心理学报 ›› 2026, Vol. 58 ›› Issue (1): 166-179.doi: 10.3724/SP.J.1041.2026.0166 cstr: 32110.14.2026.0166
收稿日期:2025-03-04
发布日期:2025-10-28
出版日期:2026-01-25
通讯作者:
詹沛达, E-mail: pdzhan@gmail.com, zhan@zjnu.edu.cn;基金资助:
ZHAN Peida1(
), WANG Zhimou1, CHU Gaohong1, HAO Ning2,3(
)
Received:2025-03-04
Online:2025-10-28
Published:2026-01-25
摘要:
团队合作作为复杂社会系统中实现共同目标的关键行为模式, 其表现高度依赖于由成员间认知交互形成的团队认知。对团队认知的诊断测量不仅有助于探索团队成员间的认知交互规律, 还有助于识别影响团队行为表现的具体原因, 进而为实施有针对性干预、提升团队表现提供重要量化依据。然而, 目前尚缺乏具有团队认知诊断功能的心理测量模型。对此, 本研究构建了一个适用于分析团队合作作答数据的团队认知诊断模型——Team-DINA模型。实证研究和模拟研究结果表明新模型适用于分析团队合作作答数据, 可实现同时评估团队整体和成员个体的认知属性掌握情况和认知能力水平; 不仅填补了团队认知诊断领域的方法学空白, 还进一步拓展了认知诊断测量范式的适用范围。
中图分类号:
詹沛达, 王志谋, 褚高红, 郝宁. (2026). 基于成员间高阶认知交互的团队认知诊断建模. 心理学报, 58(1), 166-179.
ZHAN Peida, WANG Zhimou, CHU Gaohong, HAO Ning. (2026). Teamwork cognitive diagnostic modeling with higher-order cognitive interaction between team members. Acta Psychologica Sinica, 58(1), 166-179.
图1 基于高阶潜在结构的团队认知诊断建模示意图 注: θA和θB: 成员A和B的一般认知能力; αA和αB: 成员A和B的个体认知属性向量; YA和YB: 成员A和B的独立作答向量; θAB: 团队认知能力; αAB: 团队认知属性向量; YAB: 团队合作作答向量; εAB: 残差项(其他合作维度因素)。彩图见电子版, 下同。
图3 实证研究分析结果 注: g: 题目猜测参数; s: 题目失误参数; A: 成员A, B: 成员B, AB: 团队; θ: 一般能力; ε: 残差(其他合作维度因素); z1: 成员间作答一致性; z2: 成员间交流频次; z3: 成员间相互等待总时长. *: p < 0. 05, **: p < 0. 01, ***: p < 0. 001.
| 团队 | θA | θΒ | θAΒ | εAΒ | αA | αΒ | αAΒ | RawA | RawB | RawAB | z1 | z2 | z3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.79 | 0.81 | 0.86 | 0.17 | 11111 | 11111 | 11111 | 9 | 9 | 9 | 9 | 118 | 17.01 |
| 2 | 0.48 | 0.40 | 0.09 | −0.25 | 11111 | 11111 | 11101 | 8 | 7 | 6 | 9 | 141 | 17.11 |
| 7 | −1.38 | −1.48 | −1.95 | −0.63 | 11100 | 10100 | 01000 | 5 | 5 | 0 | 3 | 66 | 100.45 |
| 15 | 0.43 | 0.37 | 0.07 | −0.23 | 11111 | 11111 | 11101 | 8 | 7 | 7 | 7 | 9 | 232.37 |
| 48 | 0.48 | −0.43 | 0.29 | 0.29 | 11111 | 01100 | 11111 | 8 | 4 | 9 | 9 | 419 | 5.64 |
| 56 | −0.17 | 0.40 | 0.35 | 0.18 | 01101 | 11111 | 11111 | 6 | 6 | 8 | 9 | 405 | 8.71 |
| 66 | −0.17 | −0.09 | 0.11 | 0.18 | 11101 | 11111 | 11111 | 6 | 5 | 8 | 9 | 468 | 48.12 |
表1 7个示例团队的潜在变量与外显变量
| 团队 | θA | θΒ | θAΒ | εAΒ | αA | αΒ | αAΒ | RawA | RawB | RawAB | z1 | z2 | z3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.79 | 0.81 | 0.86 | 0.17 | 11111 | 11111 | 11111 | 9 | 9 | 9 | 9 | 118 | 17.01 |
| 2 | 0.48 | 0.40 | 0.09 | −0.25 | 11111 | 11111 | 11101 | 8 | 7 | 6 | 9 | 141 | 17.11 |
| 7 | −1.38 | −1.48 | −1.95 | −0.63 | 11100 | 10100 | 01000 | 5 | 5 | 0 | 3 | 66 | 100.45 |
| 15 | 0.43 | 0.37 | 0.07 | −0.23 | 11111 | 11111 | 11101 | 8 | 7 | 7 | 7 | 9 | 232.37 |
| 48 | 0.48 | −0.43 | 0.29 | 0.29 | 11111 | 01100 | 11111 | 8 | 4 | 9 | 9 | 419 | 5.64 |
| 56 | −0.17 | 0.40 | 0.35 | 0.18 | 01101 | 11111 | 11111 | 6 | 6 | 8 | 9 | 405 | 8.71 |
| 66 | −0.17 | −0.09 | 0.11 | 0.18 | 11101 | 11111 | 11111 | 6 | 5 | 8 | 9 | 468 | 48.12 |
图4 模拟研究1 Q矩阵及参数估计返真性 注: T: 团队数量; ρ: 成员间认知能力的相关; I: 分半测验的长度; Bias: 偏差; RMSE: 均方根误差; Cor: 真值与估计值的相关系数; A: 成员A; B: 成员B; AB: 团队. (a)模拟研究Q矩阵, 灰色为“1”、空白为“0”; 标记*为合作作答题目。(b)题目参数返真性, g1: 独立作答题目猜测参数; s1: 独立作答题目失误参数; g2: 合作作答题目猜测参数; s2: 合作作答题目失误参数; g: 全部题目猜测参数; s: 全部题目失误参数。(c)认知属性分类精度: ACCR: 属性判准率; PCCR: 模式判准率; 数值为PCCR_AB. (d)一般认知能力返真性。
图5 模拟研究2参数估计返真性 注: T: 团队数量; ρ: 成员间认知能力的相关; I: 分半测验的长度; Bias: 偏差; RMSE: 均方根误差; Cor: 真值与估计值的相关系数; A: 成员A; B: 成员B; AB: 团队. (a)题目参数返真性, g1: 独立作答题目猜测参数; s1: 独立作答题目失误参数; g2: 合作作答题目猜测参数; s2: 合作作答题目失误参数; g: 全部题目猜测参数; s: 全部题目失误参数。(b)认知属性分类精度: ACCR: 属性判准率; PCCR: 模式判准率; 数值为PCCR_AB。(c)一般认知能力返真性。
| 背景变量 | 成员组成 | 组数 |
|---|---|---|
| 性别 | 男-男 | 7 |
| 男-女 | 12 | |
| 女-女 | 48 | |
| 独生子女 | 独生-独生 | 6 |
| 独生-非独生 | 35 | |
| 非独生-非独生 | 26 | |
| 学历 | 本科-本科 | 48 |
| 本科-研究生 | 7 | |
| 研究生-研究生 | 12 |
表A1. 实证研究中67个团队的成员组成
| 背景变量 | 成员组成 | 组数 |
|---|---|---|
| 性别 | 男-男 | 7 |
| 男-女 | 12 | |
| 女-女 | 48 | |
| 独生子女 | 独生-独生 | 6 |
| 独生-非独生 | 35 | |
| 非独生-非独生 | 26 | |
| 学历 | 本科-本科 | 48 |
| 本科-研究生 | 7 | |
| 研究生-研究生 | 12 |
| ρ | T | I | g1 | s1 | g2 | s2 | g | s | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
| 0.6 | 50 | 10 | 0.042 | 0.069 | 0.775 | 0.064 | 0.104 | 0.768 | 0.060 | 0.092 | 0.668 | 0.118 | 0.153 | 0.634 | 0.051 | 0.081 | 0.751 | 0.091 | 0.128 | 0.702 |
| 15 | 0.019 | 0.052 | 0.875 | 0.047 | 0.079 | 0.838 | 0.030 | 0.072 | 0.789 | 0.092 | 0.134 | 0.686 | 0.025 | 0.062 | 0.828 | 0.069 | 0.107 | 0.757 | ||
| 30 | 0.015 | 0.043 | 0.925 | 0.037 | 0.073 | 0.830 | 0.025 | 0.062 | 0.854 | 0.072 | 0.115 | 0.709 | 0.020 | 0.053 | 0.896 | 0.054 | 0.094 | 0.765 | ||
| 100 | 10 | 0.029 | 0.059 | 0.776 | 0.036 | 0.066 | 0.863 | 0.042 | 0.077 | 0.703 | 0.068 | 0.101 | 0.772 | 0.036 | 0.068 | 0.765 | 0.052 | 0.084 | 0.825 | |
| 15 | 0.011 | 0.038 | 0.910 | 0.026 | 0.054 | 0.885 | 0.021 | 0.052 | 0.876 | 0.037 | 0.073 | 0.824 | 0.016 | 0.045 | 0.901 | 0.031 | 0.064 | 0.863 | ||
| 30 | 0.007 | 0.032 | 0.957 | 0.018 | 0.046 | 0.914 | 0.013 | 0.043 | 0.915 | 0.037 | 0.074 | 0.847 | 0.010 | 0.038 | 0.938 | 0.027 | 0.060 | 0.880 | ||
