
−0.469 | −0.459 | 0.451 | 0.809 | 1.013 | −1.004 | |||
1.468 | 1.503 | 0.094 | 0.115 | −0.481 | 0.522 | |||
−0.375 | −1.096 | −0.993 | −1.023 | 0.432 | −0.599 | |||
−1.091 | −0.456 | 0.362 | 0.390 | −0.171 | 0.223 | |||
0.381 | −0.932 | 0.595 | 0.678 | 0.171 | −0.134 | |||
−0.146 | 0.240 | 0.184 | 0.090 | 0.028 | −0.114 | |||
−0.273 | 0.758 | −0.217 | −0.227 | −0.159 | 0.431 | |||
−1.001 | −1.481 | 0.185 | 0.149 | 0.071 | −0.412 |
表A4 模拟研究中状态转移倾向参数的真值
状态转移 倾向参数 | 短序列 | 长序列 | 状态转移 倾向参数 | 短序列 | 长序列 | 状态转移 倾向参数 | 短序列 | 长序列 |
---|---|---|---|---|---|---|---|---|
0.496 | 0.410 | 0.472 | 0.585 | −1.001 | 0.965 | |||
−0.469 | −0.459 | 0.451 | 0.809 | 1.013 | −1.004 | |||
1.468 | 1.503 | 0.094 | 0.115 | −0.481 | 0.522 | |||
−0.375 | −1.096 | −0.993 | −1.023 | 0.432 | −0.599 | |||
−1.091 | −0.456 | 0.362 | 0.390 | −0.171 | 0.223 | |||
0.381 | −0.932 | 0.595 | 0.678 | 0.171 | −0.134 | |||
−0.146 | 0.240 | 0.184 | 0.090 | 0.028 | −0.114 | |||
−0.273 | 0.758 | −0.217 | −0.227 | −0.159 | 0.431 | |||
−1.001 | −1.481 | 0.185 | 0.149 | 0.071 | −0.412 |
截距 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
0.941 | 0.050 | (0.844, 1.038) | 0.947 | 0.049 | (0.852, 1.042) | |
1.613 | 0.068 | (1.484, 1.751) | 1.623 | 0.069 | (1.492, 1.758) | |
−1.595 | 0.063 | (−1.720, −1.470) | −1.603 | 0.062 | (−1.725, −1.480) | |
−2.383 | 0.117 | (−2.618, −2.161) | −2.421 | 0.118 | (−2.650, −2.195) | |
−1.344 | 0.140 | (−1.614, −1.061) | −1.377 | 0.143 | (−1.660, −1.094) | |
0.069 | 0.168 | (−0.256, 0.396) | 0.070 | 0.170 | (−0.264, 0.404) | |
1.801 | 0.087 | (1.632, 1.978) | 1.820 | 0.086 | (1.654, 1.982) | |
0.560 | 0.115 | (0.332, 0.782) | 0.573 | 0.122 | (0.328, 0.809) | |
−0.214 | 0.087 | (−0.385, −0.040) | −0.212 | 0.087 | (−0.385, −0.038) | |
0.839 | 0.154 | (0.547, 1.139) | 0.867 | 0.154 | (0.567, 1.166) |
表A5 模拟研究中1P-ASM截距参数在不同信息水平下的估计结果
截距 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
0.941 | 0.050 | (0.844, 1.038) | 0.947 | 0.049 | (0.852, 1.042) | |
1.613 | 0.068 | (1.484, 1.751) | 1.623 | 0.069 | (1.492, 1.758) | |
−1.595 | 0.063 | (−1.720, −1.470) | −1.603 | 0.062 | (−1.725, −1.480) | |
−2.383 | 0.117 | (−2.618, −2.161) | −2.421 | 0.118 | (−2.650, −2.195) | |
−1.344 | 0.140 | (−1.614, −1.061) | −1.377 | 0.143 | (−1.660, −1.094) | |
0.069 | 0.168 | (−0.256, 0.396) | 0.070 | 0.170 | (−0.264, 0.404) | |
1.801 | 0.087 | (1.632, 1.978) | 1.820 | 0.086 | (1.654, 1.982) | |
0.560 | 0.115 | (0.332, 0.782) | 0.573 | 0.122 | (0.328, 0.809) | |
−0.214 | 0.087 | (−0.385, −0.040) | −0.212 | 0.087 | (−0.385, −0.038) | |
0.839 | 0.154 | (0.547, 1.139) | 0.867 | 0.154 | (0.567, 1.166) |
截距 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
