心理学报 ›› 2025, Vol. 57 ›› Issue (10): 1849-1866.doi: 10.3724/SP.J.1041.2025.1849 cstr: 32110.14.2025.1849
唐小娟1(
), 毛萌萌2, 李瑜3(
), 丁树良4, 彭志霞5
收稿日期:2024-09-13
发布日期:2025-08-15
出版日期:2025-10-25
通讯作者:
唐小娟, E-mail: 137622064@qq.com;基金资助:
TANG Xiaojuan1(
), MAO Mengmeng2, LI Yu3(
), DING Shuliang4, PENG Zhixia5
Received:2024-09-13
Online:2025-08-15
Published:2025-10-25
摘要:
属性水平(二分属性和多分属性)和项目理想评分方式(0-1评分与多级评分)是认知诊断测验设计的两个重要维度。其中, 多分属性测验能提供更详细的诊断信息, 而多级评分测验能提高判准率, 但现有认知诊断测验缺乏对多分属性和多级评分的整合设计。借鉴二分属性多级评分结构化/非结构化最简完备Q矩阵(SSCQM/USCQM)的概念, 本文提出统一的认知诊断测验最简完备Q矩阵设计方法, 解决不同属性水平和不同项目理想评分方式的各种组合情境下的认知诊断测验设计问题, 并在长测验和短测验两种条件下, 以(拟)可达阵为参照, 通过模拟研究对各种SSCQM和USCQM准确率进行了比较。结果表明,总体而言, SSCQM和USCQM具有更高的判准率。实证研究数据进一步验证了SSCQM和USCQM测验的优势。
中图分类号:
唐小娟, 毛萌萌, 李瑜, 丁树良, 彭志霞. (2025). 认知诊断测验最简完备Q矩阵统一设计方法. 心理学报, 57(10), 1849-1866.
TANG Xiaojuan, MAO Mengmeng, LI Yu, DING Shuliang, PENG Zhixia. (2025). A unified design method of the simplest complete Q matrix for cognitive diagnostic tests. Acta Psychologica Sinica, 57(10), 1849-1866.
| 模拟对象 | 数量 | 模拟要求 | 模拟方法 |
|---|---|---|---|
| 被试 | 2000 | 多分属性多级评分被试服从正态分布; 多分属性0-1评分被试服从均匀分布。 | 所有知识状态由扩张算法和广义扩张算法(丁树良, 罗芬 等, |
| 多分属性0-1评分测验 | 长度为拟可达阵(记为RP)的 列数(N*) | 测验分别为SSCQM(也即拟可达阵)、USCQM和UC。 项目参数sj和gj服从U(0,0.25)。 | SSCQM和USCQM由各自的构造方法得到, 非完备Q矩阵从拟可达阵中随机选取。 |
| 长度为50(N*) | 测验分别包含SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.25)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 | |
| 多分属性多级评分测验 | 长度为RP的列数(N*) | 测验分别为RP、UC和包含SSCQM、USCQM各1个。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 |
| 长度为SSCQM的列数(n*) | 测验分别为SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上。 | |
| 长度为35(N*/n*) | 测验分别包含拟可达阵、SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 | |
| 认知诊断 模型 | 2 | 多分属性0-1评分采用RPa-DINA模型, 多分属性多级评分采用修改的GRPa-DINA模型。 | 见4.1和4.2部分 |
| 被试作答 反应 | 2000 | 被试的观察反应模式 | 根据被试模拟的真值、测验Q矩阵和认知诊断模型模拟被试作答结果。 |
| 被试估计 | 2000 | 估计被试的知识状态。 | 由模拟作答数据和认知诊断模型, 采用最大后验估计 (Maximum A Posteriori, MAP) 方法估计。 |
表1 模拟条件
| 模拟对象 | 数量 | 模拟要求 | 模拟方法 |
|---|---|---|---|
| 被试 | 2000 | 多分属性多级评分被试服从正态分布; 多分属性0-1评分被试服从均匀分布。 | 所有知识状态由扩张算法和广义扩张算法(丁树良, 罗芬 等, |
| 多分属性0-1评分测验 | 长度为拟可达阵(记为RP)的 列数(N*) | 测验分别为SSCQM(也即拟可达阵)、USCQM和UC。 项目参数sj和gj服从U(0,0.25)。 | SSCQM和USCQM由各自的构造方法得到, 非完备Q矩阵从拟可达阵中随机选取。 |
| 长度为50(N*) | 测验分别包含SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.25)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 | |
| 多分属性多级评分测验 | 长度为RP的列数(N*) | 测验分别为RP、UC和包含SSCQM、USCQM各1个。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 |
| 长度为SSCQM的列数(n*) | 测验分别为SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上。 | |
| 长度为35(N*/n*) | 测验分别包含拟可达阵、SSCQM、USCQM和UC。 项目参数sj和gj服从U(0,0.35)。 | SSCQM、USCQM和UC生成方法如上; 测验其他题目从非零知识状态中选取并固定。 | |
| 认知诊断 模型 | 2 | 多分属性0-1评分采用RPa-DINA模型, 多分属性多级评分采用修改的GRPa-DINA模型。 | 见4.1和4.2部分 |
| 被试作答 反应 | 2000 | 被试的观察反应模式 | 根据被试模拟的真值、测验Q矩阵和认知诊断模型模拟被试作答结果。 |
| 被试估计 | 2000 | 估计被试的知识状态。 | 由模拟作答数据和认知诊断模型, 采用最大后验估计 (Maximum A Posteriori, MAP) 方法估计。 |
| 属性标号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 属性水平数L | 2 | 2 | 3 | 4 | 5 | 3 | 3 |
| 属性水平取值 | 0,1 | 0,1 | 0,1,2 | 0,1,2,3 | 0,1,2,3,4 | 0,1,2 | 0,1,2 |
表2 属性水平数
| 属性标号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 属性水平数L | 2 | 2 | 3 | 4 | 5 | 3 | 3 |
| 属性水平取值 | 0,1 | 0,1 | 0,1,2 | 0,1,2,3 | 0,1,2,3,4 | 0,1,2 | 0,1,2 |
| N* | H | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | L | 0.9313 | 0.9239 | 0.9031 | 0.7057 | 0.6769 | 0.5998 |
| C | 0.9277 | 0.9217 | 0.9010 | 0.6925 | 0.6681 | 0.6026 | |
