Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (10): 2206-2218.doi: 10.3724/SP.J.1042.2022.02206
• Regular Articles • Previous Articles Next Articles
Received:
2021-10-15
Online:
2022-10-15
Published:
2022-08-24
Contact:
ZHANG Qi
E-mail:zq1892@mnnu.edu.cn
CLC Number:
WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search[J]. Advances in Psychological Science, 2022, 30(10): 2206-2218.
[1] | 车晓玮, 王凯旋, 上官梦麒, 李寿欣. (2020). 视觉工作记忆中注意模板的表征--来自EROS的证据. 心理与行为研究, 18(3), 297-303. |
[2] | 彭晓玲, 黄丹. (2018). 任务难度对自闭症儿童视觉搜索优势显现的影响. 心理科学, 41(2), 498-503. |
[3] | 张豹, 黄赛, 祁禄. (2013). 工作记忆表征引导视觉注意选择的眼动研究. 心理学报, 45(2), 139-148. |
[4] | Alfandari, D., Belopolsky, A. V., & Olivers, C. N. L. (2019). Eye movements reveal learning and information-seeking in attentional template acquisition. Visual Cognition, 27(5-8), 467-486. |
[5] |
Anderson, B. A. (2014). On the precision of goal-directed attentional selection. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1755-1762.
doi: 10.1037/a0037685 URL |
[6] |
Ansorge, U., & Horstmann, G. (2007). Preemptive control of attentional capture by colour: Evidence from trial-by-trial analyses and orderings of onsets of capture effects in reaction time distributions. Quarterly Journal of Experimental Psychology, 60(7), 952-975.
doi: 10.1080/17470210600822795 URL |
[7] |
Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580-584.
doi: 10.1037/a0027885 URL |
[8] |
Baier, D., & Ansorge, U. (2019). Investigating the role of verbal templates in contingent capture by color. Attention, Perception, & Psychophysics, 81(6), 1846-1879.
doi: 10.3758/s13414-019-01701-y URL |
[9] |
Balani, A. B., Soto, D., & Humphreys, G. W. (2010). Working memory and target-related distractor effects on visual search. Memory and Cognition, 38(8), 1058-1076.
doi: 10.3758/MC.38.8.1058 pmid: 21156870 |
[10] |
Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1190-1196.
doi: 10.1037/xhp0000109 URL |
[11] |
Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230.
doi: 10.1037/xhp0000306 URL |
[12] |
Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898.
doi: 10.1177/0956797612439068 pmid: 22760886 |
[13] |
Beck, V. M., Luck, S. J., & Hollingworth, A. (2018). Whatever you do, don’t look at the …: Evaluating guidance by an exclusionary attentional template. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 645-662.
doi: 10.1037/xhp0000485 URL |
[14] |
Berggren, N, & Eimer, M. (2018a). Visual working memory load disrupts template-guided attentional selection during visual search. Journal of Cognitive Neuroscience, 30(12), 1902-1915.
doi: 10.1162/jocn_a_01324 URL |
[15] |
Berggren, N., & Eimer, M. (2018b). Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 120(2018), 75-85.
doi: 10.1016/j.neuropsychologia.2018.10.016 URL |
[16] |
Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50(5), 422-430.
doi: 10.1111/psyp.12019 pmid: 23418888 |
[17] |
Burra, N., & Kerzel, D. (2014). The distractor positivity (Pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685-696.
doi: 10.1111/psyp.12215 pmid: 24707976 |
[18] |
Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31(25), 9315-9322.
doi: 10.1523/JNEUROSCI.1097-11.2011 pmid: 21697381 |
[19] | Carlisle, N. B., & Nitka, A. W. (2019). Location-based explanations do not account for active attentional suppression. Visual Cognition, 27(3-4), 305-316. |
[20] |
Carlisle, N. B., & Woodman, G. F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137(2), 217-225.
doi: 10.1016/j.actpsy.2010.06.012 pmid: 20643386 |
[21] | Chang, S., Cunningham, C. A., & Egeth, H. E. (2019). The power of negative thinking: Paradoxical but effective ignoring of salient-but-irrelevant stimuli with a spatial cue. Visual Cognition, 27(3-4), 199-213. |
[22] |
Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918-2940.
pmid: 9862896 |
[23] |
Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how, and where. Current Opinion in Psychology, 29, 135-147.
doi: S2352-250X(18)30185-4 pmid: 30856512 |
[24] | Chen, S., Schnabl, L., Müller, H. J., & Conci, M. (2018). Amodal completion of a target template enhances attentional guidance in visual search. I-Perception, 9(4), 1-10. |
[25] | Cowan, N. (1995). Attention and memory: An integrated framework. New York, NY: Oxford University Press. |
[26] |
Cunningham, C. A., & Egeth, H. E. (2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27(4), 476-485.
doi: 10.1177/0956797615626564 pmid: 26893292 |
[27] |
Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. Journal of Experimental Psychology: General, 143(4), 1585-1599.
doi: 10.1037/a0036313 URL |
[28] |
Daffron, J. L., & Davis, G. (2015). Templates for rejection can specify semantic properties of nontargets in natural scenes. Journal of Vision, 15(15), 16.
doi: 10.1167/15.15.16 pmid: 26605845 |
[29] |
Daffron, J. L., & Davis, G. (2016). Target templates specify visual, not semantic, features to guide search: A marked asymmetry between seeking and ignoring. Attention, Perception, and Psychophysics, 78(7), 2049-2065.
doi: 10.3758/s13414-016-1094-7 URL |
[30] |
Dark, V. J., Vochatzer, K. G., & VanVoorhis, B. A. (1996). Semantic and spatial components of selective attention. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 63-81.