1.061 | 0.064 | (0.937, 1.187) | 1.069 | 0.068 | (0.937, 1.210) | |
1.679 | 0.084 | (1.517, 1.844) | 1.694 | 0.086 | (1.529, 1.864) | |
−1.910 | 0.109 | (−2.125, −1.699) | −1.933 | 0.113 | (−2.167, −1.723) | |
−2.581 | 0.310 | (−3.220, −2.004) | −2.876 | 0.375 | (−3.665, −2.197) | |
−1.026 | 0.305 | (−1.651, −0.463) | −0.987 | 0.531 | (−1.900, −0.005) | |
−0.135 | 0.291 | (−0.719, 0.413) | −0.169 | 0.331 | (−0.863, 0.454) | |
2.212 | 0.168 | (1.904, 2.554) | 2.288 | 0.174 | (1.967, 2.643) | |
1.247 | 0.247 | (0.780, 1.750) | 1.374 | 0.268 | (0.896, 1.936) | |
−0.139 | 0.104 | (−0.341, 0.064) | −0.130 | 0.108 | (−0.338, 0.078) | |
1.238 | 0.250 | (0.772, 1.745) | 1.356 | 0.275 | (0.860, 1.933) |
表A6 模拟研究中2P-ASM截距参数在不同信息水平下的估计结果
截距 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
1.061 | 0.064 | (0.937, 1.187) | 1.069 | 0.068 | (0.937, 1.210) | |
1.679 | 0.084 | (1.517, 1.844) | 1.694 | 0.086 | (1.529, 1.864) | |
−1.910 | 0.109 | (−2.125, −1.699) | −1.933 | 0.113 | (−2.167, −1.723) | |
−2.581 | 0.310 | (−3.220, −2.004) | −2.876 | 0.375 | (−3.665, −2.197) | |
−1.026 | 0.305 | (−1.651, −0.463) | −0.987 | 0.531 | (−1.900, −0.005) | |
−0.135 | 0.291 | (−0.719, 0.413) | −0.169 | 0.331 | (−0.863, 0.454) | |
2.212 | 0.168 | (1.904, 2.554) | 2.288 | 0.174 | (1.967, 2.643) | |
1.247 | 0.247 | (0.780, 1.750) | 1.374 | 0.268 | (0.896, 1.936) | |
−0.139 | 0.104 | (−0.341, 0.064) | −0.130 | 0.108 | (−0.338, 0.078) | |
1.238 | 0.250 | (0.772, 1.745) | 1.356 | 0.275 | (0.860, 1.933) |
斜率 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
2.165 | 0.145 | (1.902, 2.463) | 2.185 | 0.149 | (1.908, 2.498) | |
2.268 | 0.208 | (1.885, 2.703) | 2.308 | 0.213 | (1.909, 2.753) | |
2.075 | 0.186 | (1.736, 2.459) | 2.121 | 0.193 | (1.760, 2.510) | |
1.499 | 0.315 | (0.921, 2.162) | 1.772 | 0.374 | (1.102, 2.560) | |
0.913 | 0.298 | (0.382, 1.537) | 0.858 | 0.535 | (0.000, 1.764) | |
1.722 | 0.494 | (0.823, 2.764) | 1.810 | 0.562 | (0.829, 3.024) | |
2.125 | 0.246 | (1.655, 2.624) | 2.238 | 0.254 | (1.770, 2.758) | |
2.567 | 0.390 | (1.866, 3.379) | 2.764 | 0.431 | (1.978, 3.695) | |
2.663 | 0.282 | (2.151, 3.254) | 2.699 | 0.287 | (2.190, 3.310) | |
2.188 | 0.418 | (1.419, 3.045) | 2.383 | 0.466 | (1.559, 3.387) |
表A7 模拟研究中2P-ASM斜率参数在不同信息水平下的估计结果
斜率 | 有信息先验 | 无信息先验 | ||||
---|---|---|---|---|---|---|
均值 | 标准差 | 95%HPD | 均值 | 标准差 | 95%HPD | |
2.165 | 0.145 | (1.902, 2.463) | 2.185 | 0.149 | (1.908, 2.498) | |
2.268 | 0.208 | (1.885, 2.703) | 2.308 | 0.213 | (1.909, 2.753) | |
2.075 | 0.186 | (1.736, 2.459) | 2.121 | 0.193 | (1.760, 2.510) | |
1.499 | 0.315 | (0.921, 2.162) | 1.772 | 0.374 | (1.102, 2.560) | |
0.913 | 0.298 | (0.382, 1.537) | 0.858 | 0.535 | (0.000, 1.764) | |