| D | 0.9112 | 0.9081 | 0.8791 | 0.6381 | 0.6241 | 0.5290 | |
| U | 0.8933 | 0.8947 | 0.8574 | 0.5683 | 0.5673 | 0.4631 | |
| 50 | L | 0.9760 | 0.9830 | 0.9563 | 0.8924 | 0.9207 | 0.8024 |
| C | 0.9729 | 0.9794 | 0.9543 | 0.8785 | 0.9055 | 0.7932 | |
| D | 0.9469 | 0.9561 | 0.9301 | 0.7682 | 0.8060 | 0.7001 | |
| U | 0.9162 | 0.9323 | 0.9086 | 0.6504 | 0.7129 | 0.6180 | |
表3 多分属性0-1评分测验在不同属性层级结构下的判准率
| N* | H | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | L | 0.9313 | 0.9239 | 0.9031 | 0.7057 | 0.6769 | 0.5998 |
| C | 0.9277 | 0.9217 | 0.9010 | 0.6925 | 0.6681 | 0.6026 | |
| D | 0.9112 | 0.9081 | 0.8791 | 0.6381 | 0.6241 | 0.5290 | |
| U | 0.8933 | 0.8947 | 0.8574 | 0.5683 | 0.5673 | 0.4631 | |
| 50 | L | 0.9760 | 0.9830 | 0.9563 | 0.8924 | 0.9207 | 0.8024 |
| C | 0.9729 | 0.9794 | 0.9543 | 0.8785 | 0.9055 | 0.7932 | |
| D | 0.9469 | 0.9561 | 0.9301 | 0.7682 | 0.8060 | 0.7001 | |
| U | 0.9162 | 0.9323 | 0.9086 | 0.6504 | 0.7129 | 0.6180 | |
| H | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| L | 11/7 | 0.9639/0.9304 | 0.9730/0.9393 | 0.9494 | 0.9157/0.9237 | 0.8355/0.7096 | 0.8784/0.7437 | 0.7733 | 0.6713/0.6797 |
| C | 11/8 | 0.9477/0.9150 | 0.9589/0.9373 | 0.9467 | 0.9347/0.9101 | 0.7855/0.6580 | 0.8216/0.7375 | 0.7621 | 0.7371/0.6377 |
| D | 11/8 | 0.9399/0.9177 | 0.9532/0.9148 | 0.9355 | 0.9319/0.8872 | 0.7497/0.6557 | 0.8001/0.6577 | 0.7251 | 0.7079/0.5549 |
| U | 11/10 | 0.9130/0.8791 | 0.9152/0.8950 | 0.9072 | 0.8905/0.8826 | 0.6641/0.5334 | 0.6641/0.5786 | 0.6194 | 0.5742/0.5221 |
| L | 35 | 0.9934 | 0.9857 | 0.9791 | 0.9660 | 0.9671 | 0.9289 | 0.8954 | 0.8311 |
| C | 0.9871 | 0.9870 | 0.9863 | 0.9679 | 0.9361 | 0.9354 | 0.9319 | 0.8403 | |
| D | 0.9912 | 0.9888 | 0.9842 | 0.9695 | 0.9563 | 0.9445 | 0.9212 | 0.8484 | |
| U | 0.9939 | 0.9901 | 0.9890 | 0.9720 | 0.9710 | 0.9521 | 0.9469 | 0.8629 | |
表4 多分属性多级评分测验在不同属性层级结构下的判准率
| H | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| L | 11/7 | 0.9639/0.9304 | 0.9730/0.9393 | 0.9494 | 0.9157/0.9237 | 0.8355/0.7096 | 0.8784/0.7437 | 0.7733 | 0.6713/0.6797 |
| C | 11/8 | 0.9477/0.9150 | 0.9589/0.9373 | 0.9467 | 0.9347/0.9101 | 0.7855/0.6580 | 0.8216/0.7375 | 0.7621 | 0.7371/0.6377 |
| D | 11/8 | 0.9399/0.9177 | 0.9532/0.9148 | 0.9355 | 0.9319/0.8872 | 0.7497/0.6557 | 0.8001/0.6577 | 0.7251 | 0.7079/0.5549 |
| U | 11/10 | 0.9130/0.8791 | 0.9152/0.8950 | 0.9072 | 0.8905/0.8826 | 0.6641/0.5334 | 0.6641/0.5786 | 0.6194 | 0.5742/0.5221 |
| L | 35 | 0.9934 | 0.9857 | 0.9791 | 0.9660 | 0.9671 | 0.9289 | 0.8954 | 0.8311 |
| C | 0.9871 | 0.9870 | 0.9863 | 0.9679 | 0.9361 | 0.9354 | 0.9319 | 0.8403 | |
| D | 0.9912 | 0.9888 | 0.9842 | 0.9695 | 0.9563 | 0.9445 | 0.9212 | 0.8484 | |
| U | 0.9939 | 0.9901 | 0.9890 | 0.9720 | 0.9710 | 0.9521 | 0.9469 | 0.8629 | |
| N* | K | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | 4 | 0.9010 | 0.9148 | 0.8681 | 0.7002 | 0.7124 | 0.5603 |
| 5 | 0.9112 | 0.9081 | 0.8791 | 0.6381 | 0.6241 | 0.5290 | |
| 6 | 0.9160 | 0.9044 | 0.8683 | 0.5967 | 0.5520 | 0.4277 | |
| 7 | 0.9124 | 0.9030 | 0.8612 | 0.5431 | 0.5041 | 0.3677 | |
| 50 | 4 | 0.9751 | 0.9796 | 0.9306 | 0.9005 | 0.9186 | 0.7240 |
| 5 | 0.9469 | 0.9561 | 0.9301 | 0.7682 | 0.8060 | 0.7001 | |
| 6 | 0.9186 | 0.9274 | 0.8853 | 0.6280 | 0.6663 | 0.5052 | |
| 7 | 0.9035 | 0.9072 | 0.8730 | 0.5088 | 0.5308 | 0.4170 | |
表5 多分属性0-1评分测验在不同属性个数下的判准率