| 200 | 10 | 0.018 | 0.044 | 0.839 | 0.020 | 0.048 | 0.911 | 0.025 | 0.054 | 0.748 | 0.035 | 0.068 | 0.872 | 0.022 | 0.049 | 0.842 | 0.028 | 0.058 | 0.901 | |
| 15 | 0.005 | 0.027 | 0.963 | 0.013 | 0.039 | 0.930 | 0.012 | 0.036 | 0.929 | 0.023 | 0.053 | 0.907 | 0.009 | 0.032 | 0.948 | 0.018 | 0.046 | 0.929 | ||
| 30 | 0.002 | 0.021 | 0.982 | 0.011 | 0.033 | 0.953 | 0.007 | 0.029 | 0.959 | 0.018 | 0.048 | 0.922 | 0.005 | 0.025 | 0.972 | 0.015 | 0.041 | 0.940 | ||
| 0 | 50 | 10 | 0.038 | 0.076 | 0.736 | 0.074 | 0.107 | 0.763 | 0.058 | 0.093 | 0.551 | 0.118 | 0.157 | 0.627 | 0.048 | 0.085 | 0.669 | 0.096 | 0.132 | 0.703 |
| 15 | 0.022 | 0.056 | 0.830 | 0.044 | 0.078 | 0.803 | 0.042 | 0.080 | 0.757 | 0.089 | 0.127 | 0.740 | 0.032 | 0.068 | 0.801 | 0.066 | 0.103 | 0.765 | ||
| 30 | 0.014 | 0.043 | 0.922 | 0.036 | 0.069 | 0.865 | 0.024 | 0.063 | 0.860 | 0.080 | 0.120 | 0.729 | 0.019 | 0.053 | 0.889 | 0.058 | 0.094 | 0.783 | ||
| 100 | 10 | 0.024 | 0.051 | 0.828 | 0.035 | 0.068 | 0.837 | 0.045 | 0.078 | 0.722 | 0.066 | 0.103 | 0.778 | 0.035 | 0.064 | 0.785 | 0.051 | 0.086 | 0.823 | |
| 15 | 0.011 | 0.038 | 0.930 | 0.022 | 0.053 | 0.888 | 0.025 | 0.052 | 0.848 | 0.046 | 0.081 | 0.824 | 0.018 | 0.045 | 0.906 | 0.034 | 0.067 | 0.866 | ||
| 30 | 0.008 | 0.029 | 0.962 | 0.020 | 0.051 | 0.897 | 0.012 | 0.043 | 0.925 | 0.038 | 0.071 | 0.859 | 0.010 | 0.036 | 0.946 | 0.029 | 0.061 | 0.885 | ||
| 200 | 10 | 0.020 | 0.045 | 0.841 | 0.021 | 0.046 | 0.900 | 0.034 | 0.061 | 0.771 | 0.047 | 0.071 | 0.903 | 0.027 | 0.053 | 0.836 | 0.034 | 0.059 | 0.909 | |
| 15 | 0.004 | 0.027 | 0.957 | 0.013 | 0.038 | 0.939 | 0.011 | 0.037 | 0.929 | 0.025 | 0.057 | 0.894 | 0.007 | 0.032 | 0.949 | 0.019 | 0.048 | 0.923 | ||
| 30 | 0.003 | 0.022 | 0.980 | 0.009 | 0.032 | 0.956 | 0.007 | 0.030 | 0.963 | 0.018 | 0.047 | 0.916 | 0.005 | 0.026 | 0.972 | 0.014 | 0.040 | 0.939 | ||
| -0.6 | 50 | 10 | 0.037 | 0.070 | 0.729 | 0.070 | 0.102 | 0.759 | 0.054 | 0.092 | 0.592 | 0.115 | 0.151 | 0.635 | 0.046 | 0.081 | 0.692 | 0.092 | 0.126 | 0.703 |
| 15 | 0.019 | 0.056 | 0.822 | 0.046 | 0.081 | 0.802 | 0.035 | 0.075 | 0.788 | 0.101 | 0.143 | 0.654 | 0.027 | 0.065 | 0.812 | 0.074 | 0.112 | 0.715 | ||
| 30 | 0.012 | 0.044 | 0.931 | 0.034 | 0.070 | 0.848 | 0.025 | 0.063 | 0.843 | 0.072 | 0.111 | 0.755 | 0.019 | 0.054 | 0.890 | 0.053 | 0.090 | 0.796 | ||
| 100 | 10 | 0.028 | 0.056 | 0.814 | 0.039 | 0.073 | 0.850 | 0.045 | 0.078 | 0.751 | 0.057 | 0.104 | 0.745 | 0.036 | 0.067 | 0.782 | 0.048 | 0.088 | 0.791 | |
| 15 | 0.012 | 0.040 | 0.923 | 0.028 | 0.057 | 0.862 | 0.022 | 0.050 | 0.878 | 0.048 | 0.089 | 0.829 | 0.017 | 0.045 | 0.907 | 0.038 | 0.073 | 0.844 | ||
| 30 | 0.007 | 0.031 | 0.959 | 0.017 | 0.045 | 0.919 | 0.013 | 0.044 | 0.923 | 0.035 | 0.068 | 0.858 | 0.010 | 0.038 | 0.940 | 0.026 | 0.057 | 0.890 | ||
| 200 | 10 | 0.017 | 0.041 | 0.854 | 0.017 | 0.044 | 0.931 | 0.026 | 0.055 | 0.799 | 0.032 | 0.069 | 0.874 | 0.021 | 0.048 | 0.845 | 0.025 | 0.056 | 0.910 | |
| 15 | 0.004 | 0.028 | 0.952 | 0.010 | 0.038 | 0.948 | 0.011 | 0.037 | 0.919 | 0.017 | 0.053 | 0.874 | 0.008 | 0.032 | 0.945 | 0.014 | 0.045 | 0.925 | ||
| 30 | 0.002 | 0.021 | 0.979 | 0.010 | 0.033 | 0.957 | 0.008 | 0.031 | 0.959 | 0.017 | 0.046 | 0.913 | 0.005 | 0.026 | 0.970 | 0.014 | 0.040 | 0.939 | ||
表A2. 模拟研究1题目参数估计返真性
| ρ | T | I | g1 | s1 | g2 | s2 | g | s | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
| 0.6 | 50 | 10 | 0.042 | 0.069 | 0.775 | 0.064 | 0.104 | 0.768 | 0.060 | 0.092 | 0.668 | 0.118 | 0.153 | 0.634 | 0.051 | 0.081 | 0.751 | 0.091 | 0.128 | 0.702 |
| 15 | 0.019 | 0.052 | 0.875 | 0.047 | 0.079 | 0.838 | 0.030 | 0.072 | 0.789 | 0.092 | 0.134 | 0.686 | 0.025 | 0.062 | 0.828 | 0.069 | 0.107 | 0.757 | ||
| 30 | 0.015 | 0.043 | 0.925 | 0.037 | 0.073 | 0.830 | 0.025 | 0.062 | 0.854 | 0.072 | 0.115 | 0.709 | 0.020 | 0.053 | 0.896 | 0.054 | 0.094 | 0.765 | ||
| 100 | 10 | 0.029 | 0.059 | 0.776 | 0.036 | 0.066 | 0.863 | 0.042 | 0.077 | 0.703 | 0.068 | 0.101 | 0.772 | 0.036 | 0.068 | 0.765 | 0.052 | 0.084 | 0.825 | |
| 15 | 0.011 | 0.038 | 0.910 | 0.026 | 0.054 | 0.885 | 0.021 | 0.052 | 0.876 | 0.037 | 0.073 | 0.824 | 0.016 | 0.045 | 0.901 | 0.031 | 0.064 | 0.863 | ||
| 30 | 0.007 | 0.032 | 0.957 | 0.018 | 0.046 | 0.914 | 0.013 | 0.043 | 0.915 | 0.037 | 0.074 | 0.847 | 0.010 | 0.038 | 0.938 | 0.027 | 0.060 | 0.880 | ||
| 200 | 10 | 0.018 | 0.044 | 0.839 | 0.020 | 0.048 | 0.911 | 0.025 | 0.054 | 0.748 | 0.035 | 0.068 | 0.872 | 0.022 | 0.049 | 0.842 | 0.028 | 0.058 | 0.901 | |
| 15 | 0.005 | 0.027 | 0.963 | 0.013 | 0.039 | 0.930 | 0.012 | 0.036 | 0.929 | 0.023 | 0.053 | 0.907 | 0.009 | 0.032 | 0.948 | 0.018 | 0.046 | 0.929 | ||
| 30 | 0.002 | 0.021 | 0.982 | 0.011 | 0.033 | 0.953 | 0.007 | 0.029 | 0.959 | 0.018 | 0.048 | 0.922 | 0.005 | 0.025 | 0.972 | 0.015 | 0.041 | 0.940 | ||
| 0 | 50 | 10 | 0.038 | 0.076 | 0.736 | 0.074 | 0.107 | 0.763 | 0.058 | 0.093 | 0.551 | 0.118 | 0.157 | 0.627 | 0.048 | 0.085 | 0.669 | 0.096 | 0.132 | 0.703 |