1.722 | 0.494 | (0.823, 2.764) | 1.810 | 0.562 | (0.829, 3.024) | |
2.125 | 0.246 | (1.655, 2.624) | 2.238 | 0.254 | (1.770, 2.758) | |
2.567 | 0.390 | (1.866, 3.379) | 2.764 | 0.431 | (1.978, 3.695) | |
2.663 | 0.282 | (2.151, 3.254) | 2.699 | 0.287 | (2.190, 3.310) | |
2.188 | 0.418 | (1.419, 3.045) | 2.383 | 0.466 | (1.559, 3.387) |
状态转移倾向参数 | 均值 | 标准差 | 95%HPD | 状态转移倾向参数 | 均值 | 标准差 | 95%HPD |
---|---|---|---|---|---|---|---|
0.587 | 0.035 | (0.519, 0.656) | −0.886 | 0.107 | (−1.101, −0.677) | ||
−0.587 | 0.035 | (−0.656, −0.519) | 0.790 | 0.136 | (0.523, 1.067) | ||
1.740 | 0.068 | (1.608, 1.873) | 0.052 | 0.127 | (−0.201, 0.308) | ||
−0.003 | 0.065 | (−0.129, 0.125) | −0.843 | 0.157 | (−1.153, −0.542) | ||
−1.737 | 0.097 | (−1.935, −1.554) | −0.680 | 0.064 | (−0.805, −0.557) | ||
1.586 | 0.075 | (1.443, 1.738) | 0.680 | 0.064 | (0.557, 0.805) | ||
0.165 | 0.076 | (0.011, 0.320) | −0.761 | 0.064 | (−0.886, −0.635) | ||
−1.751 | 0.120 | (−1.998, −1.523) | 0.761 | 0.064 | (0.635, 0.886) | ||
1.785 | 0.082 | (1.625, 1.946) | 0.373 | 0.064 | (0.247, 0.503) | ||
−0.049 | 0.094 | (−0.231, 0.132) | −0.666 | 0.054 | (−0.773, −0.560) | ||
−1.372 | 0.153 | (−1.688, −1.086) | 0.293 | 0.045 | (0.207, 0.381) | ||
−0.364 | 0.105 | (−0.576, −0.163) | 0.171 | 0.089 | (−0.007, 0.345) | ||
1.589 | 0.079 | (1.433, 1.744) | −0.171 | 0.089 | (−0.345, 0.007) | ||
−0.702 | 0.099 | (−0.897, −0.513) |
表A8 实证研究中SRM参数估计结果
状态转移倾向参数 | 均值 | 标准差 | 95%HPD | 状态转移倾向参数 | 均值 | 标准差 | 95%HPD |
---|---|---|---|---|---|---|---|
0.587 | 0.035 | (0.519, 0.656) | −0.886 | 0.107 | (−1.101, −0.677) | ||
−0.587 | 0.035 | (−0.656, −0.519) | 0.790 | 0.136 | (0.523, 1.067) | ||
1.740 | 0.068 | (1.608, 1.873) | 0.052 | 0.127 | (−0.201, 0.308) | ||
−0.003 | 0.065 | (−0.129, 0.125) | −0.843 | 0.157 | (−1.153, −0.542) | ||
−1.737 | 0.097 | (−1.935, −1.554) | −0.680 | 0.064 | (−0.805, −0.557) | ||
1.586 | 0.075 | (1.443, 1.738) | 0.680 | 0.064 | (0.557, 0.805) | ||
0.165 | 0.076 | (0.011, 0.320) | −0.761 | 0.064 | (−0.886, −0.635) | ||
−1.751 | 0.120 | (−1.998, −1.523) | 0.761 | 0.064 | (0.635, 0.886) | ||
1.785 | 0.082 | (1.625, 1.946) | 0.373 | 0.064 | (0.247, 0.503) | ||
−0.049 | 0.094 | (−0.231, 0.132) | −0.666 | 0.054 | (−0.773, −0.560) | ||
−1.372 | 0.153 | (−1.688, −1.086) | 0.293 | 0.045 | (0.207, 0.381) | ||
−0.364 | 0.105 | (−0.576, −0.163) | 0.171 | 0.089 | (−0.007, 0.345) | ||
1.589 | 0.079 | (1.433, 1.744) | −0.171 | 0.089 | (−0.345, 0.007) | ||
−0.702 | 0.099 | (−0.897, −0.513) |
[1] |
Arieli-Attali, M., Ou, L., & Simmering, V. R. (2019). Understanding test takers' choices in a self-adapted test: A hidden Markov modeling of process data. Frontiers in Psychology, 10, 83.