| N* | K | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | 4 | 0.9010 | 0.9148 | 0.8681 | 0.7002 | 0.7124 | 0.5603 |
| 5 | 0.9112 | 0.9081 | 0.8791 | 0.6381 | 0.6241 | 0.5290 | |
| 6 | 0.9160 | 0.9044 | 0.8683 | 0.5967 | 0.5520 | 0.4277 | |
| 7 | 0.9124 | 0.9030 | 0.8612 | 0.5431 | 0.5041 | 0.3677 | |
| 50 | 4 | 0.9751 | 0.9796 | 0.9306 | 0.9005 | 0.9186 | 0.7240 |
| 5 | 0.9469 | 0.9561 | 0.9301 | 0.7682 | 0.8060 | 0.7001 | |
| 6 | 0.9186 | 0.9274 | 0.8853 | 0.6280 | 0.6663 | 0.5052 | |
| 7 | 0.9035 | 0.9072 | 0.8730 | 0.5088 | 0.5308 | 0.4170 | |
| K | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| 4 | 7/5 | 0.9189/0.9138 | 0.9465/0.9161 | 0.9231 | 0.9275/0.8900 | 0.7450/0.7026 | 0.8196/0.7199 | 0.7293 | 0.7371/0.6269 |
| 5 | 11/8 | 0.9399/0.9177 | 0.9532/0.9148 | 0.9355 | 0.9319/0.8872 | 0.7497/0.6557 | 0.8001/0.6577 | 0.7251 | 0.7079/0.5549 |
| 6 | 13/10 | 0.9310/0.9071 | 0.9430/0.9107 | 0.9209 | 0.8810/0.8626 | 0.6864/0.5637 | 0.7281/0.5867 | 0.6149 | 0.4935/0.3915 |
| 7 | 15/12 | 0.9272/0.9248 | 0.9364/0.9111 | 0.9404 | 0.8895/0.8814 | 0.6288/0.5868 | 0.6670/0.5341 | 0.6190 | 0.4622/0.3976 |
| 4 | 35 | 0.9903 | 0.9830 | 0.9838 | 0.9566 | 0.9610 | 0.9319 | 0.9354 | 0.8273 |
| 5 | 0.9912 | 0.9888 | 0.9842 | 0.9695 | 0.9563 | 0.9445 | 0.9212 | 0.8484 | |
| 6 | 0.9787 | 0.9795 | 0.9849 | 0.9527 | 0.8766 | 0.8846 | 0.9114 | 0.7259 | |
| 7 | 0.9777 | 0.9834 | 0.9851 | 0.9535 | 0.8500 | 0.8894 | 0.9001 | 0.6926 | |
表6 多分属性多级评分测验不同属性个数下的判准率
| K | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| 4 | 7/5 | 0.9189/0.9138 | 0.9465/0.9161 | 0.9231 | 0.9275/0.8900 | 0.7450/0.7026 | 0.8196/0.7199 | 0.7293 | 0.7371/0.6269 |
| 5 | 11/8 | 0.9399/0.9177 | 0.9532/0.9148 | 0.9355 | 0.9319/0.8872 | 0.7497/0.6557 | 0.8001/0.6577 | 0.7251 | 0.7079/0.5549 |
| 6 | 13/10 | 0.9310/0.9071 | 0.9430/0.9107 | 0.9209 | 0.8810/0.8626 | 0.6864/0.5637 | 0.7281/0.5867 | 0.6149 | 0.4935/0.3915 |
| 7 | 15/12 | 0.9272/0.9248 | 0.9364/0.9111 | 0.9404 | 0.8895/0.8814 | 0.6288/0.5868 | 0.6670/0.5341 | 0.6190 | 0.4622/0.3976 |
| 4 | 35 | 0.9903 | 0.9830 | 0.9838 | 0.9566 | 0.9610 | 0.9319 | 0.9354 | 0.8273 |
| 5 | 0.9912 | 0.9888 | 0.9842 | 0.9695 | 0.9563 | 0.9445 | 0.9212 | 0.8484 | |
| 6 | 0.9787 | 0.9795 | 0.9849 | 0.9527 | 0.8766 | 0.8846 | 0.9114 | 0.7259 | |
| 7 | 0.9777 | 0.9834 | 0.9851 | 0.9535 | 0.8500 | 0.8894 | 0.9001 | 0.6926 | |
| N* | L | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | 2 | 0.9360 | 0.9303 | 0.8782 | 0.7938 | 0.7784 | 0.5485 |
| 3 | 0.8748 | 0.8868 | 0.7971 | 0.5911 | 0.6269 | 0.4190 | |
| 4 | 0.8567 | 0.8619 | 0.8166 | 0.5410 | 0.5559 | 0.4419 | |
| 5 | 0.8629 | 0.8462 | 0.8160 | 0.5625 | 0.5214 | 0.4610 | |
| 50 | 2 | 0.9788 | 0.9808 | 0.8994 | 0.9152 | 0.9232 | 0.5977 |
| 3 | 0.9565 | 0.9730 | 0.9113 | 0.8338 | 0.8968 | 0.6549 | |
| 4 | 0.8716 | 0.8918 | 0.8386 | 0.6144 | 0.6626 | 0.5182 | |
| 5 | 0.8438 | 0.8511 | 0.8257 | 0.5286 | 0.5457 | 0.4888 | |
表7 多分属性0-1评分测验在不同属性水平数下的判准率
| N* | L | MMR | PMR | ||||
|---|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | ||
| 11 | 2 | 0.9360 | 0.9303 | 0.8782 | 0.7938 | 0.7784 | 0.5485 |
| 3 | 0.8748 | 0.8868 | 0.7971 | 0.5911 | 0.6269 | 0.4190 | |
| 4 | 0.8567 | 0.8619 | 0.8166 | 0.5410 | 0.5559 | 0.4419 | |
| 5 | 0.8629 | 0.8462 | 0.8160 | 0.5625 | 0.5214 | 0.4610 | |
| 50 | 2 | 0.9788 | 0.9808 | 0.8994 | 0.9152 | 0.9232 | 0.5977 |
| 3 | 0.9565 | 0.9730 | 0.9113 | 0.8338 | 0.8968 | 0.6549 | |
