心理学报 ›› 2024, Vol. 56 ›› Issue (5): 670-688.doi: 10.3724/SP.J.1041.2024.00670
• 研究报告 • 上一篇
谭青蓉1,2, 蔡艳1(), 汪大勋1(), 罗芬3, 涂冬波1()
收稿日期:
2022-09-26
发布日期:
2024-03-06
出版日期:
2024-05-25
通讯作者:
蔡艳, E-mail: cy1979123@aliyun.com;
汪大勋, E-mail: wangda.xun@163.com;
涂冬波, E-mail: tudongbo@aliyun.com
基金资助:
TAN Qingrong1,2, CAI Yan1(), WANG Daxun1(), LUO Fen3, TU Dongbo1()
Received:
2022-09-26
Online:
2024-03-06
Published:
2024-05-25
摘要:
G-DINA (the generalized deterministic input, noisy and gate)模型限制条件少, 应用范围广, 满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM, 以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究, 结果表明:相比传统的SIE方法, SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率, 应用前景较好; SIE方法不适用于饱和的G-DINA等模型, 其各实验条件下的Q矩阵标定精度均较低。
中图分类号:
谭青蓉, 蔡艳, 汪大勋, 罗芬, 涂冬波. (2024). CD-CAT中基于SCAD惩罚和EM视角的在线标定方法开发——G-DINA模型. 心理学报, 56(5), 670-688.
TAN Qingrong, CAI Yan, WANG Daxun, LUO Fen, TU Dongbo. (2024). Development of Online Calibration Method based on SCAD penalty and EM perspective in CD-CAT: G-DINA model. Acta Psychologica Sinica, 56(5), 670-688.
项目质量 | 属性模式分布 | 标定样本 | P (0) | 1 − P (1) | ||
---|---|---|---|---|---|---|
SIE | SCADOCM | SIE | SCADOCM | |||
0.1~0.3 | 高阶 | 50 | 0.180 | 0.133 | 0.186 | 0.107 |
100 | 0.122 | 0.108 | 0.127 | 0.085 | ||
500 | 0.055 | 0.045 | 0.057 | 0.037 | ||
1000 | 0.037 | 0.031 | 0.039 | 0.026 | ||
2000 | 0.027 | 0.022 | 0.028 | 0.018 | ||
均匀 | 50 | 0.362 | 0.162 | 0.356 | 0.122 | |
100 | 0.260 | 0.148 | 0.281 | 0.099 | ||
500 | 0.111 | 0.068 | 0.113 | 0.046 | ||
1000 | 0.079 | 0.041 | 0.078 | 0.032 | ||
2000 | 0.053 | 0.027 | 0.054 | 0.022 | ||
正态 | 50 | 0.229 | 0.160 | 0.232 | 0.134 | |
100 | 0.154 | 0.124 | 0.155 | 0.101 | ||
500 | 0.065 | 0.058 | 0.065 | 0.045 | ||
1000 | 0.046 | 0.041 | 0.047 | 0.033 | ||
2000 | 0.033 | 0.030 | 0.034 | 0.024 | ||
0.05~0.15 | 高阶 | 50 | 0.131 | 0.127 | 0.127 | 0.095 |
100 | 0.086 | 0.088 | 0.088 | 0.066 | ||
500 | 0.038 | 0.033 | 0.038 | 0.027 | ||
1000 | 0.026 | 0.021 | 0.026 | 0.019 | ||
2000 | 0.019 | 0.014 | 0.019 | 0.013 | ||
均匀 | 50 | 0.269 | 0.184 | 0.329 | 0.122 | |
100 | 0.198 | 0.142 | 0.218 | 0.087 | ||
500 | 0.079 | 0.041 | 0.079 | 0.034 | ||
1000 | 0.057 | 0.027 | 0.055 | 0.023 | ||
2000 | 0.038 | 0.018 | 0.039 | 0.015 | ||
正态 | 50 | 0.169 | 0.161 | 0.177 | 0.125 | |
100 | 0.107 | 0.107 | 0.110 | 0.084 | ||
500 | 0.046 | 0.044 | 0.047 | 0.035 | ||
1000 | 0.033 | 0.029 | 0.033 | 0.025 | ||
2000 | 0.023 | 0.019 | 0.023 | 0.017 |
表1 各在线标定方法在不同条件下P (0)和1 − P (1)参数标定精度(RMSE)结果
项目质量 | 属性模式分布 | 标定样本 | P (0) | 1 − P (1) | ||
---|---|---|---|---|---|---|
SIE | SCADOCM | SIE | SCADOCM | |||
0.1~0.3 | 高阶 | 50 | 0.180 | 0.133 | 0.186 | 0.107 |
100 | 0.122 | 0.108 | 0.127 | 0.085 | ||
500 | 0.055 | 0.045 | 0.057 | 0.037 | ||
1000 | 0.037 | 0.031 | 0.039 | 0.026 | ||
2000 | 0.027 | 0.022 | 0.028 | 0.018 | ||
均匀 | 50 | 0.362 | 0.162 | 0.356 | 0.122 | |
100 | 0.260 | 0.148 | 0.281 | 0.099 | ||
500 | 0.111 | 0.068 | 0.113 | 0.046 | ||
1000 | 0.079 | 0.041 | 0.078 | 0.032 | ||
2000 | 0.053 | 0.027 | 0.054 | 0.022 | ||
正态 | 50 | 0.229 | 0.160 | 0.232 | 0.134 | |
100 | 0.154 | 0.124 | 0.155 | 0.101 | ||
500 | 0.065 | 0.058 | 0.065 | 0.045 | ||
1000 | 0.046 | 0.041 | 0.047 | 0.033 | ||
2000 | 0.033 | 0.030 | 0.034 | 0.024 | ||
0.05~0.15 | 高阶 | 50 | 0.131 | 0.127 | 0.127 | 0.095 |
100 | 0.086 | 0.088 | 0.088 | 0.066 | ||
500 | 0.038 | 0.033 | 0.038 | 0.027 | ||
