ISSN 0439-755X
CN 11-1911/B
主办:中国心理学会
   中国科学院心理研究所
出版:科学出版社

心理学报 ›› 2015, Vol. 47 ›› Issue (2): 273-282.doi: 10.3724/SP.J.1041.2015.00273

• 论文 • 上一篇    

基于作答数据的模型参数和Q矩阵联合估计

喻晓锋1,2;罗照盛1;秦春影2;高椿雷1;李喻骏1   

  1. (1江西师范大学心理学院, 南昌 330022) (2亳州师范高等专科学校, 亳州 236800)
  • 收稿日期:2014-09-22 发布日期:2015-02-25 出版日期:2015-02-25
  • 通讯作者: 罗照盛, E-mail: luozs@126.com
  • 基金资助:

    国家自然科学基金(31160203, 31100756, 31360237)、国家社会科学基金(12BYY055)、教育部人文社会科学研究青年基金项目(13YJC880060)、安徽省高校省级优秀青年人才基金重点项目(2013SQRL127ZD)、安徽省自然科学研究项目(KJ2010B123, KJ2013B151)、高等学校博士学科点专项科研基金(20113604110001)、江西省研究生创新专项基金(YC2013-B024)和安徽省哲学社会科学规划项目(AHSKY2014D102)资助。

Joint Estimation of Model Parameters and Q-Matrix Based on Response Data

YU Xiaofeng1,2; LUO Zhaosheng1; QIN Chunying2; GAO Chunlei1; LI Yujun1   

  1. (1 School of Psychology, Jiangxi Normal University, Nanchang 330022, China) (2 Computer Department, Bozhou Normal College, Bozhou 236800, China)
  • Received:2014-09-22 Online:2015-02-25 Published:2015-02-25
  • Contact: LUO Zhaosheng, E-mail: luozs@126.com

摘要:

Q矩阵在认知诊断的模型参数估计和诊断分类中起着重要作用。本文通过研究Liu等人的方法, 设计了同时估计项目参数和Q矩阵的联合估计算法。在DINA模型下, 对项目参数未知时开展模拟研究。研究假设项目为20个, 考察的属性个数分别是3、4和5, 初始Q矩阵中分别存在3、4和5个属性界定错误的项目。结果表明, 联合估计算法能在错误的初始Q矩阵基础上以很高的概率得到正确的Q矩阵。另外, 当专家认定测验的属性个数存在错误时, 该方法推导的Q矩阵和模型参数能提供很好的鉴别Q矩阵错误的信息。

关键词: 认知诊断评价, Q矩阵, T矩阵, 联合估计, DINA模型

Abstract:

Q-matrix is an important component of cognitive diagnostic assessment, which represents the item-attribute relationships. Cognitive diagnostic assessment infers attribute mastery patterns of respondents in the testing field based on item responses. Item responses in the assessment are observable, but respondents attribute mastery patterns are potential, not observable. Q-matrix plays the role of a bridge in cognitive diagnostic assessment. Therefore, Q-matrix impact the accuracy of cognitive diagnostic assessment greatly. Research on the effect of parameter estimation and classification accuracy caused by the error in Q-matrix already existed, and it turned out that Q-matrix gotten from expert definition or experience was more easily subject to be affected by subjective factors, lead to a misspecified Q-matrix. Under this circumstance, it’s urgently needed to find more objective Q-matrix inference methods. This paper started from this consideration, carried out further research on the Q-matrix inference from response data based on the research of Liu, Xu and Ying (2012), and modified the Liu et al. algorithm, designed a joint estimate item parameters and Q-matrix algorithm. The joint estimate algorithm can estimate item parameters and the Q-matrix simultaneously. In simulations, considered different Q-matrix (attribute-number is 3,4 and 5), different sample size (500, 1000, 2000 and 4000), different number of error items (3,4 and 5), the attribute mastery pattern of the sample followed an uniform distribution, and the item parameters followed an uniform distribution with interval [0.05,0.25]. When item parameters were unknown, item number was 20, and item attributes was 3, 4 or 5, based on the initial Q-matrix, and the joint estimate algorithm can get the true Q-matrix with a high probability and item parameters with small deviation, even the sample size is relatively small (such as 300), and the misspecified-item number is relatively large (such as 6). Furthermore, when the number of item attribute was misspecified by experts, in other words, the Q-matrix lacked a required attribute or added a redundant attribute, this would lead to incorrectness of all items, and the joint estimate algorithm will provide reliable information to infer the true Q-matrix. The results indicated that: (1) The joint estimate algorithm had a good performance and suitable for practical application when some item attribute vectors misspecified. (2) The joint estimate algorithm could provide useful information when added a redundant attribute or lacked a required attribute in Q-matrix, and then amended and estimated the Q-matrix.

Key words: cognitive diagnostic assessment, Q-matrix, T-matrix, joint estimate, DINA model