| 4 | 0.8716 | 0.8918 | 0.8386 | 0.6144 | 0.6626 | 0.5182 | |
| 5 | 0.8438 | 0.8511 | 0.8257 | 0.5286 | 0.5457 | 0.4888 | |
| L | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| 2 | 4/2 | 0.9598/0.9138 | 0.9575/0.9161 | 0.9534 | 0.8569/0.8548 | 0.8511/0.7026 | 0.8431/0.7199 | 0.8347 | 0.4718/0.4773 |
| 3 | 8/6 | 0.9454/0.9088 | 0.9255/0.8914 | 0.9309 | 0.8817/0.8508 | 0.8125/0.6852 | 0.7640/0.6461 | 0.7665 | 0.5925/0.5100 |
| 4 | 12/10 | 0.9228/0.8781 | 0.9183/0.8802 | 0.9238 | 0.8940/0.8643 | 0.7412/0.6021 | 0.7328/0.6159 | 0.7345 | 0.6327/0.5611 |
| 5 | 16/14 | 0.8797/0.8525 | 0.9118/0.8839 | 0.8905 | 0.8779/0.8380 | 0.6101/0.5398 | 0.7101/0.6224 | 0.6368 | 0.6137/0.4972 |
| 2 | 35 | 0.9762 | 0.9760 | 0.9854 | 0.8795 | 0.9048 | 0.9042 | 0.9415 | 0.5179 |
| 3 | 0.9894 | 0.9785 | 0.9934 | 0.9393 | 0.9580 | 0.9140 | 0.9735 | 0.7587 | |
| 4 | 0.9857 | 0.9831 | 0.9743 | 0.9499 | 0.9440 | 0.9345 | 0.9004 | 0.8046 | |
| 5 | 0.9621 | 0.9674 | 0.9655 | 0.9443 | 0.8554 | 0.8770 | 0.8713 | 0.7875 | |
表8 多分属性多级评分测验在不同属性水平数下的判准率
| L | N*/n* | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | ||
| 2 | 4/2 | 0.9598/0.9138 | 0.9575/0.9161 | 0.9534 | 0.8569/0.8548 | 0.8511/0.7026 | 0.8431/0.7199 | 0.8347 | 0.4718/0.4773 |
| 3 | 8/6 | 0.9454/0.9088 | 0.9255/0.8914 | 0.9309 | 0.8817/0.8508 | 0.8125/0.6852 | 0.7640/0.6461 | 0.7665 | 0.5925/0.5100 |
| 4 | 12/10 | 0.9228/0.8781 | 0.9183/0.8802 | 0.9238 | 0.8940/0.8643 | 0.7412/0.6021 | 0.7328/0.6159 | 0.7345 | 0.6327/0.5611 |
| 5 | 16/14 | 0.8797/0.8525 | 0.9118/0.8839 | 0.8905 | 0.8779/0.8380 | 0.6101/0.5398 | 0.7101/0.6224 | 0.6368 | 0.6137/0.4972 |
| 2 | 35 | 0.9762 | 0.9760 | 0.9854 | 0.8795 | 0.9048 | 0.9042 | 0.9415 | 0.5179 |
| 3 | 0.9894 | 0.9785 | 0.9934 | 0.9393 | 0.9580 | 0.9140 | 0.9735 | 0.7587 | |
| 4 | 0.9857 | 0.9831 | 0.9743 | 0.9499 | 0.9440 | 0.9345 | 0.9004 | 0.8046 | |
| 5 | 0.9621 | 0.9674 | 0.9655 | 0.9443 | 0.8554 | 0.8770 | 0.8713 | 0.7875 | |
| M | MMR | PMR | ||||
|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | |
| 1 | 0.9469 | 0.9561 | 0.9300 | 0.7682 | 0.8060 | 0.7539 |
| 2 | 0.9825 | 0.9787 | 0.9688 | 0.9155 | 0.8992 | 0.8896 |
| 3 | 0.9926 | 0.9875 | 0.9870 | 0.9639 | 0.9399 | 0.9375 |
表9 多分属性0-1评分测验在不同完备Q矩阵个数下的判准率
| M | MMR | PMR | ||||
|---|---|---|---|---|---|---|
| RP (SSCQM) | USCQM | UC | RP (SSCQM) | USCQM | UC | |
| 1 | 0.9469 | 0.9561 | 0.9300 | 0.7682 | 0.8060 | 0.7539 |
| 2 | 0.9825 | 0.9787 | 0.9688 | 0.9155 | 0.8992 | 0.8896 |
| 3 | 0.9926 | 0.9875 | 0.9870 | 0.9639 | 0.9399 | 0.9375 |
| M | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | |
| 1 | 0.9910 | 0.9899 | 0.9876 | 0.9697 | 0.9553 | 0.9501 | 0.9382 | 0.8487 |
| 2 | 0.9912 | 0.9935 | 0.9903 | 0.9673 | 0.9563 | 0.9678 | 0.9521 | 0.8385 |
| 3 | 0.9962 | 0.9951 | 0.9925 | 0.9683 | 0.9813 | 0.9757 | 0.9632 | 0.8432 |
表10 多分属性多级评分测验在不同完备Q矩阵个数下的判准率
| M | MMR | PMR | ||||||
|---|---|---|---|---|---|---|---|---|
| SSCQM | USCQM | RP | UC | SSCQM | USCQM | RP | UC | |
| 1 | 0.9910 | 0.9899 | 0.9876 | 0.9697 | 0.9553 | 0.9501 | 0.9382 | 0.8487 |
| 2 | 0.9912 | 0.9935 | 0.9903 | 0.9673 | 0.9563 | 0.9678 | 0.9521 | 0.8385 |
| 3 | 0.9962 | 0.9951 | 0.9925 | 0.9683 | 0.9813 | 0.9757 | 0.9632 | 0.8432 |
| 测验 项目 | 多分属性 | 二分属性 | ||||||
|---|---|---|---|---|---|---|---|---|