1000 | 0.026 | 0.021 | 0.026 | 0.019 | ||
2000 | 0.019 | 0.014 | 0.019 | 0.013 | ||
均匀 | 50 | 0.269 | 0.184 | 0.329 | 0.122 | |
100 | 0.198 | 0.142 | 0.218 | 0.087 | ||
500 | 0.079 | 0.041 | 0.079 | 0.034 | ||
1000 | 0.057 | 0.027 | 0.055 | 0.023 | ||
2000 | 0.038 | 0.018 | 0.039 | 0.015 | ||
正态 | 50 | 0.169 | 0.161 | 0.177 | 0.125 | |
100 | 0.107 | 0.107 | 0.110 | 0.084 | ||
500 | 0.046 | 0.044 | 0.047 | 0.035 | ||
1000 | 0.033 | 0.029 | 0.033 | 0.025 | ||
2000 | 0.023 | 0.019 | 0.023 | 0.017 |
ID | 症状标准 |
---|---|
A1 | 沉迷于网络游戏(如, 重温过去的游戏经历或期望下一次游戏, 网络游戏成为日常的主导活动)。 |
A2 | 远离网络游戏时出现戒断症状(如, 易怒、焦虑或悲伤, 但没有药物戒断的身体迹象)。 |
A3 | 耐受性——需要花更多的时间参与网络游戏。 |
A4 | 试图控制网络游戏的参与不成功。 |
A5 | 因网络游戏而对以前的爱好和娱乐失去兴趣, 但网络游戏除外。 |
A6 | 尽管了解心理社会问题, 但仍继续过度使用网络游戏。 |
A7 | 向家庭成员、治疗师或者其他人撒谎参与网络游戏的次数。 |
A8 | 利用网络游戏来逃避或缓解消极情绪(如, 无助感、焦虑、内疚)。 |
A9 | 因参与网络游戏而危及或失去重要的人际关系、工作、教育或职业机会。 |
表2 DSM-V中定义的网络成瘾症状标准
ID | 症状标准 |
---|---|
A1 | 沉迷于网络游戏(如, 重温过去的游戏经历或期望下一次游戏, 网络游戏成为日常的主导活动)。 |
A2 | 远离网络游戏时出现戒断症状(如, 易怒、焦虑或悲伤, 但没有药物戒断的身体迹象)。 |
A3 | 耐受性——需要花更多的时间参与网络游戏。 |
A4 | 试图控制网络游戏的参与不成功。 |
A5 | 因网络游戏而对以前的爱好和娱乐失去兴趣, 但网络游戏除外。 |
A6 | 尽管了解心理社会问题, 但仍继续过度使用网络游戏。 |
A7 | 向家庭成员、治疗师或者其他人撒谎参与网络游戏的次数。 |
A8 | 利用网络游戏来逃避或缓解消极情绪(如, 无助感、焦虑、内疚)。 |
A9 | 因参与网络游戏而危及或失去重要的人际关系、工作、教育或职业机会。 |
项目参数 | 最小值 | 最大值 | 平均值 | 标准差 |
---|---|---|---|---|
1 − P (1) | 0.161 | 0.500 | 0.450 | 0.072 |
P (0) | 0.004 | 0.500 | 0.069 | 0.082 |
表3 网络成瘾题库项目参数的描述性统计
项目参数 | 最小值 | 最大值 | 平均值 | 标准差 |
---|---|---|---|---|
1 − P (1) | 0.161 | 0.500 | 0.450 | 0.072 |
P (0) | 0.004 | 0.500 | 0.069 | 0.082 |
模型 | AIC | BIC | LL |
---|---|---|---|
DINA | 309348.5428 | 314897.6939 | −153637.2714 |
DINO | 309803.4409 | 315352.5920 | −153864.7204 |
ACDM | 307764.2211 | 313586.2812 | −152794.1105 |
G-DINA | 307426.2025 | 313574.6833 | −152564.1012 |
表4 网络成瘾题库模型−资料拟合检验结果
模型 | AIC | BIC | LL |
---|---|---|---|
DINA | 309348.5428 | 314897.6939 | −153637.2714 |
DINO | 309803.4409 | 315352.5920 | −153864.7204 |
ACDM | 307764.2211 | 313586.2812 | −152794.1105 |
G-DINA | 307426.2025 | 313574.6833 | −152564.1012 |
评价指标 | 分布 | 标定样本 | ||||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 500 | 1000 | 2000 | ||||
ART(单位: 秒) | 均匀 | 4.585 | 6.954 | 25.610 | 49.539 | 101.146 | ||
高阶 | 4.325 | 6.739 | 26.217 | 49.898 | 103.118 | |||
正态 | 4.612 | 6.946 | 25.035 | 48.168 | 101.284 | |||
AVCER | 均匀 | 0.697 | 0.782 | 0.943 | 0.968 | 0.978 | ||
高阶 | 0.560 | 0.702 | 0.882 | 0.924 | 0.945 | |||
正态 | 0.454 | 0.611 | 0.815 | 0.845 | 0.863 | |||
RMSE | 均匀 | 0.142 | 0.093 | 0.037 | 0.026 | 0.019 | ||
高阶 | 0.189 | 0.125 | 0.053 | 0.040 | 0.032 | |||
正态 | 0.244 | 0.187 | 0.118 | 0.109 | 0.105 |
表5 真实题库下SCADOCM的新题标定结果
评价指标 | 分布 | 标定样本 | ||||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 500 | 1000 | 2000 | ||||
ART(单位: 秒) | 均匀 | 4.585 | 6.954 | 25.610 | 49.539 | 101.146 | ||
高阶 | 4.325 | 6.739 | 26.217 | 49.898 | 103.118 | |||
正态 | 4.612 | 6.946 | 25.035 | 48.168 | 101.284 | |||
AVCER | 均匀 | 0.697 | 0.782 | 0.943 | 0.968 | 0.978 | ||
高阶 | 0.560 | 0.702 | 0.882 | 0.924 | 0.945 | |||
正态 | 0.454 | 0.611 | 0.815 | 0.845 | 0.863 | |||
RMSE | 均匀 | 0.142 | 0.093 | 0.037 | 0.026 | 0.019 | ||
高阶 | 0.189 | 0.125 | 0.053 | 0.040 | 0.032 | |||
正态 | 0.244 | 0.187 | 0.118 | 0.109 | 0.105 |
题号 | P (0) | P (1) | 题号 | P (0) | P (1) | 题号 | P (0) | P (1) |
---|---|---|---|---|---|---|---|---|
1 | 0.298 | 0.563 | 74 | 0.191 | 0.745 | 147 | 0.096 | 0.711 |