doi: 10.3389/fpsyg.2019.00083 pmid: 30787889 |
[2] |
Beck, L. W. (1943). The principle of parsimony in empirical science. The Journal of Philosophy, 40(23), 617-633. https://doi.org/10.2307/2019692
doi: 10.2307/2019692 URL |
[3] | Bergner, Y., Walker, E., & Ogan, A. (2017). Dynamic Bayesian network models for peer tutoring interactions. In A. A. vonDavier, M.Zhu, & P. C.Kyllonen(Eds), Innovative assessment of collaboration (pp. 249-268). Cham: Springer. |
[4] | Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M.Lord & M. R.Novick (Eds.), Statistical theories of mental test scores (pp. 397-124). Reading, MA: Addison-Wesley. |
[5] |
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37(1), 29-51. https://doi.org/10.1007/BF02291411
doi: 10.1007/BF02291411 URL |
[6] |
Buchner, A., & Funke, J. (1993). Finite-state automata: Dynamic task environments in problem-solving research. The Quarterly Journal of Experimental Psychology, 46(1), 83-118.
doi: 10.1080/14640749308401068 URL |
[7] |
Chen, Y. (2020). A continuous-time dynamic choice measurement model for problem-solving process data. Psychometrika, 85(4), 1052-1075.
doi: 10.1007/s11336-020-09734-1 pmid: 33346883 |
[8] | Fu, Y., Zhan, P., Chen, Q., & Jiao, H. (2022). Joint modeling of action sequences and action times in problem-solving tasks. PsyArXiv. Retrieved from psyarxiv.com/e3nbc |
[9] |
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross- validation and WAIC. Statistics and Computing, 27, 1413-1432.
doi: 10.1007/s11222-016-9696-4 |
[10] | Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733-760. |
[11] | Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511. |
[12] |
Han, Y., Liu, H., & Ji, F. (2022). A sequential response model for analyzing process data on technology-based problem- solving tasks. Multivariate Behavioral Research, 57(6), 960-977.
doi: 10.1080/00273171.2021.1932403 URL |
[13] |
Han, Y., & Wilson, M. (2022). Analyzing student response processes to evaluate success on a technology-based problem-solving task. Applied Measurement in Education, 35(1), 33-45.
doi: 10.1080/08957347.2022.2034821 URL |
[14] |
Han, Y., Xiao, Y., & Liu, H. (2022). Feature extraction and ability estimation of process data in the problem-solving test. Advances in Psychological Science, 30(6), 1393-1409.
doi: 10.3724/SP.J.1042.2022.01393 |
[ 韩雨婷, 肖悦, 刘红云. (2022). 问题解决测验中过程数据的特征抽取与能力评估. 心理科学进展, 30(6), 1393-1409.]
doi: 10.3724/SP.J.1042.2022.01393 |
|
[15] | Hao, J., Shu, Z., & von Davier, A. (2015). Analyzing process data from game/scenario-based tasks: An edit distance approach. Journal of Educational Data Mining, 7(1), 33-50. |
[16] | Harding, S. M. E., Griffin, P. E., Awwal, N., Alom, B. M., & Scoular, C. (2017). Measuring collaborative problem solving using mathematics-based tasks. AERA Open, 3(3), 1-19. |
[17] |
He, Q., Borgonovi, F., & Paccagnella, M. (2021). Leveraging process data to assess adults’ problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers & Education, 166, 104170.
doi: 10.1016/j.compedu.2021.104170 URL |
[18] | He, Q., & von Davier, M. (2016). Analyzing process data from problem-solving items with N-grams:Insights from a computer-based large-scale assessment. In R.Yigal, F.Steve, & M.Maryam (Eds.), Handbook of research on technology tools for real-world skill development (pp. 749-776). Hershey, PA: Information Science Reference. |
[19] | Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623. |
[20] |
LaMar, M. M. (2018). Markov decision process measurement model. Psychometrika, 83(1), 67-88.