| 15 | 0.022 | 0.056 | 0.830 | 0.044 | 0.078 | 0.803 | 0.042 | 0.080 | 0.757 | 0.089 | 0.127 | 0.740 | 0.032 | 0.068 | 0.801 | 0.066 | 0.103 | 0.765 | ||
| 30 | 0.014 | 0.043 | 0.922 | 0.036 | 0.069 | 0.865 | 0.024 | 0.063 | 0.860 | 0.080 | 0.120 | 0.729 | 0.019 | 0.053 | 0.889 | 0.058 | 0.094 | 0.783 | ||
| 100 | 10 | 0.024 | 0.051 | 0.828 | 0.035 | 0.068 | 0.837 | 0.045 | 0.078 | 0.722 | 0.066 | 0.103 | 0.778 | 0.035 | 0.064 | 0.785 | 0.051 | 0.086 | 0.823 | |
| 15 | 0.011 | 0.038 | 0.930 | 0.022 | 0.053 | 0.888 | 0.025 | 0.052 | 0.848 | 0.046 | 0.081 | 0.824 | 0.018 | 0.045 | 0.906 | 0.034 | 0.067 | 0.866 | ||
| 30 | 0.008 | 0.029 | 0.962 | 0.020 | 0.051 | 0.897 | 0.012 | 0.043 | 0.925 | 0.038 | 0.071 | 0.859 | 0.010 | 0.036 | 0.946 | 0.029 | 0.061 | 0.885 | ||
| 200 | 10 | 0.020 | 0.045 | 0.841 | 0.021 | 0.046 | 0.900 | 0.034 | 0.061 | 0.771 | 0.047 | 0.071 | 0.903 | 0.027 | 0.053 | 0.836 | 0.034 | 0.059 | 0.909 | |
| 15 | 0.004 | 0.027 | 0.957 | 0.013 | 0.038 | 0.939 | 0.011 | 0.037 | 0.929 | 0.025 | 0.057 | 0.894 | 0.007 | 0.032 | 0.949 | 0.019 | 0.048 | 0.923 | ||
| 30 | 0.003 | 0.022 | 0.980 | 0.009 | 0.032 | 0.956 | 0.007 | 0.030 | 0.963 | 0.018 | 0.047 | 0.916 | 0.005 | 0.026 | 0.972 | 0.014 | 0.040 | 0.939 | ||
| -0.6 | 50 | 10 | 0.037 | 0.070 | 0.729 | 0.070 | 0.102 | 0.759 | 0.054 | 0.092 | 0.592 | 0.115 | 0.151 | 0.635 | 0.046 | 0.081 | 0.692 | 0.092 | 0.126 | 0.703 |
| 15 | 0.019 | 0.056 | 0.822 | 0.046 | 0.081 | 0.802 | 0.035 | 0.075 | 0.788 | 0.101 | 0.143 | 0.654 | 0.027 | 0.065 | 0.812 | 0.074 | 0.112 | 0.715 | ||
| 30 | 0.012 | 0.044 | 0.931 | 0.034 | 0.070 | 0.848 | 0.025 | 0.063 | 0.843 | 0.072 | 0.111 | 0.755 | 0.019 | 0.054 | 0.890 | 0.053 | 0.090 | 0.796 | ||
| 100 | 10 | 0.028 | 0.056 | 0.814 | 0.039 | 0.073 | 0.850 | 0.045 | 0.078 | 0.751 | 0.057 | 0.104 | 0.745 | 0.036 | 0.067 | 0.782 | 0.048 | 0.088 | 0.791 | |
| 15 | 0.012 | 0.040 | 0.923 | 0.028 | 0.057 | 0.862 | 0.022 | 0.050 | 0.878 | 0.048 | 0.089 | 0.829 | 0.017 | 0.045 | 0.907 | 0.038 | 0.073 | 0.844 | ||
| 30 | 0.007 | 0.031 | 0.959 | 0.017 | 0.045 | 0.919 | 0.013 | 0.044 | 0.923 | 0.035 | 0.068 | 0.858 | 0.010 | 0.038 | 0.940 | 0.026 | 0.057 | 0.890 | ||
| 200 | 10 | 0.017 | 0.041 | 0.854 | 0.017 | 0.044 | 0.931 | 0.026 | 0.055 | 0.799 | 0.032 | 0.069 | 0.874 | 0.021 | 0.048 | 0.845 | 0.025 | 0.056 | 0.910 | |
| 15 | 0.004 | 0.028 | 0.952 | 0.010 | 0.038 | 0.948 | 0.011 | 0.037 | 0.919 | 0.017 | 0.053 | 0.874 | 0.008 | 0.032 | 0.945 | 0.014 | 0.045 | 0.925 | ||
| 30 | 0.002 | 0.021 | 0.979 | 0.010 | 0.033 | 0.957 | 0.008 | 0.031 | 0.959 | 0.017 | 0.046 | 0.913 | 0.005 | 0.026 | 0.970 | 0.014 | 0.040 | 0.939 | ||
| ρ | T | I | ACCR_A | ACCR_B | ACCR_AB | PCCR_A | PCCR_B | PCCR_AB | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | ||||||
| 0.6 | 50 | 10 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.589 | 0.585 | 0.603 |
| 15 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.701 | 0.721 | 0.679 | ||
| 30 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.895 | 0.892 | 0.885 | ||
| 100 | 10 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.614 | 0.611 | 0.596 | |
| 15 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.714 | 0.723 | 0.726 | ||
| 30 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.897 | 0.886 | 0.887 | ||
| 200 | 10 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.638 | 0.630 | 0.624 | |
| 15 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.732 | 0.733 | 0.718 | ||
| 30 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.888 | 0.891 | 0.895 | ||
| 0 | 50 | 10 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.602 | 0.603 | 0.591 |
| 15 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.705 | 0.695 | 0.675 | ||
| 30 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.898 | 0.896 | 0.878 | ||
| 100 | 10 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.598 | 0.617 | 0.600 | |
| 15 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.686 | 0.726 | 0.708 | ||
| 30 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.878 | 0.897 | 0.900 | ||
| 200 | 10 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.627 | 0.625 | 0.618 | |
| 15 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.723 | 0.735 | 0.720 | ||
| 30 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.892 | 0.896 | 0.896 | ||
| -0.6 | 50 | 10 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.582 | 0.611 | 0.610 |
| 15 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.695 | 0.705 | 0.667 | ||
| 30 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.893 | 0.883 | 0.882 | ||
| 100 | 10 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.607 | 0.603 | 0.607 | |
| 15 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.716 | 0.728 | 0.701 | ||
| 30 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.887 | 0.887 | 0.893 | ||