2 | 0.132 | 0.5 | 75 | 0.019 | 0.5 | 148 | 0.062 | 0.675 |
3 | 0.072 | 0.5 | 76 | 0.072 | 0.569 | 149 | 0.009 | 0.5 |
4 | 0.046 | 0.5 | 77 | 0.011 | 0.5 | 150 | 0.021 | 0.606 |
5 | 0.185 | 0.54 | 78 | 0.014 | 0.5 | 151 | 0.071 | 0.589 |
6 | 0.125 | 0.558 | 79 | 0.045 | 0.5 | 152 | 0.038 | 0.615 |
7 | 0.175 | 0.544 | 80 | 0.019 | 0.5 | 153 | 0.048 | 0.532 |
8 | 0.174 | 0.62 | 81 | 0.022 | 0.5 | 154 | 0.01 | 0.5 |
9 | 0.164 | 0.642 | 82 | 0.006 | 0.5 | 155 | 0.025 | 0.5 |
10 | 0.073 | 0.5 | 83 | 0.011 | 0.5 | 156 | 0.04 | 0.5 |
11 | 0.49 | 0.763 | 84 | 0.07 | 0.629 | 157 | 0.009 | 0.61 |
12 | 0.208 | 0.653 | 85 | 0.037 | 0.5 | 158 | 0.024 | 0.5 |
13 | 0.026 | 0.5 | 86 | 0.014 | 0.5 | 159 | 0.041 | 0.533 |
14 | 0.131 | 0.563 | 87 | 0.014 | 0.5 | 160 | 0.036 | 0.5 |
15 | 0.433 | 0.772 | 88 | 0.05 | 0.631 | 161 | 0.04 | 0.5 |
16 | 0.116 | 0.613 | 89 | 0.023 | 0.5 | 162 | 0.028 | 0.5 |
17 | 0.318 | 0.635 | 90 | 0.01 | 0.5 | 163 | 0.024 | 0.544 |
18 | 0.024 | 0.5 | 91 | 0.069 | 0.519 | 164 | 0.005 | 0.5 |
19 | 0.017 | 0.5 | 92 | 0.038 | 0.5 | 165 | 0.055 | 0.5 |
20 | 0.069 | 0.5 | 93 | 0.057 | 0.516 | 166 | 0.032 | 0.5 |
21 | 0.068 | 0.5 | 94 | 0.192 | 0.661 | 167 | 0.037 | 0.507 |
22 | 0.107 | 0.5 | 95 | 0.185 | 0.639 | 168 | 0.008 | 0.5 |
23 | 0.17 | 0.682 | 96 | 0.109 | 0.504 | 169 | 0.014 | 0.574 |
24 | 0.125 | 0.668 | 97 | 0.005 | 0.5 | 170 | 0.139 | 0.661 |
25 | 0.173 | 0.627 | 98 | 0.051 | 0.514 | 171 | 0.082 | 0.592 |
26 | 0.038 | 0.5 | 99 | 0.063 | 0.577 | 172 | 0.012 | 0.579 |
27 | 0.193 | 0.67 | 100 | 0.037 | 0.5 | 173 | 0.02 | 0.553 |
28 | 0.054 | 0.5 | 101 | 0.145 | 0.5 | 174 | 0.042 | 0.648 |
29 | 0.102 | 0.5 | 102 | 0.067 | 0.618 | 175 | 0.012 | 0.592 |
30 | 0.209 | 0.5 | 103 | 0.128 | 0.53 | 176 | 0.017 | 0.5 |
31 | 0.383 | 0.5 | 104 | 0.061 | 0.558 | 177 | 0.039 | 0.5 |
32 | 0.092 | 0.5 | 105 | 0.021 | 0.5 | 178 | 0.042 | 0.5 |
33 | 0.029 | 0.5 | 106 | 0.026 | 0.5 | 179 | 0.035 | 0.53 |
34 | 0.032 | 0.5 | 107 | 0.152 | 0.5 | 180 | 0.042 | 0.517 |
35 | 0.277 | 0.773 | 108 | 0.014 | 0.5 | 181 | 0.012 | 0.519 |
36 | 0.127 | 0.5 | 109 | 0.095 | 0.66 | 182 | 0.008 | 0.5 |
37 | 0.123 | 0.5 | 110 | 0.028 | 0.5 | 183 | 0.014 | 0.5 |
38 | 0.061 | 0.536 | 111 | 0.033 | 0.549 | 184 | 0.013 | 0.568 |
39 | 0.05 | 0.5 | 112 | 0.127 | 0.643 | 185 | 0.06 | 0.5 |
40 | 0.15 | 0.592 | 113 | 0.073 | 0.5 | 186 | 0.073 | 0.574 |
41 | 0.032 | 0.5 | 114 | 0.018 | 0.5 | 187 | 0.072 | 0.613 |
42 | 0.27 | 0.839 | 115 | 0.028 | 0.5 | 188 | 0.026 | 0.5 |
43 | 0.062 | 0.5 | 116 | 0.022 | 0.5 | 189 | 0.018 | 0.5 |
44 | 0.237 | 0.74 | 117 | 0.007 | 0.5 | 190 | 0.028 | 0.5 |
45 | 0.063 | 0.5 | 118 | 0.04 | 0.5 | 191 | 0.014 | 0.5 |
46 | 0.094 | 0.5 | 119 | 0.114 | 0.5 | 192 | 0.015 | 0.5 |
47 | 0.117 | 0.623 | 120 | 0.05 | 0.579 | 193 | 0.041 | 0.5 |
48 | 0.041 | 0.5 | 121 | 0.012 | 0.5 | 194 | 0.009 | 0.5 |
49 | 0.262 | 0.697 | 122 | 0.043 | 0.632 | 195 | 0.033 | 0.5 |
50 | 0.042 | 0.5 | 123 | 0.025 | 0.514 | 196 | 0.099 | 0.659 |
51 | 0.064 | 0.522 | 124 | 0.051 | 0.5 | 197 | 0.013 | 0.5 |
52 | 0.011 | 0.5 | 125 | 0.019 | 0.5 | 198 | 0.023 | 0.5 |
53 | 0.028 | 0.5 | 126 | 0.035 | 0.551 | 199 | 0.026 | 0.5 |
54 | 0.009 | 0.5 | 127 | 0.032 | 0.5 | 200 | 0.005 | 0.532 |
55 | 0.067 | 0.568 | 128 | 0.079 | 0.723 | 201 | 0.011 | 0.5 |
56 | 0.026 | 0.5 | 129 | 0.083 | 0.674 | 202 | 0.039 | 0.52 |