| A1’ | A2’ | A3’ | A1 | A2 | A3 | A4 | A5 | |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 6 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 7 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 8 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 9 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 10 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 11 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 |
| 12 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 13 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 |
| 14 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
表11 测验项目
| 测验 项目 | 多分属性 | 二分属性 | ||||||
|---|---|---|---|---|---|---|---|---|
| A1’ | A2’ | A3’ | A1 | A2 | A3 | A4 | A5 | |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 6 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 7 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 8 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 9 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| 10 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 11 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 |
| 12 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 13 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 |
| 14 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
判准率 | 属性或 可达阵 | 二分属性0-1评分 | 二分属性多级评分 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| R1 | R2 | USCQM | UC | R2 | SSCQM | USCQM | UC | ||
| AR | A1 | 1 | 0.9348 | 0.9858 | 0.9674 | 0.9035 | 0.9092 | 0.9092 | 0.9589 |
| A2 | 1 | 0.6667 | 0.6851 | 0.8596 | 0.7222 | 0.7504 | 0.7504 | 0.7447 | |
| A3 | 1 | 0.9390 | 0.9546 | 0.9759 | 0.9050 | 0.9319 | 0.9206 | 0.9348 | |
| A4 | 1 | 0.9943 | 0.9972 | 0.8355 | 0.8482 | 0.8809 | 0.9163 | 0.5206 | |
| A5 | 1 | 0.9972 | 0.9972 | 0.5504 | 0.8326 | 0.8837 | 0.8738 | 0.5418 | |
| 平均 | 1 | 0.9064 | 0.9240 | 0.8377 | 0.8423 | 0.8712 | 0.8740 | 0.7401 | |
| PR | R1 | 1 | 0.6170 | 0.6511 | 0.3844 | 0.5220 | 0.5730 | 0.5674 | 0.2057 |
表12 二分属性测验识别被试属性判准率/属性模式判准率
判准率 | 属性或 可达阵 | 二分属性0-1评分 | 二分属性多级评分 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| R1 | R2 | USCQM | UC | R2 | SSCQM | USCQM | UC | ||
| AR | A1 | 1 | 0.9348 | 0.9858 | 0.9674 | 0.9035 | 0.9092 | 0.9092 | 0.9589 |
| A2 | 1 | 0.6667 | 0.6851 | 0.8596 | 0.7222 | 0.7504 | 0.7504 | 0.7447 | |
| A3 | 1 | 0.9390 | 0.9546 | 0.9759 | 0.9050 | 0.9319 | 0.9206 | 0.9348 | |
| A4 | 1 | 0.9943 | 0.9972 | 0.8355 | 0.8482 | 0.8809 | 0.9163 | 0.5206 | |
| A5 | 1 | 0.9972 | 0.9972 | 0.5504 | 0.8326 | 0.8837 | 0.8738 | 0.5418 | |
| 平均 | 1 | 0.9064 | 0.9240 | 0.8377 | 0.8423 | 0.8712 | 0.8740 | 0.7401 | |
| PR | R1 | 1 | 0.6170 | 0.6511 | 0.3844 | 0.5220 | 0.5730 | 0.5674 | 0.2057 |
| 判准率 | 属性或 拟可达阵 | 多分属性0-1评分 | 多分属性多级评分 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| RP1 | RP2 | USCQM | UC | RP2 | SSCQM | USCQM | UC | ||
| AR | A1’ | 1 | 0.9489 | 0.9972 | 0.9362 | 0.9390 | 0.9319 | 0.9730 | 0.6454 |
| A2’ | 1 | 0.7674 | 0.9716 | 0.4511 | 0.8170 | 0.8326 | 0.9645 | 0.4383 | |
| A3’ | 1 | 0.9999 | 1 | 0.7929 | 0.9404 | 0.9234 | 0.8865 | 0.2979 | |
| 平均 | 1 | 0.9054 | 0.9896 | 0.7267 | 0.8988 | 0.8960 | 0.9414 | 0.4605 | |
| PR | RP1 | 1 | 0.7348 | 0.9716 | 0.3461 | 0.7915 | 0.8000 | 0.8426 | 0.2270 |
表13 多分属性测验识别被试属性判准率/属性模式判准率
| 判准率 | 属性或 拟可达阵 | 多分属性0-1评分 | 多分属性多级评分 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| RP1 | RP2 | USCQM | UC | RP2 | SSCQM | USCQM | UC | ||
| AR | A1’ | 1 | 0.9489 | 0.9972 | 0.9362 | 0.9390 | 0.9319 | 0.9730 | 0.6454 |
| A2’ | 1 | 0.7674 | 0.9716 | 0.4511 | 0.8170 | 0.8326 | 0.9645 | 0.4383 | |