| 200 | 10 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.645 | 0.643 | 0.625 | |
| 15 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.731 | 0.726 | 0.721 | ||
| 30 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.900 | 0.895 | 0.890 | ||
表A3. 模拟研究1认知属性判准率
| ρ | T | I | ACCR_A | ACCR_B | ACCR_AB | PCCR_A | PCCR_B | PCCR_AB | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | ||||||
| 0.6 | 50 | 10 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.917 | 0.881 | 0.888 | 0.866 | 0.888 | 0.589 | 0.585 | 0.603 |
| 15 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.951 | 0.905 | 0.921 | 0.918 | 0.928 | 0.701 | 0.721 | 0.679 | ||
| 30 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.986 | 0.981 | 0.981 | 0.963 | 0.969 | 0.895 | 0.892 | 0.885 | ||
| 100 | 10 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.921 | 0.898 | 0.896 | 0.899 | 0.881 | 0.614 | 0.611 | 0.596 | |
| 15 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.714 | 0.723 | 0.726 | ||
| 30 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.989 | 0.986 | 0.978 | 0.965 | 0.967 | 0.897 | 0.886 | 0.887 | ||
| 200 | 10 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.934 | 0.891 | 0.901 | 0.905 | 0.900 | 0.638 | 0.630 | 0.624 | |
| 15 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.961 | 0.917 | 0.925 | 0.930 | 0.936 | 0.732 | 0.733 | 0.718 | ||
| 30 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.987 | 0.983 | 0.976 | 0.963 | 0.963 | 0.888 | 0.891 | 0.895 | ||
| 0 | 50 | 10 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.910 | 0.879 | 0.903 | 0.885 | 0.887 | 0.602 | 0.603 | 0.591 |
| 15 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.948 | 0.910 | 0.939 | 0.933 | 0.899 | 0.705 | 0.695 | 0.675 | ||
| 30 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.986 | 0.984 | 0.979 | 0.972 | 0.965 | 0.898 | 0.896 | 0.878 | ||
| 100 | 10 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.925 | 0.869 | 0.898 | 0.872 | 0.900 | 0.598 | 0.617 | 0.600 | |
| 15 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.958 | 0.897 | 0.913 | 0.908 | 0.927 | 0.686 | 0.726 | 0.708 | ||
| 30 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.985 | 0.984 | 0.971 | 0.961 | 0.958 | 0.878 | 0.897 | 0.900 | ||
| 200 | 10 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.928 | 0.888 | 0.896 | 0.905 | 0.896 | 0.627 | 0.625 | 0.618 | |
| 15 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.955 | 0.909 | 0.930 | 0.932 | 0.927 | 0.723 | 0.735 | 0.720 | ||
| 30 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.988 | 0.980 | 0.974 | 0.967 | 0.968 | 0.892 | 0.896 | 0.896 | ||
| -0.6 | 50 | 10 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.915 | 0.870 | 0.888 | 0.870 | 0.895 | 0.582 | 0.611 | 0.610 |
| 15 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.947 | 0.917 | 0.909 | 0.924 | 0.912 | 0.695 | 0.705 | 0.667 | ||
| 30 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.989 | 0.975 | 0.971 | 0.971 | 0.971 | 0.893 | 0.883 | 0.882 | ||
| 100 | 10 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.920 | 0.879 | 0.880 | 0.908 | 0.900 | 0.607 | 0.603 | 0.607 | |
| 15 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.954 | 0.910 | 0.934 | 0.928 | 0.923 | 0.716 | 0.728 | 0.701 | ||
| 30 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.987 | 0.988 | 0.970 | 0.958 | 0.969 | 0.887 | 0.887 | 0.893 | ||
| 200 | 10 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.932 | 0.896 | 0.902 | 0.907 | 0.902 | 0.645 | 0.643 | 0.625 | |
| 15 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.959 | 0.924 | 0.922 | 0.935 | 0.921 | 0.731 | 0.726 | 0.721 | ||
| 30 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.986 | 0.981 | 0.976 | 0.970 | 0.972 | 0.900 | 0.895 | 0.890 | ||
| ρ | T | I | A | B | AB | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
| 0.6 | 50 | 10 | −0.001 | 0.633 | 0.764 | 0.005 | 0.626 | 0.772 | −0.006 | 0.595 | 0.806 |
| 15 | −0.003 | 0.605 | 0.788 | −0.008 | 0.605 | 0.790 | −0.006 | 0.561 | 0.823 | ||
| 30 | 0.008 | 0.555 | 0.827 | −0.010 | 0.570 | 0.815 | −0.009 | 0.516 | 0.853 | ||
| 100 | 10 | 0.000 | 0.618 | 0.780 | −0.001 | 0.626 | 0.773 | −0.006 | 0.576 | 0.812 | |
| 15 | −0.004 | 0.589 | 0.803 | 0.004 | 0.586 | 0.805 | −0.005 | 0.550 | 0.836 | ||
| 30 | −0.010 | 0.561 | 0.824 | 0.014 | 0.550 | 0.831 | −0.006 | 0.506 | 0.858 | ||
| 200 | 10 | 0.005 | 0.631 | 0.770 | −0.006 | 0.632 | 0.770 | −0.005 | 0.582 | 0.802 | |
| 15 | −0.004 | 0.584 | 0.807 | 0.002 | 0.586 | 0.805 | −0.001 | 0.544 | 0.839 | ||
| 30 | 0.000 | 0.545 | 0.823 | 0.001 | 0.547 | 0.830 | 0.004 | 0.508 | 0.851 | ||
| 0 | 50 | 10 | 0.001 | 0.690 | 0.715 | −0.005 | 0.674 | 0.727 | 0.007 | 0.670 | 0.732 |
| 15 | −0.003 | 0.665 | 0.739 | 0.011 | 0.653 | 0.732 | 0.035 | 0.627 | 0.765 | ||