57 | 0.026 | 0.5 | 130 | 0.052 | 0.575 | 203 | 0.071 | 0.524 |
58 | 0.056 | 0.5 | 131 | 0.027 | 0.627 | 204 | 0.051 | 0.5 |
59 | 0.094 | 0.68 | 132 | 0.025 | 0.5 | 205 | 0.21 | 0.64 |
60 | 0.175 | 0.809 | 133 | 0.211 | 0.617 | 206 | 0.009 | 0.5 |
61 | 0.099 | 0.512 | 134 | 0.051 | 0.5 | 207 | 0.056 | 0.59 |
62 | 0.046 | 0.549 | 135 | 0.019 | 0.5 | 208 | 0.045 | 0.5 |
63 | 0.077 | 0.72 | 136 | 0.02 | 0.5 | 209 | 0.034 | 0.5 |
64 | 0.124 | 0.607 | 137 | 0.011 | 0.5 | 210 | 0.018 | 0.5 |
65 | 0.066 | 0.5 | 138 | 0.01 | 0.5 | 211 | 0.037 | 0.5 |
66 | 0.061 | 0.5 | 139 | 0.087 | 0.677 | 212 | 0.135 | 0.612 |
67 | 0.012 | 0.5 | 140 | 0.038 | 0.616 | 213 | 0.025 | 0.5 |
68 | 0.189 | 0.697 | 141 | 0.02 | 0.5 | 214 | 0.018 | 0.5 |
69 | 0.026 | 0.5 | 142 | 0.059 | 0.635 | 215 | 0.018 | 0.5 |
70 | 0.172 | 0.679 | 143 | 0.007 | 0.5 | 216 | 0.058 | 0.5 |
71 | 0.046 | 0.621 | 144 | 0.019 | 0.5 | 217 | 0.029 | 0.5 |
72 | 0.012 | 0.5 | 145 | 0.029 | 0.603 | |||
73 | 0.5 | 0.76 | 146 | 0.064 | 0.628 | |||
题号 | P (00) | P (10) | P (01) | P (11) | ||||
218 | 0.289 | 0.435 | 0.312 | 0.525 | ||||
219 | 0.161 | 0.4 | 0.325 | 0.575 | ||||
220 | 0.151 | 0.576 | 0.403 | 0.611 | ||||
221 | 0.134 | 0.445 | 0.367 | 0.729 | ||||
222 | 0.055 | 0.255 | 0.078 | 0.508 | ||||
223 | 0.036 | 0.187 | 0.235 | 0.5 | ||||
224 | 0.013 | 0.118 | 0.039 | 0.5 | ||||
225 | 0.181 | 0.51 | 0.569 | 0.644 | ||||
226 | 0.067 | 0.344 | 0.382 | 0.561 | ||||
227 | 0.048 | 0.143 | 0.271 | 0.5 | ||||
228 | 0.055 | 0.24 | 0.272 | 0.5 | ||||
229 | 0.011 | 0.093 | 0.186 | 0.504 | ||||
230 | 0.088 | 0.202 | 0.491 | 0.649 | ||||
231 | 0.045 | 0.104 | 0.564 | 0.583 | ||||
232 | 0.013 | 0.093 | 0 | 0.5 | ||||
233 | 0.022 | 0.178 | 0.057 | 0.5 | ||||
234 | 0.007 | 0.028 | 0.037 | 0.5 | ||||
235 | 0.034 | 0.168 | 0.396 | 0.536 | ||||
236 | 0.019 | 0.13 | 0.158 | 0.588 | ||||
237 | 0.012 | 0.072 | 0 | 0.5 | ||||
238 | 0.015 | 0.054 | 0.154 | 0.52 | ||||
239 | 0.032 | 0.319 | 0.084 | 0.5 | ||||
240 | 0.219 | 0.494 | 0.4 | 0.5 | ||||
241 | 0.006 | 0.021 | 0.055 | 0.5 | ||||
242 | 0.008 | 0.074 | 0.102 | 0.5 | ||||
243 | 0.01 | 0.072 | 0.108 | 0.5 | ||||
244 | 0.015 | 0.196 | 0.059 | 0.612 | ||||
245 | 0.06 | 0.191 | 0.341 | 0.652 | ||||
246 | 0.004 | 0.128 | 0.039 | 0.5 | ||||
247 | 0.007 | 0.167 | 0.174 | 0.546 | ||||
248 | 0.005 | 0.039 | 0.229 | 0.568 | ||||
249 | 0.009 | 0.216 | 0.084 | 0.533 | ||||
250 | 0.016 | 0.114 | 0.335 | 0.621 | ||||
251 | 0.008 | 0.151 | 0.021 | 0.5 | ||||
252 | 0.011 | 0.137 | 0.072 | 0.5 | ||||
253 | 0.012 | 0.08 | 0.125 | 0.5 | ||||
254 | 0.42 | 0.428 | 0.414 | 0.5 | ||||
255 | 0.038 | 0.131 | 0.372 | 0.576 | ||||
256 | 0.039 | 0.39 | 0.213 | 0.611 | ||||
257 | 0.016 | 0.076 | 0.229 | 0.546 | ||||
258 | 0.016 | 0.069 | 0.233 | 0.542 | ||||
题号 | P (000) | P (100) | P (010) | P (001) | P (110) | P (101) | P (011) | P (111) |
259 | 0.116 | 0.602 | 0.325 | 0.326 | 0.482 | 0.345 | 0.34 | 0.62 |
260 | 0.01 | 0.072 | 0.11 | 0 | 0.167 | 0.12 | 0.121 | 0.5 |
261 | 0.036 | 0.285 | 0.252 | 0.575 | 0.376 | 0.38 | 0.322 | 0.639 |
262 | 0.031 | 0.254 | 0.17 | 0.515 | 0.148 | 0.262 | 0.486 | 0.604 |
263 | 0.009 | 0 | 0.019 | 0.037 | 0.065 | 0.162 | 0.147 | 0.5 |
附表1 题库项目参数值
题号 | P (0) | P (1) | 题号 | P (0) | P (1) | 题号 | P (0) | P (1) |
---|---|---|---|---|---|---|---|---|
1 | 0.298 | 0.563 | 74 | 0.191 | 0.745 | 147 | 0.096 | 0.711 |