doi: 10.1007/s11336-017-9570-0 pmid: 28447309 |
[21] |
Levy, R. (2019). Dynamic Bayesian network modeling of game-based diagnostic assessments. Multivariate Behavioral Research, 54(6), 771-794.
doi: 10.1080/00273171.2019.1590794 pmid: 30942094 |
[22] |
Li, M., Liu, Y., Liu, H. (2020). Analysis of the Problem- solving strategies in computer-based dynamic assessment: The extension and application of multilevel mixture IRT model. Acta Psychologica Sinica, 52(4), 528-540.
doi: 10.3724/SP.J.1041.2020.00528 URL |
[ 李美娟, 刘玥, 刘红云. (2020). 计算机动态测验中问题解决过程策略的分析: 多水平混合IRT模型的拓展与应用. 心理学报, 52(4), 528-540.]
doi: 10.3724/SP.J.1041.2020.00528 |
|
[23] |
Liu, H., Liu, Y., & Li, M. (2018). Analysis of process data of PISA 2012 computer-based problem solving: Application of the modified multilevel mixture IRT model. Frontiers in Psychology, 9, 1372.
doi: 10.3389/fpsyg.2018.01372 pmid: 30123171 |
[24] |
Liu, Y., Xu, H., Chen, Q., & Zhan, P. (2022). The measurement of problem-solving competence using process data. Advances in Psychological Science, 30(3), 522-535.
doi: 10.3724/SP.J.1042.2022.00522 |
[ 刘耀辉, 徐慧颖, 陈琦鹏, 詹沛达. (2022). 基于过程数据的问题解决能力测量及数据分析方法. 心理科学进展, 30(3), 522-535.]
doi: 10.3724/SP.J.1042.2022.00522 |
|
[25] |
Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200-217.
doi: 10.1177/0146621615621717 pmid: 29881048 |
[26] |
Man, K., Harring, J. R., & Zhan, P. (2022). Bridging models of biometric and psychometric assessment: A three-way joint modeling approach of item responses, response times and gaze fixation counts. Applied Psychological Measurement, 46(5), 361-381.
doi: 10.1177/01466216221089344 URL |
[27] | Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood Cliffs, NJ: Prentice-hall. |
[28] | OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en |
[29] |
Peng, S., Cai, Y., Wang, D., Luo, F., & Tu, D. (2022). A generalized diagnostic classification modeling framework integrating differential speediness: Advantages and illustrations in psychological and educational testing. Multivariate Behavioral Research, 57(6), 940-959.
doi: 10.1080/00273171.2021.1928474 URL |
[30] | Rasch, G. (1960). On general laws and the meaning of measurement in psychology. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability:Held at the Statistical Laboratory, University of California, June 20-July 30, 1960 (Vol. 4, p. 321). University of California Press. |
[31] |
Rosen, Y. (2017). Assessing students in human-to-agent settings to inform collaborative problem-solving learning. Journal of Educational Measurement, 54(1), 36-53.
doi: 10.1111/jedm.2017.54.issue-1 URL |
[32] | Shu, Z., Bergner, Y., Zhu, M., Hao, J., & von Davier, A. A. (2017). An item response theory analysis of problem- solving processes in scenario-based tasks. Psychological Test and Assessment Modeling, 59(1), 109-131. |
[33] |
Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika, 85(2), 378-397.
doi: 10.1007/s11336-020-09708-3 pmid: 32572672 |
[34] | Tang, X., Wang, Z., Liu, J., & Ying, Z. (2021). An exploratory analysis of the latent structure of process data via action sequence autoencoders. British Journal of Mathematical and Statistical Psychology, 74(1), 1-33. |
[35] | van der Linden, W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181-204. |
[36] |
van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287-308.
doi: 10.1007/s11336-006-1478-z URL |
[37] |
Vista, A., Care, E., & Awwal, N. (2017). Visualising and examining sequential actions as behavioural paths that can be interpreted as markers of complex behaviours. Computers in Human Behavior, 76, 656-671.
doi: 10.1016/j.chb.2017.01.027 URL |
[38] | Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12), 3571-3594.. |
[39] |
Wilson, M., Gochyyev, P., & Scalise, K. (2017). Modeling data from collaborative assessments: learning in digital interactive social networks. Journal of Educational Measurement, 54(1), 85-102.