| 30 | 0.003 | 0.629 | 0.772 | −0.014 | 0.601 | 0.795 | 0.004 | 0.592 | 0.792 | ||
| 100 | 10 | −0.008 | 0.683 | 0.723 | 0.007 | 0.676 | 0.729 | −0.010 | 0.660 | 0.752 | |
| 15 | 0.002 | 0.657 | 0.746 | 0.000 | 0.644 | 0.758 | 0.007 | 0.623 | 0.774 | ||
| 30 | 0.003 | 0.599 | 0.796 | −0.001 | 0.615 | 0.783 | 0.015 | 0.572 | 0.816 | ||
| 200 | 10 | −0.003 | 0.673 | 0.733 | 0.003 | 0.674 | 0.732 | 0.001 | 0.655 | 0.752 | |
| 15 | −0.004 | 0.649 | 0.755 | 0.006 | 0.647 | 0.757 | 0.005 | 0.628 | 0.777 | ||
| 30 | −0.002 | 0.601 | 0.795 | 0.004 | 0.608 | 0.789 | 0.005 | 0.586 | 0.809 | ||
| −0.6 | 50 | 10 | 0.010 | 0.668 | 0.736 | −0.015 | 0.666 | 0.739 | 0.010 | 0.690 | 0.713 |
| 15 | −0.002 | 0.627 | 0.773 | −0.001 | 0.628 | 0.773 | −0.023 | 0.676 | 0.720 | ||
| 30 | 0.004 | 0.609 | 0.787 | −0.002 | 0.592 | 0.801 | 0.009 | 0.633 | 0.780 | ||
| 100 | 10 | −0.002 | 0.650 | 0.754 | 0.000 | 0.657 | 0.746 | 0.010 | 0.694 | 0.728 | |
| 15 | 0.003 | 0.639 | 0.763 | −0.004 | 0.629 | 0.772 | 0.009 | 0.675 | 0.726 | ||
| 30 | 0.019 | 0.593 | 0.800 | −0.015 | 0.588 | 0.805 | −0.004 | 0.635 | 0.763 | ||
| 200 | 10 | 0.000 | 0.649 | 0.754 | 0.001 | 0.650 | 0.755 | 0.009 | 0.710 | 0.705 | |
| 15 | −0.003 | 0.622 | 0.778 | 0.003 | 0.628 | 0.773 | −0.001 | 0.662 | 0.748 | ||
| 30 | −0.004 | 0.584 | 0.808 | 0.005 | 0.589 | 0.803 | 0.002 | 0.616 | 0.788 | ||
表A4. 模拟研究1认知能力参数估计返真性
| ρ | T | I | A | B | AB | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |||
| 0.6 | 50 | 10 | −0.001 | 0.633 | 0.764 | 0.005 | 0.626 | 0.772 | −0.006 | 0.595 | 0.806 |
| 15 | −0.003 | 0.605 | 0.788 | −0.008 | 0.605 | 0.790 | −0.006 | 0.561 | 0.823 | ||
| 30 | 0.008 | 0.555 | 0.827 | −0.010 | 0.570 | 0.815 | −0.009 | 0.516 | 0.853 | ||
| 100 | 10 | 0.000 | 0.618 | 0.780 | −0.001 | 0.626 | 0.773 | −0.006 | 0.576 | 0.812 | |
| 15 | −0.004 | 0.589 | 0.803 | 0.004 | 0.586 | 0.805 | −0.005 | 0.550 | 0.836 | ||
| 30 | −0.010 | 0.561 | 0.824 | 0.014 | 0.550 | 0.831 | −0.006 | 0.506 | 0.858 | ||
| 200 | 10 | 0.005 | 0.631 | 0.770 | −0.006 | 0.632 | 0.770 | −0.005 | 0.582 | 0.802 | |
| 15 | −0.004 | 0.584 | 0.807 | 0.002 | 0.586 | 0.805 | −0.001 | 0.544 | 0.839 | ||
| 30 | 0.000 | 0.545 | 0.823 | 0.001 | 0.547 | 0.830 | 0.004 | 0.508 | 0.851 | ||
| 0 | 50 | 10 | 0.001 | 0.690 | 0.715 | −0.005 | 0.674 | 0.727 | 0.007 | 0.670 | 0.732 |
| 15 | −0.003 | 0.665 | 0.739 | 0.011 | 0.653 | 0.732 | 0.035 | 0.627 | 0.765 | ||
| 30 | 0.003 | 0.629 | 0.772 | −0.014 | 0.601 | 0.795 | 0.004 | 0.592 | 0.792 | ||
| 100 | 10 | −0.008 | 0.683 | 0.723 | 0.007 | 0.676 | 0.729 | −0.010 | 0.660 | 0.752 | |
| 15 | 0.002 | 0.657 | 0.746 | 0.000 | 0.644 | 0.758 | 0.007 | 0.623 | 0.774 | ||
| 30 | 0.003 | 0.599 | 0.796 | −0.001 | 0.615 | 0.783 | 0.015 | 0.572 | 0.816 | ||
| 200 | 10 | −0.003 | 0.673 | 0.733 | 0.003 | 0.674 | 0.732 | 0.001 | 0.655 | 0.752 | |
| 15 | −0.004 | 0.649 | 0.755 | 0.006 | 0.647 | 0.757 | 0.005 | 0.628 | 0.777 | ||
| 30 | −0.002 | 0.601 | 0.795 | 0.004 | 0.608 | 0.789 | 0.005 | 0.586 | 0.809 | ||
| −0.6 | 50 | 10 | 0.010 | 0.668 | 0.736 | −0.015 | 0.666 | 0.739 | 0.010 | 0.690 | 0.713 |
| 15 | −0.002 | 0.627 | 0.773 | −0.001 | 0.628 | 0.773 | −0.023 | 0.676 | 0.720 | ||
| 30 | 0.004 | 0.609 | 0.787 | −0.002 | 0.592 | 0.801 | 0.009 | 0.633 | 0.780 | ||
| 100 | 10 | −0.002 | 0.650 | 0.754 | 0.000 | 0.657 | 0.746 | 0.010 | 0.694 | 0.728 | |
| 15 | 0.003 | 0.639 | 0.763 | −0.004 | 0.629 | 0.772 | 0.009 | 0.675 | 0.726 | ||
| 30 | 0.019 | 0.593 | 0.800 | −0.015 | 0.588 | 0.805 | −0.004 | 0.635 | 0.763 | ||
| 200 | 10 | 0.000 | 0.649 | 0.754 | 0.001 | 0.650 | 0.755 | 0.009 | 0.710 | 0.705 | |
| 15 | −0.003 | 0.622 | 0.778 | 0.003 | 0.628 | 0.773 | −0.001 | 0.662 | 0.748 | ||
| 30 | −0.004 | 0.584 | 0.808 | 0.005 | 0.589 | 0.803 | 0.002 | 0.616 | 0.788 | ||
| S-C | g1 | s1 | g2 | s2 | g | s | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |
| 5-25 | 0.085 | 0.109 | 0.660 | 0.080 | 0.106 | 0.707 | 0.017 | 0.046 | 0.916 | 0.041 | 0.081 | 0.821 | 0.028 | 0.057 | 0.876 | 0.048 | 0.086 | 0.803 |
| 10-20 | 0.023 | 0.051 | 0.861 | 0.024 | 0.061 | 0.809 | 0.021 | 0.053 | 0.894 | 0.042 | 0.082 | 0.816 | 0.022 | 0.052 | 0.887 | 0.036 | 0.075 | 0.826 |
| 15-15 | 0.011 | 0.038 | 0.910 | 0.026 | 0.054 | 0.885 | 0.021 | 0.052 | 0.876 | 0.037 | 0.073 | 0.824 | 0.016 | 0.045 | 0.901 | 0.031 | 0.064 | 0.863 |
| 20-10 | 0.010 | 0.033 | 0.950 | 0.015 | 0.047 | 0.919 | 0.008 | 0.041 | 0.918 | 0.067 | 0.101 | 0.748 | 0.009 | 0.035 | 0.950 | 0.032 | 0.065 | 0.854 |
| 25-5 | 0.008 | 0.033 | 0.954 | 0.018 | 0.050 | 0.918 | 0.006 | 0.038 | 0.892 | 0.120 | 0.160 | 0.589 | 0.007 | 0.034 | 0.953 | 0.035 | 0.068 | 0.833 |
表A5. 模拟研究2题目参数估计返真性
| S-C | g1 | s1 | g2 | s2 | g | s | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |
| 5-25 | 0.085 | 0.109 | 0.660 | 0.080 | 0.106 | 0.707 | 0.017 | 0.046 | 0.916 | 0.041 | 0.081 | 0.821 | 0.028 | 0.057 | 0.876 | 0.048 | 0.086 | 0.803 |