| A3’ | 1 | 0.9999 | 1 | 0.7929 | 0.9404 | 0.9234 | 0.8865 | 0.2979 | |
| 平均 | 1 | 0.9054 | 0.9896 | 0.7267 | 0.8988 | 0.8960 | 0.9414 | 0.4605 | |
| PR | RP1 | 1 | 0.7348 | 0.9716 | 0.3461 | 0.7915 | 0.8000 | 0.8426 | 0.2270 |
| KS | SSCQM | |||||
|---|---|---|---|---|---|---|
| (000) | ||||||
| (100) | ||||||
| (110) | ||||||
| (120) | ||||||
| (101) | ||||||
| (102) | ||||||
| (103) | ||||||
| (111) | ||||||
| (112) | ||||||
| (113) | ||||||
| (121) | ||||||
| (122) | ||||||
| (123) | ||||||
附表1 3个属性分支结构SSCQM/USCQM运用于RPa-DINA模型的S(α)
| KS | SSCQM | |||||
|---|---|---|---|---|---|---|
| (000) | ||||||
| (100) | ||||||
| (110) | ||||||
| (120) | ||||||
| (101) | ||||||
| (102) | ||||||
| (103) | ||||||
| (111) | ||||||
| (112) | ||||||
| (113) | ||||||
| (121) | ||||||
| (122) | ||||||
| (123) | ||||||
| KS | SSCQM | ||||
|---|---|---|---|---|---|
| (000) | |||||
| (100) | |||||
| KS | SSCQM | ||||
| (110) | |||||
| (120) | |||||
| (101) | |||||
| (102) | |||||
| (103) | |||||
| (111) | |||||
| (112) | |||||
| (113) | |||||
| (121) | |||||
| (122) | |||||
| (123) | |||||
附表2 3个属性分支结构SSCQM运用于修改GRPa-DINA模型的S(α)
| KS | SSCQM | ||||
|---|---|---|---|---|---|
| (000) | |||||
| (100) | |||||
| KS | SSCQM | ||||
| (110) | |||||
| (120) | |||||
| (101) | |||||
| (102) | |||||
| (103) | |||||
| (111) | |||||
| (112) | |||||
| (113) | |||||
| (121) | |||||
| (122) | |||||
| (123) | |||||
| KS | USCQM | ||||
|---|---|---|---|---|---|
| (000) | |||||
| (100) | |||||
| (110) | |||||
| (120) | |||||
| (101) | |||||
| (102) | |||||
| (103) | |||||
| (111) | |||||
| (112) | |||||
| (113) | |||||
| (121) | |||||
| (122) | |||||
| (123) | |||||
附表3 3个属性分支结构USCQM运用于修改GRPa-DINA模型的 S α
| KS | USCQM | ||||
|---|---|---|---|---|---|
| (000) | |||||
| (100) | |||||
| (110) | |||||
| (120) | |||||
| (101) | |||||
| (102) | |||||
| (103) | |||||
| (111) | |||||
| (112) | |||||
| (113) | |||||
| (121) | |||||
| (122) | |||||
| (123) | |||||
| [1] |
Cai, Y., & Tu, D. (2015). Extension of cognitive diagnosis models based on the polytomous attributes framework and their Q-matrices designs. Acta Psychologica Sinica, 47(10), 1300-1308.
doi: 10.3724/SP.J.1041.2015.01300 |
| [蔡艳, 涂冬波. (2015). 属性多级化的认知诊断模型拓展及其Q矩阵设计. 心理学报, 47(10), 1300-1308.] | |
| [2] | Cai, Y., Zhao, Y., Liu, S. C., Zhang, S. F., & Tu, D. (2017). An extended polytomous cognitive diagnostic model. Journal of Psychological Science, 40(6), 1491-1497. |
| [蔡艳, 赵洋, 刘舒畅, 张淑芳, 涂冬波. (2017). 一种优化的多级评分认知诊断模型. 心理科学, 40(6), 1491-1497.] | |
| [3] |
Chen, J., & de la Torre, J. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9, 1474. https://doi.org/10.3389/fpsyg.2018.01474
doi: 10.3389/fpsyg.2018.01474 URL pmid: 30186195 |
| [4] | Chen, J. S., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419-437. |
| [5] | Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866. |
| [6] | Cheng, Y. (2010). Improving cognitive diagnostic computerized adaptive testing by balancing attribute coverage: The modified maximum global discrimination index method. Educational and Psychological Measurement, 70(6), 902-913. |
| [7] | Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618. |
| [8] | Chiu, C. Y., Douglas, J., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633-665. |
| [9] |
Culpepper, S. A. (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation. Psychometrika, 84(4), 921-940.