2 | 0.132 | 0.5 | 75 | 0.019 | 0.5 | 148 | 0.062 | 0.675 |
3 | 0.072 | 0.5 | 76 | 0.072 | 0.569 | 149 | 0.009 | 0.5 |
4 | 0.046 | 0.5 | 77 | 0.011 | 0.5 | 150 | 0.021 | 0.606 |
5 | 0.185 | 0.54 | 78 | 0.014 | 0.5 | 151 | 0.071 | 0.589 |
6 | 0.125 | 0.558 | 79 | 0.045 | 0.5 | 152 | 0.038 | 0.615 |
7 | 0.175 | 0.544 | 80 | 0.019 | 0.5 | 153 | 0.048 | 0.532 |
8 | 0.174 | 0.62 | 81 | 0.022 | 0.5 | 154 | 0.01 | 0.5 |
9 | 0.164 | 0.642 | 82 | 0.006 | 0.5 | 155 | 0.025 | 0.5 |
10 | 0.073 | 0.5 | 83 | 0.011 | 0.5 | 156 | 0.04 | 0.5 |
11 | 0.49 | 0.763 | 84 | 0.07 | 0.629 | 157 | 0.009 | 0.61 |
12 | 0.208 | 0.653 | 85 | 0.037 | 0.5 | 158 | 0.024 | 0.5 |
13 | 0.026 | 0.5 | 86 | 0.014 | 0.5 | 159 | 0.041 | 0.533 |
14 | 0.131 | 0.563 | 87 | 0.014 | 0.5 | 160 | 0.036 | 0.5 |
15 | 0.433 | 0.772 | 88 | 0.05 | 0.631 | 161 | 0.04 | 0.5 |
16 | 0.116 | 0.613 | 89 | 0.023 | 0.5 | 162 | 0.028 | 0.5 |
17 | 0.318 | 0.635 | 90 | 0.01 | 0.5 | 163 | 0.024 | 0.544 |
18 | 0.024 | 0.5 | 91 | 0.069 | 0.519 | 164 | 0.005 | 0.5 |
19 | 0.017 | 0.5 | 92 | 0.038 | 0.5 | 165 | 0.055 | 0.5 |
20 | 0.069 | 0.5 | 93 | 0.057 | 0.516 | 166 | 0.032 | 0.5 |
21 | 0.068 | 0.5 | 94 | 0.192 | 0.661 | 167 | 0.037 | 0.507 |
22 | 0.107 | 0.5 | 95 | 0.185 | 0.639 | 168 | 0.008 | 0.5 |
23 | 0.17 | 0.682 | 96 | 0.109 | 0.504 | 169 | 0.014 | 0.574 |
24 | 0.125 | 0.668 | 97 | 0.005 | 0.5 | 170 | 0.139 | 0.661 |
25 | 0.173 | 0.627 | 98 | 0.051 | 0.514 | 171 | 0.082 | 0.592 |
26 | 0.038 | 0.5 | 99 | 0.063 | 0.577 | 172 | 0.012 | 0.579 |
27 | 0.193 | 0.67 | 100 | 0.037 | 0.5 | 173 | 0.02 | 0.553 |
28 | 0.054 | 0.5 | 101 | 0.145 | 0.5 | 174 | 0.042 | 0.648 |
29 | 0.102 | 0.5 | 102 | 0.067 | 0.618 | 175 | 0.012 | 0.592 |
30 | 0.209 | 0.5 | 103 | 0.128 | 0.53 | 176 | 0.017 | 0.5 |
31 | 0.383 | 0.5 | 104 | 0.061 | 0.558 | 177 | 0.039 | 0.5 |
32 | 0.092 | 0.5 | 105 | 0.021 | 0.5 | 178 | 0.042 | 0.5 |
33 | 0.029 | 0.5 | 106 | 0.026 | 0.5 | 179 | 0.035 | 0.53 |
34 | 0.032 | 0.5 | 107 | 0.152 | 0.5 | 180 | 0.042 | 0.517 |
35 | 0.277 | 0.773 | 108 | 0.014 | 0.5 | 181 | 0.012 | 0.519 |
36 | 0.127 | 0.5 | 109 | 0.095 | 0.66 | 182 | 0.008 | 0.5 |
37 | 0.123 | 0.5 | 110 | 0.028 | 0.5 | 183 | 0.014 | 0.5 |
38 | 0.061 | 0.536 | 111 | 0.033 | 0.549 | 184 | 0.013 | 0.568 |
39 | 0.05 | 0.5 | 112 | 0.127 | 0.643 | 185 | 0.06 | 0.5 |
40 | 0.15 | 0.592 | 113 | 0.073 | 0.5 | 186 | 0.073 | 0.574 |
41 | 0.032 | 0.5 | 114 | 0.018 | 0.5 | 187 | 0.072 | 0.613 |
42 | 0.27 | 0.839 | 115 | 0.028 | 0.5 | 188 | 0.026 | 0.5 |
43 | 0.062 | 0.5 | 116 | 0.022 | 0.5 | 189 | 0.018 | 0.5 |
44 | 0.237 | 0.74 | 117 | 0.007 | 0.5 | 190 | 0.028 | 0.5 |
45 | 0.063 | 0.5 | 118 | 0.04 | 0.5 | 191 | 0.014 | 0.5 |
46 | 0.094 | 0.5 | 119 | 0.114 | 0.5 | 192 | 0.015 | 0.5 |
47 | 0.117 | 0.623 | 120 | 0.05 | 0.579 | 193 | 0.041 | 0.5 |
48 | 0.041 | 0.5 | 121 | 0.012 | 0.5 | 194 | 0.009 | 0.5 |
49 | 0.262 | 0.697 | 122 | 0.043 | 0.632 | 195 | 0.033 | 0.5 |
50 | 0.042 | 0.5 | 123 | 0.025 | 0.514 | 196 | 0.099 | 0.659 |
51 | 0.064 | 0.522 | 124 | 0.051 | 0.5 | 197 | 0.013 | 0.5 |
52 | 0.011 | 0.5 | 125 | 0.019 | 0.5 | 198 | 0.023 | 0.5 |
53 | 0.028 | 0.5 | 126 | 0.035 | 0.551 | 199 | 0.026 | 0.5 |
54 | 0.009 | 0.5 | 127 | 0.032 | 0.5 | 200 | 0.005 | 0.532 |
55 | 0.067 | 0.568 | 128 | 0.079 | 0.723 | 201 | 0.011 | 0.5 |
56 | 0.026 | 0.5 | 129 | 0.083 | 0.674 | 202 | 0.039 | 0.52 |
57 | 0.026 | 0.5 | 130 | 0.052 | 0.575 | 203 | 0.071 | 0.524 |