| 10-20 | 0.023 | 0.051 | 0.861 | 0.024 | 0.061 | 0.809 | 0.021 | 0.053 | 0.894 | 0.042 | 0.082 | 0.816 | 0.022 | 0.052 | 0.887 | 0.036 | 0.075 | 0.826 |
| 15-15 | 0.011 | 0.038 | 0.910 | 0.026 | 0.054 | 0.885 | 0.021 | 0.052 | 0.876 | 0.037 | 0.073 | 0.824 | 0.016 | 0.045 | 0.901 | 0.031 | 0.064 | 0.863 |
| 20-10 | 0.010 | 0.033 | 0.950 | 0.015 | 0.047 | 0.919 | 0.008 | 0.041 | 0.918 | 0.067 | 0.101 | 0.748 | 0.009 | 0.035 | 0.950 | 0.032 | 0.065 | 0.854 |
| 25-5 | 0.008 | 0.033 | 0.954 | 0.018 | 0.050 | 0.918 | 0.006 | 0.038 | 0.892 | 0.120 | 0.160 | 0.589 | 0.007 | 0.034 | 0.953 | 0.035 | 0.068 | 0.833 |
| S-C | ACCR_A | ACCR_B | ACCR_AB | PCCR_A | PCCR_B | PCCR_AB | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | ||||
| 5-25 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.490 | 0.495 | 0.816 |
| 10-20 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.650 | 0.637 | 0.763 |
| 15-15 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.714 | 0.723 | 0.726 |
| 20-10 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.834 | 0.827 | 0.498 |
| 25-5 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.879 | 0.882 | 0.344 |
表A6. 模拟研究2认知属性判准率
| S-C | ACCR_A | ACCR_B | ACCR_AB | PCCR_A | PCCR_B | PCCR_AB | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | ||||
| 5-25 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.875 | 0.838 | 0.855 | 0.857 | 0.887 | 0.490 | 0.495 | 0.816 |
| 10-20 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.934 | 0.899 | 0.900 | 0.919 | 0.912 | 0.650 | 0.637 | 0.763 |
| 15-15 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.955 | 0.922 | 0.920 | 0.924 | 0.914 | 0.714 | 0.723 | 0.726 |
| 20-10 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.969 | 0.963 | 0.967 | 0.964 | 0.951 | 0.834 | 0.827 | 0.498 |
| 25-5 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.991 | 0.976 | 0.968 | 0.967 | 0.964 | 0.879 | 0.882 | 0.344 |
| S-C | A | B | AB | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |
| 5-25 | 0.003 | 0.648 | 0.755 | −0.004 | 0.629 | 0.771 | 0.010 | 0.564 | 0.822 |
| 10-20 | 0.001 | 0.606 | 0.789 | 0.001 | 0.599 | 0.796 | −0.007 | 0.547 | 0.836 |
| 15-15 | −0.004 | 0.589 | 0.803 | 0.004 | 0.586 | 0.805 | −0.005 | 0.550 | 0.836 |
| 20-10 | −0.002 | 0.578 | 0.811 | 0.000 | 0.593 | 0.800 | −0.005 | 0.578 | 0.807 |
| 25-5 | 0.005 | 0.576 | 0.812 | −0.001 | 0.575 | 0.813 | −0.008 | 0.592 | 0.798 |
表A7. 模拟研究2认知能力估计返真性
| S-C | A | B | AB | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Bias | RMSE | Cor | Bias | RMSE | Cor | Bias | RMSE | Cor | |
| 5-25 | 0.003 | 0.648 | 0.755 | −0.004 | 0.629 | 0.771 | 0.010 | 0.564 | 0.822 |
| 10-20 | 0.001 | 0.606 | 0.789 | 0.001 | 0.599 | 0.796 | −0.007 | 0.547 | 0.836 |
| 15-15 | −0.004 | 0.589 | 0.803 | 0.004 | 0.586 | 0.805 | −0.005 | 0.550 | 0.836 |
| 20-10 | −0.002 | 0.578 | 0.811 | 0.000 | 0.593 | 0.800 | −0.005 | 0.578 | 0.807 |
| 25-5 | 0.005 | 0.576 | 0.812 | −0.001 | 0.575 | 0.813 | −0.008 | 0.592 | 0.798 |
| [1] | Andersson, D., Rankin, A., & Diptee, D. (2017). Approaches to team performance assessment: A comparison of self-assessment reports and behavioral observer scales. Cognition, Technology & Work, 19(4), 517-528. https://doi.org/10.1007/s10111-017-0428-0 |
| [2] |
Andrews, J., Kerr, D., Mislevy, R., von Davier, A., Hao, J., & Liu, L. (2017). Modeling collaborative interaction patterns in a simulation-based task. Journal of Educational Measurement, 54(1), 54-69. https://doi.org/10.1111/jedm.12132
doi: 10.1111/jedm.2017.54.issue-1 URL |
| [3] | Brooks, S., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455. https://doi.org/10.2307/1390675 |
| [4] | Cannon-Bowers, J. A., Salas, E., & Converse, S. A. (1993). Shared mental models in expert team decision making. In N. J. Castellan (Ed.), Individual and group decision making: Current issues (pp. 221-246). Lawrence Erlbaum Associates. |
| [5] |
Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97(3), 404-431. https://doi.org/10.1037/0033-295X.97.3.404
URL pmid: 2381998 |
| [6] |
Chiu, C.-Y., Sun, Y., & Bian, Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375. https://doi.org/10.1007/s11336-017-9595-4
doi: 10.1007/s11336-017-9595-4 URL |
| [7] |
Cooke, N. (2015). Team cognition as interaction. Current Directions in Psychological Science, 24(6), 415-419. https://doi.org/10.1177/0963721415602474
doi: 10.1177/0963721415602474 URL |
| [8] |
de la, Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. https://doi.org/10.1007/BF02295640
doi: 10.1007/BF02295640 URL |
| [9] | Ding, S. L., Yang, S. Q., & Wang, W. Y. (2010). The importance of reachability matrix in constructing cognitively diagnostic testing. Journal of Jiangxi Normal University (Natural Sciences Edition), 34, 490-494. |
| [丁树良, 杨淑群, 汪文义. (2010). 可达矩阵在认知诊断测验编制中的重要作用. 江西师范大学学报(自然科学版), 34, 490-494.] | |