doi: 10.1111/jedm.2017.54.issue-1 URL |
[40] |
Xiao, Y., He, Q., Veldkamp, B., & Liu, H. (2021). Exploring latent states of problem-solving competence using hidden Markov model on process data. Journal of Computer Assisted Learning, 37(5), 1232-1247.
doi: 10.1111/jcal.v37.5 URL |
[41] | Xiao, Y., & Liu, H. (2023). A state response measurement model for problem-solving process data. Behavior Research Methods, Online First. |
[42] |
Yuan, J., Xiao, Y., & Liu, H. (2019). Assessment of collaborative problem solving based on process stream data: A new paradigm for extracting indicators and modeling dyad data. Frontiers in Psychology, 10, 369.
doi: 10.3389/fpsyg.2019.00369 pmid: 30863344 |
[43] |
Zhan, P., Jiao, H., & Liao, D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286.
doi: 10.1111/bmsp.2018.71.issue-2 URL |
[44] | Zhan, P., Man, K., Wind, S. A., & Malone, J. (2022). Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis. Journal of Educational and Behavioral Statistics, 47(6), 736-776. |
[45] |
Zhan, P., & Qiao, X. (2022). Diagnostic classification analysis of problem-solving competence using process data: An item expansion method. Psychometrika, 87(4), 1529-1547.
doi: 10.1007/s11336-022-09855-9 pmid: 35389193 |
[46] | Zhan, S., Hao, J., & Davier, A. V. (2015). Analyzing process data from game/scenariobased tasks: An edit distance approach. Journal of Educational Data Mining, 7(1), 33-50. |
[47] |
Zhang, S., Wang, Z., Qi, J., Liu, J., & Ying, Z. (2022). Accurate assessment via process data. Psychometrika, 88(1), 76-97.
doi: 10.1007/s11336-022-09880-8 pmid: 35962849 |
[48] |
Zhu, M., Shu, Z., & von Davier, A. A. (2016). Using networks to visualize and analyze process data for educational assessment. Journal of Educational Measurement, 53(2), 190-211.
doi: 10.1111/jedm.12107 URL |
[1] | 童昊, 喻晓锋, 秦春影, 彭亚风, 钟小缘. 多级计分测验中基于残差统计量的被试拟合研究[J]. 心理学报, 2022, 54(9): 1122-1136. |
[2] | 任赫, 陈平. 两种新的多维计算机化分类测验终止规则[J]. 心理学报, 2021, 53(9): 1044-1058. |
[3] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
[4] | 陈平. 两种新的计算机化自适应测验在线标定方法[J]. 心理学报, 2016, 48(9): 1184-1198. |
[5] | 孟祥斌;陶剑;陈莎莉. 四参数Logistic模型潜在特质参数的 Warm加权极大似然估计[J]. 心理学报, 2016, 48(8): 1047-1056. |
[6] | 汪文义; 宋丽红;丁树良. 复杂决策规则下MIRT的分类准确性和分类一致性[J]. 心理学报, 2016, 48(12): 1612-1624. |
[7] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
[8] | 詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 2015, 47(5): 689-701. |
[9] | 姚若松;赵葆楠;刘泽;苗群鹰. 无领导小组讨论的多侧面Rasch模型应用[J]. 心理学报, 2013, 45(9): 1039-1049. |
[10] | 杜文久;周娟;李洪波. 二参数逻辑斯蒂模型项目参数的估计精度[J]. 心理学报, 2013, 45(10): 1179-1186. |
[11] | 刘红云,李冲,张平平,骆方. 分类数据测量等价性检验方法及其比较:项目阈值(难度)参数的组间差异性检验[J]. 心理学报, 2012, 44(8): 1124-1136. |
[12] | 杜文久;肖涵敏. 多维项目反应理论等级反应模型[J]. 心理学报, 2012, 44(10): 1402-1407. |
[13] | 刘红云,骆方,王玥,张玉. 多维测验项目参数的估计:基于SEM与MIRT方法的比较[J]. 心理学报, 2012, 44(1): 121-132. |
[14] | 涂冬波,蔡艳,戴海琦,丁树良. 多维项目反应理论:参数估计及其在心理测验中的应用[J]. 心理学报, 2011, 43(11): 1329-1340. |
[15] | 吴,锐,丁树良,甘登文. 含题组的测验等值[J]. 心理学报, 2010, 42(03): 434-442. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||