58 | 0.056 | 0.5 | 131 | 0.027 | 0.627 | 204 | 0.051 | 0.5 |
59 | 0.094 | 0.68 | 132 | 0.025 | 0.5 | 205 | 0.21 | 0.64 |
60 | 0.175 | 0.809 | 133 | 0.211 | 0.617 | 206 | 0.009 | 0.5 |
61 | 0.099 | 0.512 | 134 | 0.051 | 0.5 | 207 | 0.056 | 0.59 |
62 | 0.046 | 0.549 | 135 | 0.019 | 0.5 | 208 | 0.045 | 0.5 |
63 | 0.077 | 0.72 | 136 | 0.02 | 0.5 | 209 | 0.034 | 0.5 |
64 | 0.124 | 0.607 | 137 | 0.011 | 0.5 | 210 | 0.018 | 0.5 |
65 | 0.066 | 0.5 | 138 | 0.01 | 0.5 | 211 | 0.037 | 0.5 |
66 | 0.061 | 0.5 | 139 | 0.087 | 0.677 | 212 | 0.135 | 0.612 |
67 | 0.012 | 0.5 | 140 | 0.038 | 0.616 | 213 | 0.025 | 0.5 |
68 | 0.189 | 0.697 | 141 | 0.02 | 0.5 | 214 | 0.018 | 0.5 |
69 | 0.026 | 0.5 | 142 | 0.059 | 0.635 | 215 | 0.018 | 0.5 |
70 | 0.172 | 0.679 | 143 | 0.007 | 0.5 | 216 | 0.058 | 0.5 |
71 | 0.046 | 0.621 | 144 | 0.019 | 0.5 | 217 | 0.029 | 0.5 |
72 | 0.012 | 0.5 | 145 | 0.029 | 0.603 | |||
73 | 0.5 | 0.76 | 146 | 0.064 | 0.628 | |||
题号 | P (00) | P (10) | P (01) | P (11) | ||||
218 | 0.289 | 0.435 | 0.312 | 0.525 | ||||
219 | 0.161 | 0.4 | 0.325 | 0.575 | ||||
220 | 0.151 | 0.576 | 0.403 | 0.611 | ||||
221 | 0.134 | 0.445 | 0.367 | 0.729 | ||||
222 | 0.055 | 0.255 | 0.078 | 0.508 | ||||
223 | 0.036 | 0.187 | 0.235 | 0.5 | ||||
224 | 0.013 | 0.118 | 0.039 | 0.5 | ||||
225 | 0.181 | 0.51 | 0.569 | 0.644 | ||||
226 | 0.067 | 0.344 | 0.382 | 0.561 | ||||
227 | 0.048 | 0.143 | 0.271 | 0.5 | ||||
228 | 0.055 | 0.24 | 0.272 | 0.5 | ||||
229 | 0.011 | 0.093 | 0.186 | 0.504 | ||||
230 | 0.088 | 0.202 | 0.491 | 0.649 | ||||
231 | 0.045 | 0.104 | 0.564 | 0.583 | ||||
232 | 0.013 | 0.093 | 0 | 0.5 | ||||
233 | 0.022 | 0.178 | 0.057 | 0.5 | ||||
234 | 0.007 | 0.028 | 0.037 | 0.5 | ||||
235 | 0.034 | 0.168 | 0.396 | 0.536 | ||||
236 | 0.019 | 0.13 | 0.158 | 0.588 | ||||
237 | 0.012 | 0.072 | 0 | 0.5 | ||||
238 | 0.015 | 0.054 | 0.154 | 0.52 | ||||
239 | 0.032 | 0.319 | 0.084 | 0.5 | ||||
240 | 0.219 | 0.494 | 0.4 | 0.5 | ||||
241 | 0.006 | 0.021 | 0.055 | 0.5 | ||||
242 | 0.008 | 0.074 | 0.102 | 0.5 | ||||
243 | 0.01 | 0.072 | 0.108 | 0.5 | ||||
244 | 0.015 | 0.196 | 0.059 | 0.612 | ||||
245 | 0.06 | 0.191 | 0.341 | 0.652 | ||||
246 | 0.004 | 0.128 | 0.039 | 0.5 | ||||
247 | 0.007 | 0.167 | 0.174 | 0.546 | ||||
248 | 0.005 | 0.039 | 0.229 | 0.568 | ||||
249 | 0.009 | 0.216 | 0.084 | 0.533 | ||||
250 | 0.016 | 0.114 | 0.335 | 0.621 | ||||
251 | 0.008 | 0.151 | 0.021 | 0.5 | ||||
252 | 0.011 | 0.137 | 0.072 | 0.5 | ||||
253 | 0.012 | 0.08 | 0.125 | 0.5 | ||||
254 | 0.42 | 0.428 | 0.414 | 0.5 | ||||
255 | 0.038 | 0.131 | 0.372 | 0.576 | ||||
256 | 0.039 | 0.39 | 0.213 | 0.611 | ||||
257 | 0.016 | 0.076 | 0.229 | 0.546 | ||||
258 | 0.016 | 0.069 | 0.233 | 0.542 | ||||
题号 | P (000) | P (100) | P (010) | P (001) | P (110) | P (101) | P (011) | P (111) |
259 | 0.116 | 0.602 | 0.325 | 0.326 | 0.482 | 0.345 | 0.34 | 0.62 |
260 | 0.01 | 0.072 | 0.11 | 0 | 0.167 | 0.12 | 0.121 | 0.5 |
261 | 0.036 | 0.285 | 0.252 | 0.575 | 0.376 | 0.38 | 0.322 | 0.639 |
262 | 0.031 | 0.254 | 0.17 | 0.515 | 0.148 | 0.262 | 0.486 | 0.604 |
263 | 0.009 | 0 | 0.019 | 0.037 | 0.065 | 0.162 | 0.147 | 0.5 |
[1] |
Ban, J. C., Hanson, B. A., Wang, T., Yi, Q., & Harris, D. J. (2001). A comparative study of on-line pretest item- calibration/scaling methods in computerized adaptive testing. Journal of Educational Measurement, 38(3), 191-212.