| [10] | Gelman, A., Carlin, J. B., Stern, H.S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b16018 |
| [11] |
Han, Y., Xiao, Y., & Liu, H. (2022). Feature extraction and ability estimation of process data in the problem-solving test. Advances in Psychological Science, 30(6), 1393-1409. https://doi.org/10.3724/SP.J.1042.2022.01393
doi: 10.3724/SP.J.1042.2022.01393 URL |
|
[韩雨婷, 肖悦, 刘红云. (2022). 问题解决测验中过程数据的特征抽取与能力评估. 心理科学进展, 30(6), 1393-1409.]
doi: 10.3724/SP.J.1042.2022.01393 |
|
| [12] | Hao,, J., Liu, L., von Davier, A. A., & Kyllonen, P. C. (2017). Initial steps towards a standardized assessment for collaborative problem solving (CPS):Practical challenges and strategies. In A. von Davier, M. Zhu, & P. Kyllonen (Eds.), Innovative assessment of collaboration (pp. 135-156). Springer. https://doi.org/10.1007/978-3-319-33261-1_9 |
| [13] | Hesse,, F., Care, E., Buder, J., Sassenberg, K., & Griffin, P. (2015). A framework for teachable collaborative problem solving skills. In P. Griffin & E. Care (Eds.), Assessment and teaching of 21st century skills: Methods and approach (pp. 37-56). Springer. https://doi.org/10.1007/978-94-017-9395-7_2 |
| [14] |
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. https://doi.org/10.1177/01466210122032064
doi: 10.1177/01466210122032064 URL |
| [15] |
Klimoski, R., & Mohammed, S. (1994). Team mental model: Construct or metaphor? Journal of Management, 20(2), 403-437. https://doi.org/10.1016/0149-2063(94)90021-3
doi: 10.1177/014920639402000206 URL |
| [16] |
Köhn, H.-F., & Chiu, C.-Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. Psychometrika, 82, 112-132. https://doi.org/10.1007/s11336-016-9536-7
doi: 10.1007/s11336-016-9536-7 URL |
| [17] |
Lacerenza, C. N., Marlow, S. L., Tannenbaum, S. I., & Salas, E. (2018). Team development interventions: Evidence- based approaches for improving teamwork. American Psychologist, 73(4), 517-531. https://doi.org/10.1037/amp0000295
doi: 10.1037/amp0000295 URL |
| [18] |
Li, M., Liu, H., Cai, M., & Yuan, J. (2023). Estimation of individuals’ collaborative problem solving ability in computer-based assessment. Education and Information Technologies, 29, 483-515. https://doi.org/10.1007/s10639-023-12271-w
doi: 10.1007/s10639-023-12271-w URL |
| [19] | Li, M., Liu, H., & Zhang, Y. (2022). The application of computational psychometrics in the assessment of key competencies: A case of collaborative problem solving. Educational Research, 506(3), 127-137. |
| [李美娟, 刘红云, 张咏梅. (2022). 计算心理测量理论在核心素养测评中的应用——以合作问题解决测评为例. 教育研究, 506(3), 127-137.] | |
| [20] |
Liu, Y., Xu, H., Chen, Q., & Zhan, P. (2022). The measurement of problem-solving competence using process data. Advances in Psychological Science, 30(3), 522-535. https://doi.org/10.3724/SP.J.1042.2022.00522
doi: 10.3724/SP.J.1042.2022.00522 URL |
|
[刘耀辉, 徐慧颖, 陈琦鹏, 詹沛达. (2022). 基于过程数据的问题解决能力测量及数据分析方法. 心理科学进展, 30(3), 522-535.]
doi: 10.3724/SP.J.1042.2022.00522 |
|
| [21] |
Liu, Y., Zhan, P., Fu, Y., Chen, Q., Man, K., & Luo, Y. (2023). Using a multi-strategy eyetracking psychometric model to measure intelligence and identify cognitive strategy in Raven’s advanced progressive matrices. Intelligence, 100, 101782. https://doi.org/10.1016/j.intell.2023.101782
doi: 10.1016/j.intell.2023.101782 URL |
| [22] |
Lu, K., Gao, Z., Wang, X., Qiao, X., He, Y., Zhang, Y., & Hao, N. (2023). The hyper-brain neural couplings distinguishing high-creative group dynamics: An fNIRS hyperscanning study. Cerebral Cortex, 33(5), 1630-1642. https://doi.org/10.1093/cercor/bhac161
doi: 10.1093/cercor/bhac161 URL |
| [23] | Lu, K., & Hao, N. (2024). The interpersonal neural coupling in group creative ideation. Psychological Review. Advance online publication. https://doi.org/10.1037/rev0000524 |
| [24] | OECD. (2017). PISA 2015 collaborative problem-solving framework. In PISA 2015 assessment and analytical framework:Science, reading, mathematic, financial literacy and collaborative problem solving (pp. 131-188). PISA, OECD Publishing, Paris. https://doi.org/10.1787/9789264281820-en |
| [25] | Salas,, E., Reyes, D. L., & Woods, A. L. (2017). The assessment of team performance:Observations and needs. In A. von Davier, M. Zhu, & P. Kyllonen (Eds.), Innovative assessment of collaboration (pp. 21-36). Switzerland: Springer. https://doi.org/10.1007/978-3-319-33261-1_2 |
| [26] | Salas, E., Rosen, M. A., Burke, C. S., Nicholson, D., & Howse, W. R. (2007). Markers for enhancing team cognition in complex environments: The power of team performance diagnosis. Aviation, Space, and Environmental Medicine, 78(5), B77-B85. |
| [27] |
Song, L., Wang, W., & Ding, S. (2024). Q-matrix theory and its application in cognitive diagnostic assessment. Advances in Psychological Science, 32(6), 1010-1030. https://doi.org/10.3724/SP.J.1042.2024.01010
doi: 10.3724/SP.J.1042.2024.01010 URL |
|
[宋丽红, 汪文义, 丁树良. (2024). 认知诊断评估中Q矩阵理论及应用. 心理科学进展, 32(6), 1010-1030.]