doi: 10.1007/s11336-019-09683-4 pmid: 31432312 |
| [10] | De Carlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468. |
| [11] | Ding, S. L., Luo, F., & Wang, W. Y. (2014). Design of polytomous cognitively diagnostic test blueprint——For the independent and the rhombus attribute hierarchies. Journal of Jiangxi Normal University (Natural Sciences Edition), 38(3), 265-269. |
| [丁树良, 罗芬, 汪文义. (2014). 多级评分认知诊断测验蓝图的设计——独立型和收敛型结构. 江西师范大学学报(自然科学版), 38(3), 265-269.] | |
| [12] | Ding, S. L., Luo, F., Wang, W. Y., LI, J., & Xiong, J. H. (2022). The structure of unstructured complete Q matrices and their identification. Journal of Jiangxi Normal University (Natural Sciences Edition), 46(5), 441-446. |
| [丁树良, 罗芬, 汪文义, 李佳, 熊建华. (2022). 非结构化完备 Q 阵的构造与判定. 江西师范大学学报(自然科学版), 46(5), 441-446.] | |
| [13] | Ding, S. L., Luo, F., Wang, W. Y., & Xiong, J. H. (2015). The properties of 0-1 and polytomous reach ability matrices and their applications. Journal of Jiangxi Normal University (Natural Sciences Edition), 39(1), 64-68. |
| [丁树良, 罗芬, 汪文义, 熊建华. (2015). 0-1和多值可达矩阵的性质及应用. 江西师范大学学报(自然科学版), 39(1), 64-68.] | |
| [14] | Ding, S. L., Luo, F., Wang, W. Y., & Xiong, J. H. (2019). The designing cognitive diagnostic test with dichotomous scoring. Journal of Jiangxi Normal University (Natural Sciences Edition), 43(5), 441-447. |
| [丁树良, 罗芬, 汪文义, 熊建华. (2019). 0-1评分认知诊断测验设计. 江西师范大学学报(自然科学版), 43(5), 441-447.] | |
| [15] |
Ding, S. L., Mao, M. M., Wang, W. Y., Luo, F., & Cui, Y. (2012). Evaluating the consistency of test items relative to the cognitive model for educational cognitive diagnosis. Acta Psychologica Sinica, 44(11), 1535-1546.
doi: 10.3724/SP.J.1041.2012.01535 |
| [丁树良, 毛萌萌, 汪文义, 罗芬, Cui, Y. (2012). 教育认知诊断测验与认知模型一致性的评估. 心理学报, 44(11), 1535-1546.] | |
| [16] | Ding, S. L., Wang, W. Y., & Luo, F. (2014). Design of polytomous cognitively diagnostic test blueprint——For the rooted tree type. Journal of Jiangxi Normal University (Natural Sciences Edition), 38(2), 111-118. |
| [丁树良, 汪文义, 罗芬. (2014). 多级评分认知诊断测验蓝图的设计——根树型结构. 江西师范大学学报(自然科学版), 38(2), 111-118.] | |
| [17] | Ding, S. L., Wang, W. Y., Luo, F., & Xiong, J. H. (2015). The polytomous Q-matrix theory. Journal of Jiangxi Normal University (Natural Sciences Edition), 39(4), 365-370. |
| [丁树良, 汪文义, 罗芬, 熊建华. (2015). 多值Q矩阵理论. 江西师范大学学报(自然科学版), 39(4), 365-370.] | |
| [18] | Ding, S. L., Wang, W. Y., & Yang, S. Q. (2011). The design of cognitive diagnostic test blueprints. Journal of Psychological Science, 34(2), 258-265. |
| [丁树良, 汪文义, 杨淑群. (2011). 认知诊断测验蓝图的设计. 心理科学, 34(2), 258-265.] | |
| [19] | Ding, S. L., Yang, S. Q., & Wang, W. Y. (2010). The importance of reachability matrix in constructing cognitively diagnostic testing. Journal of Jiangxi Normal University (Natural Sciences Edition), 34(5), 490-494. |
| [丁树良, 杨淑群, 汪文义. (2010). 可达矩阵在认知诊断测验编制中的重要作用. 江西师范大学学报(自然科学版), 34(5), 490-494.] | |
| [20] | Embretson, S. (1984). A general latent trait model for response processes. Psychometrika, 49(2), 175-186. |
| [21] |
Fang, G., Liu, J., & Ying, Z. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84(1), 19-40.
doi: 10.1007/s11336-018-09658-x pmid: 30673967 |
| [22] | Gao, X. L., Gong, Y., & Wang, F. (2021). Research progress in polytomous cognitive diagnosis model. Journal of Psychological Science, 44(2), 457-464. |
| [高旭亮, 龚毅, 王芳. (2021). 多级评分认知诊断模型述评. 心理科学, 44(2), 457-464.] | |
| [23] | Gorin, J. S. (2007). Test construction and diagnostic testing. In J. P. Leighton (Ed.), Cognitive diagnostic assessment for education: Theory and applications (pp. 173-201). Cambridge University Press. |
| [24] | Groß, J., & George, A. C. (2014). On permissible attribute classes in noncompensatory cognitive diagnosis models. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 10(3), 100-107. |
| [25] |
Gu, Y., & Xu, G. (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2), 468-483.
doi: 10.1007/s11336-018-9619-8 pmid: 29728918 |
| [26] | Gu, Y., & Xu, G. (2021). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica, 31(1), 449-472. |
| [27] | Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262-277. |
| [28] | Henson, R., Roussos, L., Douglas, J., & He, X. M. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32(4), 275-288. |
| [29] |
Jing, O. Y., & Xu, G. J. (2022). Identifiability of latent class models with covariates. Psychometrika, 87(4), 1343-1360.