doi: 10.1111/jedm.2001.38.issue-3 URL |
[2] |
Bradshaw, L. P., & Madison, M. J. (2015). Invariance properties for general diagnostic classification models. International Journal of Testing, 16(2), 99-118.
doi: 10.1080/15305058.2015.1107076 URL |
[3] | Breheny, P., & Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. The Annals of Applied Statistics, 5(1), 232-253. |
[4] |
Chen, J. (2017a). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
doi: 10.1177/0146621616686021 URL |
[5] |
Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123-140.
doi: 10.1111/jedm.2013.50.issue-2 URL |
[6] |
Chen, P. (2016). Two new online calibration methods for computerized adaptive testing. Acta Psychologica Sinica, 48(9), 1184-1198.
doi: 10.3724/SP.J.1041.2016.01184 |
[陈平. (2016). 两种新的计算机化自适应测验在线标定方法. 心理学报, 48(9), 1184-1198.] | |
[7] |
Chen, P. (2017b). A comparative study of online item calibration methods in multidimensional computerized adaptive testing. Journal of Educational and Behavioral Statistics, 42(5), 559-590.
doi: 10.3102/1076998617695098 URL |
[8] |
Chen, P., & Wang, C. (2015). A new online calibration method for multidimensional computerized adaptive testing. Psychometrika, 81(3), 674-701.
doi: 10.1007/s11336-015-9482-9 URL |
[9] | Chen, P., Wang, C., Xin, T., & Chang, H. H. (2017). Developing new online calibration methods for multidimensional computerized adaptive testing. British Journal of Mathematical & Statistical Psychology, 70(1), 81-117. |
[10] | Chen, P., & Xin, T. (2011a). Developing on-line calibration methods for cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(6), 710-724. |
[陈平, 辛涛. (2011a). 认知诊断计算机化自适应测验中在线标定方法的开发. 心理学报, 43(6), 710-724.] | |
[11] | Chen, P., & Xin, T. (2011b). Item replenishing in cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(7), 836-850. |
[陈平, 辛涛. (2011b). 认知诊断计算机化自适应测验中的项目增补. 心理学报, 43(7), 836-850.] | |
[12] |
Chen, P., Xin, T., Wang, C., & Chang, H. (2012). Online calibration methods for the DINA model with independent attributes in CD-CAT. Psychometrika, 77(2), 201-222.
doi: 10.1007/s11336-012-9255-7 URL |
[13] |
Chen, Y., Liu, J., & Ying, Z. (2015). Online item calibration for Q-matrix in CD-CAT. Applied Psychological Measurement, 39(1), 5-15.
doi: 10.1177/0146621613513065 pmid: 29882531 |
[14] |
Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632.
doi: 10.1007/s11336-009-9123-2 URL |
[15] |
Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436 URL |
[16] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[17] |
de la Torre, J., & Chiu, C. Y. (2016). General method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
doi: 10.1007/s11336-015-9467-8 URL |
[18] |
de la Torre, J., & Lee, Y. S. (2010). A note on the invariance of the DINA model parameters. Journal of Educational Measurement, 47(1), 115-127.
doi: 10.1111/jedm.2010.47.issue-1 URL |
[19] |
de la Torre, J., van der Ark, L. A., & Rossi, G. (2018). Analysis of clinical data from a cognitive diagnosis modeling framework. Measurement and Evaluation in Counseling and Development, 51(4), 281-296.
doi: 10.1080/07481756.2017.1327286 URL |
[20] |
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456), 1348-1360.
doi: 10.1198/016214501753382273 URL |
[21] |
Fan, J., & Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 20(1), 101-148.
pmid: 21572976 |
[22] | Fan, Y., & Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society Series B: Statistical Methodology, 75(3), 531-552. |
[23] |
Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210.
doi: 10.1007/s11336-008-9089-5 URL |
[24] | Hou, L. (2013). Differential item functioning assessment in cognitive diagnostic modeling (Unpublished doctoral dissertation). University of Delaware. |
[25] |
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
doi: 10.1177/01466210122032064 URL |
[26] |
Kang, H. A., Zheng, Y., & Chang, H. H. (2020). Online calibration of a joint model of item responses and response times in computerized adaptive testing. Journal of Educational and Behavioral Statistics, 45(2), 175-208.
doi: 10.3102/1076998619879040 URL |
[27] |
Klein Entink, R. H., Kuhn, J.-T., Hornke, L. F., & Fox, J.-P. (2009). Evaluating cognitive theory: A joint modeling approach using responses and response times. Psychological Methods, 14(1), 54-75.
doi: 10.1037/a0014877 pmid: 19271848 |
[28] | Li, H. (2012). Statistical learning method. Beijing: Tsinghua University Press. |
[李航. (2012). 统计学习方法. 北京: 清华大学出版.] | |
[29] |
Lin, C. J., & Chang, H. H. (2019). Item selection criteria with practical constraints in cognitive diagnostic computerized adaptive testing. Educational and Psychological Measurement, 79(2), 335-357.
doi: 10.1177/0013164418790634 URL |
[30] |
Liu, H., You, X., Wang, W., Ding, S., & Chang, H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of Classification, 30(2), 152-172.