doi: 10.3724/SP.J.1042.2024.01010 |
|
| [28] | Tang, F., & Zhan, P. (2021). Does diagnostic feedback promote learning? Evidence from a longitudinal learning diagnostic assessment. AERA Open, 7(1), 1-15. https://doi.org/10.1177/23328584211060804 |
| [29] | von Davier, M., & Lee, Y.-S. (2019). Handbook of diagnostic classification models: Models and model extensions, applications, software packages. Springer. https://doi.org/10.1007/978-3-030-05584-4 |
| [30] | Wei, J., Luo, L., Cai, Y., & Tu, D. (2024). A multistrategy cognitive diagnosis model incorporating item response times based on strategy selection theories. Journal of Educational and Behavioral Statistics, 49(4), 658-686. https://doi.org/10.3102/10769986231200469 |
| [31] |
Wilson, M., Gochyyev, P., & Scalise, K. (2017). Modeling data from collaborative assessments: Learning in digital interactive social networks. Journal of Educational Measurement, 54(1), 85-102. https://doi.org/10.1111/jedm.12134
doi: 10.1111/jedm.2017.54.issue-1 URL |
| [32] |
Woolley, A. W., Aggarwal, I., & Malone, T. W. (2015). Collective intelligence and group performance. Current Directions in Psychological Science, 24(6), 420-424. https://doi.org/10.1177/0963721415599543
doi: 10.1177/0963721415599543 URL |
| [33] |
Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686-688. https://doi.org/10.1126/science.1193147
doi: 10.1126/science.1193147 URL pmid: 20929725 |
| [34] | Xin, T., Jiang, Y., & Liu, X. (2013). Model construction of key competencies of students in compulsory education period. Journal of Beijing Normal University (Social Science), (1), 5-11. |
| [辛涛, 姜宇, 刘霞. (2013). 我国义务教育阶段学生核心素养模型的构建. 北京师范大学学报(社会科学版), (1), 5-11.] | |
| [35] |
Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81(3), 625-649. https://doi.org/10.1007/s11336-015-9471-z
doi: 10.1007/s11336-015-9471-z URL pmid: 26155755 |
| [36] |
Xue, H., Lu, K., & Hao, N. (2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. NeuroImage, 172, 527-537. https://doi.org/10.1016/j.neuroimage.2018.02.007
doi: S1053-8119(18)30095-8 URL pmid: 29427846 |
| [37] | Yang, X. (2022). Competence and its model building: A theoretical analysis. Journal of East China Normal University (Educational Science), 40(11), 41-57. https://doi.org/10.16382/j.cnki.1000-5560.2022.11.004 |
|
[杨向东. (2022). 作为理论构念的素养及其模型构建. 华东师范大学学报(教育科学版), 40(11), 41-57.]
doi: 10.16382/j.cnki.1000-5560.2022.11.004 |
|
| [38] |
Yuan, J. L., Xiao, Y., & Liu, H. Y. (2019). Assessment of collaborative problem solving based on process stream data: A new paradigm for extracting indicators and modeling dyad data. Frontiers in Psychology, 10, 369. https://doi.org/10.3389/fpsyg.2019.00369
doi: 10.3389/fpsyg.2019.00369 URL pmid: 30863344 |
| [39] |
Zhan, P. (2023). Deterministic input, noisy mixed modeling for identifying coexisting condensation rules in cognitive diagnostic assessment. Journal of Intelligence, 11, 55. https://doi.org/10.3390/jintelligence11030055
doi: 10.3390/jintelligence11030055 URL |
| [40] | Zhan, P., Chen, Q., Man, K., & Hao, N. (2024). Implementing cognitive component constraints in the development and validation of short-form Raven’s advanced progressive matrices based on item response theory. PsyArxiv, http://dx.doi.org/10.31234/osf.io/3cbm4 |
| [41] |
Zhan, P., Chen, Q., Wang, S., & Zhang, X. (2024). Longitudinal joint modeling for assessing parallel interactive development of latent ability and processing speed using responses and response times. Behavior Research Methods, 56(3), 1656-1677. https://doi.org/10.3758/s13428-023-02113-5
doi: 10.3758/s13428-023-02113-5 URL |
| [42] |
Zhan, P., Jiao, H., Liao, M., & Bian, Y. (2019). Bayesian DINA modeling incorporating within-item characteristics dependency. Applied Psychological Measurement, 43, 143-158. https://doi.org/10.1177/0146621618781594
doi: 10.1177/0146621618781594 URL |
| [43] | Zhan, P., Jiao, H., Man, K., & Wang, L. (2019). Using JAGS for Bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473-503. https://doi.org/10.3102/1076998619826040 |
| [44] | Zhan, P., Man, K., Wind, S. A., & Malone, J. (2022). Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis. Journal of Educational and Behavioral Statistics, 47(6), 736-776. https://doi.org/10.3102/10769986221111085 |
| [45] |
Zhang, Y., Hu, Y., Ma, F., Cui, H., Cheng, X., & Pan, Y. (2024). Interpersonal educational neuroscience: A scoping review of the literature. Educational Research Review, 42, 100593. https://doi.org/10.1016/j.edurev.2024.100593
doi: 10.1016/j.edurev.2024.100593 URL |
| [46] | Zhu,, M., & Bergner, Y. (2017). Network models for teams with overlapping membership. In A. von Davier, M. Zhu, & P. Kyllonen (Eds.), Innovative assessment of collaboration (pp. 303-314). Switzerland: Springer. https://doi.org/10.1007/978-3-319-33261-1_19 |
| [1] | 谭青蓉, 蔡艳, 汪大勋, 罗芬, 涂冬波. CD-CAT中基于SCAD惩罚和EM视角的在线标定方法开发——G-DINA模型[J]. 心理学报, 2024, 56(5): 670-688. |
| [2] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
| [3] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
| [4] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
| [5] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
| [6] | 宋枝璘, 郭磊, 郑天鹏. 认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法[J]. 心理学报, 2022, 54(4): 426-440. |
| [7] | 秦春影, 喻晓锋. 多级属性Q矩阵的验证与估计[J]. 心理学报, 2022, 54(11): 1403-1415. |
| [8] | 詹沛达, 于照辉, 李菲茗, 王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
| [9] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
| [10] | 刘圣明, 陈力凡, 王思迈. 满招损, 谦受益:团队沟通视角下谦卑型领导行为对团队创造力的影响[J]. 心理学报, 2018, 50(10): 1159-1168. |
| [11] | 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598. |
| [12] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
| [13] | 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346. |
| [14] | 喻晓锋;罗照盛;高椿雷;李喻骏;王 睿;王钰彤. 使用似然比D2统计量的题目属性定义方法[J]. 心理学报, 2015, 47(3): 417-426. |
| [15] | 喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||