doi: 10.1007/s11336-022-09852-y pmid: 35254608 |
| [30] | Köhn, H. F., & Chiu, C. Y. (2019). Attribute hierarchy models in cognitive diagnosis: Identifiability of the latent attribute space and conditions for completeness of the Q-matrix. Journal of Classfication, 36, 541-565. |
| [31] | Köhn, H. F., & Chiu, C. Y. (2021). A unified theory of the completeness of Q-Matrices for the DINA model. Journal of Classification, 38(3), 500-518. |
| [32] | Kuo, B. C., Pai, H. S., & de la Torre, J. (2016). Modified cognitive diagnostic index and modified attribute-level discrimination index for test construction. Applied Psychological Measurement, 40(5), 315-330. |
| [33] | Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-237. |
| [34] |
Liu, J. C., Xu, G., & Ying, Z. L. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
pmid: 23926363 |
| [35] | Liu, J. C., Xu, G., & Ying, Z. L. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19(5A), 1790-1817. |
| [36] | Lin, M. Q., & Xu, G. (2023). Identifiability of cognitive diagnosis models with polytomous responses. Preprint arXiv: 2304.01363v2. |
| [37] | Liu, R., Huggins-Manley, A. C., & Bradshaw, L. (2016). The impact of Q-matrix designs on diagnostic classification accuracy in the presence of attribute hierarchies. Educational and Psychological Measurement, 77(2), 220-240. |
| [38] | Ma, W. C., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. |
| [39] | Maris, E. (1995). Psychometric latent response models. Psychometrika, 60(4), 523-547. |
| [40] | Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187-212. |
| [41] | Sun, J. N., Xin, T., Zhang, S. M., & de la Torre, J. (2013). A polytomous extension of the generalized distance discriminating method. Applied Psychological Measurement, 37(7), 503-521. |
| [42] | Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. Erlbaum: Hillsdale, 327-359. |
| [43] | Tang, X. J., Ding, S. L., Mao, M. M., & Yu, Z. H. (2013). A test construction method for cognitive diagnosis based on attribute hierarchy structure. Psychological Exploration, 33(3), 252-259. |
| [唐小娟, 丁树良, 毛萌萌, 俞宗火. (2013). 基于属性层级结构的认知诊断测验的组卷. 心理学探新, 33(3), 252-259.] | |
| [44] | Tang, X. J., Peng, Z. X., Qin, S. S., Ding, S. L., Mao, M. M., & Li, Y. (2024). Design of the polytomous simplest complete Q matrix based on the reachability matrix. Acta Psychologica Sinica, 56(11), 1634-1650. |
|
[唐小娟, 彭志霞, 秦珊珊, 丁树良, 毛萌萌, 李瑜. (2024). 基于可达阵的多级评分最简完备Q矩阵设计. 心理学报, 56(11), 1634-1650.]
doi: 10.3724/SP.J.1041.2024.01634 |
|
| [45] | Tu, D. B., Cai, Y., Dai, H. Q., & Ding, S. L. (2010). A polytomous cognitive diagnosis model: P-DINA model. Acta Psychologica Sinica, 42(10), 1011-1020. |
| [涂冬波, 蔡艳, 戴海琦, 丁树良. (2010). 一种多级评分的认知诊断模型: P-DINA模型的开发. 心理学报, 42(10), 1011-1020.] | |
| [46] | van Der Ark, L. A. (2001). Relationships and properties of polytomous item response theory models. Applied Psychological Measurement, 25(3), 273-282. |
| [47] | Wang, L. J., Zhao, S. Y., Chang, W., Tang, F., & Zhan, P. D. (2022). A graded response extension of the reparametrized polytomous attributes DINA model. Journal of Psychological Science, 45(1), 195-203. |
| [王立君, 赵少勇, 昌维, 唐芳, 詹沛达. (2022). 重参数化多分属性DINA模型的多级评分拓广——基于等级反应模型. 心理科学, 45(1), 195-203.] | |
| [48] | Wang, W. Y., Song, L. H., & Ding, S. L. (2014). A review of reliability and validity indices in cognitive diagnostic assessments. Examinations Research, 46(5), 29-36. |
| [汪文义, 宋丽红, 丁树良. (2014). 教育认知诊断测验的信度和效度研究评述. 考试研究, 46(5), 29-36.] | |
| [49] | Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45(4), 479-494. |
| [50] | Wu, F. W. (2015). The application of depression symptoms assessment in the compensatory polytomous cognitive diagnosis mode [Unpublished masteral thesis]. Jiangxi Normal University, China. |
| [吴方文. (2015). 补偿型的多级评分认知诊断模型的开发及其在抑郁症状评估中的应用 (硕士学位论文). 江西师范大学.] | |
| [51] |
Zhan, P. D., Bian, Y. F., & Wang, L. J. (2016). Factors affecting the classification accuracy of reparametrized diagnostic classification models for expert-defined polytomous attributes. Acta Psychologica Sinica, 48(3), 318-330.
doi: 10.3724/SP.J.1041.2016.00318 |
| [詹沛达, 边玉芳, 王立君. (2016). 重参数化的多分属性诊断分类模型及其判准率影响因素. 心理学报, 48(3), 318-330.] | |
| [52] | Zhu, Y. F. (2015). An application of the GDD-P in carrying notation. Journal of Jiangxi Normal University (Natural Sciences Edition), 39(5), 453-458. |
| [祝玉芳. (2015). GDD-P在进位计数制中的应用. 江西师范大学学报(自然科学版), 39(5), 453-458.] |
| [1] | 唐小娟, 彭志霞, 秦珊珊, 丁树良, 毛萌萌, 李瑜. 基于可达阵的多级评分最简完备Q矩阵设计[J]. 心理学报, 2024, 56(11): 1634-1650. |
| [2] | 丁树良;毛萌萌;汪文义;罗芬;CUI Ying. 教育认知诊断测验与认知模型一致性的评估[J]. 心理学报, 2012, 44(11): 1535-1546. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||