doi: 10.1007/s00357-013-9128-5 URL |
[31] | Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1-26. |
[32] |
Madison, M. J., & Bradshaw, L. P. (2018). Assessing growth in a diagnostic classification model framework. Psychometrika, 83, 963-990.
doi: 10.1007/s11336-018-9638-5 pmid: 30264183 |
[33] | Peng, S., Wang, D., Gao, X., Cai, Y., & Tu, D. (2019). The CDA-BPD: Retrofitting a traditional borderline personality questionnaire under the cognitive diagnosis model framework. Journal of Pacific Rim Psychology, 13, Article e22. |
[34] |
Rupp, A. A., & Templin, J. L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
doi: 10.1177/0013164407301545 URL |
[35] | Shi, S. S. (2017). Cognitive diagnosis of Internet addition and its CD-CAT study (Unpublished master’s thesis). Jiangxi Normal University, Nanchang, China |
[史双双. (2017). 网络成瘾的认知诊断及其CD-CAT的研究(硕士学位论文). 江西师范大学, 南昌.] | |
[36] | Stocking, M. L. (1988). Scale drift in on-line calibration. ETS Research Report Series, 1988(1), 1-122. |
[37] |
Tan, Q., Cai, Y., Luo, F., & Tu, D. (2022). Development of a high-accuracy and effective online calibration method in CD-CAT based on gini index. Journal of Educational and Behavioral Statistics, 48(1), 103-141.
doi: 10.3102/10769986221126741 URL |
[38] |
Tan, Q., Wang, D., Luo, F., Cai, Y., & Tu, D. (2021). A high-efficiency and new online calibration method in CD-CAT based on information gain of entropy and EM algorithm. Acta Psychologica Sinica, 53(11), 1286-1300.
doi: 10.3724/SP.J.1041.2021.01286 |
[谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. (2021). 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角. 心理学报, 53(11), 1286-1300. ]
doi: 10.3724/SP.J.1041.2021.01286 |
|
[39] |
Tan, Z., de La Torre, J., Ma, W., Huh, D., Larimer, M. E., & Mun, E.-Y. (2023). A tutorial on cognitive diagnosis modeling for characterizing mental health symptom profiles using existing item responses. Prevention Science: The Official Journal of the Society for Prevention Research, 24(3), 480-492.
doi: 10.1007/s11121-022-01346-8 |
[40] | Tang, F., & Zhan, P. (2021). Does diagnostic feedback promote learning? Evidence from a longitudinal cognitive diagnostic assessment. AERA Open, 7(3), 296-307. |
[41] |
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305.
pmid: 16953706 |
[42] |
Tu, D., Gao, X., Wang, D., & Cai, Y. (2017). A new measurement of Internet addiction using diagnostic classification models. Frontiers in Psychology, 8, 1768.
doi: 10.3389/fpsyg.2017.01768 pmid: 29066994 |
[43] |
van der Linden, W. J., Klein Entink, R. H., & Fox, J.-P. (2010). IRT parameter estimation with response times as collateral information. Applied Psychological Measurement, 34(5), 327-347.
doi: 10.1177/0146621609349800 URL |
[44] | Wainer, H., & Mislevy, R. J. (1990). Item response theory, item calibration, and proficiency estimation. In H. Wainer (Ed.), Computerized adaptive testing: A primer (Chap. 4, pp. 65-102). Hillsdale, NJ: Erlbaum. |
[45] |
Wang, D., Gao, X., Cai, Y., & Dongbo, T. U. (2020). A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics. Acta Psychologica Sinica, 52(1), 93-106.
doi: 10.3724/SP.J.1041.2020.00093 |
[汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角. 心理学报, 52(1), 93-106.]
doi: 10.3724/SP.J.1041.2020.00093 |
|
[46] |
Wang, H., Li, R., & Tsai, C. L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94(3), 553-568.
doi: 10.1093/biomet/asm053 pmid: 19343105 |
[47] |
Wang, W., Song, L., Ding, S., Meng, Y., Cao, C., & Jie, Y. (2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459.
doi: 10.1177/0146621617752991 pmid: 30787487 |
[48] |
Xi, C., Cai, Y., Peng, S., Lian, J., & Tu, D. (2020). A diagnostic classification version of Schizotypal Personality Questionnaire using diagnostic classification models. International Journal of Methods in Psychiatric Research, 29(1), e1807.
doi: 10.1002/mpr.v29.1 URL |
[49] |
Xu, G., Wang, C., & Shang, Z. (2016). On initial item selection in cognitive diagnostic computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 69(3), 291-315.
doi: 10.1111/bmsp.2016.69.issue-3 URL |
[50] | Zhang, X. G. (2010). Pattern Recognitive (Third Edition). Tsinghua University Press, China. |
[张学工. (2010). 模式识别(第三版). 清华大学出版社.] | |
[51] |
Zhang, Y., Li, R., & Tsai, C. L. (2010). Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105(489), 312-323.
pmid: 20676354 |
[52] |
Zheng, C., & Chang, H. H. (2016). High-efficiency response distribution-based item selection algorithms for short- length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624.
doi: 10.1177/0146621616665196 URL |
[1] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
[2] | 秦春影, 喻晓锋. 多级属性Q矩阵的验证与估计[J]. 心理学报, 2022, 54(11): 1403-1415. |
[3] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[4] | 陈平. 两种新的计算机化自适应测验在线标定方法[J]. 心理学报, 2016, 48(9): 1184-1198. |
[5] | 郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914. |
[6] | 罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 2015, 47(5): 679-688. |
[7] | 郭磊;郑蝉金;边玉芳. 变长CD-CAT中的曝光控制与终止规则[J]. 心理学报, 2015, 47(1): 129-140. |
[8] | 毛秀珍;辛涛. 认知诊断CAT中项目曝光控制方法的比较[J]. 心理学报, 2013, 45(6): 694-703. |
[9] | 陈平,辛涛. 认知诊断计算机化自适应测验中的项目增补[J]. 心理学报, 2011, 43(07): 836-850. |
[10] | 陈平,辛涛. 认知诊断计算机化自适应测验中在线标定方法的开发[J]. 心理学报, 2011, 43(06): 710-724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||