doi: 10.1037/0096-1523.22.1.63 URL |
[31] |
de Groot, F., Huettig, F., & Olivers, C. N. L. (2017). Language-induced visual and semantic biases in visual search are subject to task requirements. Visual Cognition, 25(1-3), 225-240.
doi: 10.1080/13506285.2017.1354952 URL |
[32] |
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
doi: 10.1146/annurev.ne.18.030195.001205 URL |
[33] | de Tommaso, M., & Turatto, M. (2019). Learning to ignore salient distractors: Attentional set and habituation. Visual Cognition, 27(3-4), 214-226. |
[34] |
Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, and Psychophysics, 81(5), 1253-1261.
doi: 10.3758/s13414-018-01664-6 URL |
[35] |
Duncan, J., & Humphreys, G. (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 578-588.
doi: 10.1037/0096-1523.18.2.578 URL |
[36] |
Duncan, J., & Humphrey, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
pmid: 2756067 |
[37] |
Evans, K. K., Horowitz, T. S., Howe, P., Pedersini, R., Reijnen, E., Pinto, Y., Kuzmova, Y., & Wolfe, J. M. (2011). Visual attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 503-514.
doi: 10.1002/wcs.127 URL |
[38] |
Ferrante, O., Patacca, A., di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67-95.
doi: 10.1016/j.cortex.2017.09.027 URL |
[39] |
Frătescu, M., van Moorselaar, D., & Mathôt, S. (2020). Correction to: Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes, and Olivers (2014) and Hollingworth and Beck (2016). Attention, Perception, & Psychophysics, 82(3), 1536.
doi: 10.3758/s13414-019-01950-x URL |
[40] |
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014 pmid: 24741056 |
[41] |
Gaspar, J. M., & McDonald, J. J. (2018). High level of trait anxiety leads to salience-driven distraction and compensation. Psychological Science, 29(12), 2020-2030.
doi: 10.1177/0956797618807166 URL |
[42] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913 pmid: 26420441 |
[43] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, and Psychophysics, 79(1), 45-62.
doi: 10.3758/s13414-016-1209-1 URL |
[44] |
Gaspelin, N., & Luck, S. J. (2018). Distinguishing among potential mechanisms of singleton suppression. Human Perception and Performance, 44(4), 626-644.
doi: 10.1037/xhp0000484 URL |
[45] |
Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12-18.
doi: S2352-250X(18)30177-5 pmid: 30415087 |
[46] |
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
doi: 10.1177/0963721414525780 URL |
[47] |
Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993-2007.
doi: 10.1037/xhp0000430 URL |
[48] |
Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 29, 119-125.
doi: S2352-250X(18)30199-4 pmid: 30743200 |
[49] | Graves, T., & Egeth, H. E. (2015). When does feature search fail to protect against attentional capture? Visual Cognition, 23(9-10), 1098-1123. |
[50] |
Grubert, A., Carlisle, N., & Eimer, M. (2016). The control of single-color and multiple-color visual search by attentional templates in working memory and in long-term memory. Journal of Cognitive Neuroscience, 28(12), 1947-1963.
pmid: 27458746 |
[51] |
Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology. Human Perception and Performance, 41(1), 86-101.
doi: 10.1037/xhp0000019 URL |
[52] |
Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32(8), 1525-1535.
doi: 10.1162/jocn_a_01565 pmid: 32319869 |
[53] |
Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60(1), 29-38.
doi: 10.1016/j.neuropsychologia.2014.05.012 URL |
[54] |
Hessels, R. S., Hooge, I. T. C., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44(2), 443-451.
doi: 10.1007/s10803-013-1886-8 pmid: 23838729 |
[55] |
Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917.
doi: 10.1037/xhp0000230 URL |
[56] | Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), Article 20130061. http://dx.doi.org/10.1098/rstb.2013.0061 |
[57] |
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128-149.
doi: 10.3758/s13414-014-0764-6 URL |
[58] |
Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73(3), 317-326.
doi: 10.1007/s00426-008-0157-3 pmid: 18665392 |
[59] |
Hwang, A. D., Wang, H. C., & Pomplun, M. (2011). Semantic guidance of eye movements in real-world scenes. Vision Research, 51(10), 1192-1205.
doi: 10.1016/j.visres.2011.03.010 pmid: 21426914 |
[60] |
Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 758-775.
doi: 10.1037/a0026578 URL |
[61] |
Keehn, B., Shih, P., Brenner, L. A., Townsend, J., & Müller, R. A. (2012). Functional connectivity for an “island of sparing” in autism spectrum disorder: An fMRI study of visual search. Human Brain Mapping, 34(10), 2524-2537.
doi: 10.1002/hbm.22084 URL |
[62] |
Kerzel, D. (2019). The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 186, 20-31.
doi: S0010-0277(19)30027-7 pmid: 30739056 |
[63] |
Kerzel, D., & Cong, S. H. (2021). Attentional templates are sharpened through differential signal enhancement, not differential allocation of attention. Journal of Cognitive Neuroscience, 33(4), 594-610.
doi: 10.1162/jocn_a_01677 pmid: 33464161 |
[64] |
Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658.
doi: 10.1037/xhp0000637 URL |
[65] |
Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749-759.
doi: 10.1162/jocn_a_00127 pmid: 21861683 |
[66] | Kong, G., Meehan, J., & Fougnie, D. (2020). Working memory is corrupted by strategic changes in search templates. Journal of Vision, 20(8), 1-10. |
[67] | Kugler, G., ’T Hart, B. M., Kohlbecher, S., Einhäuser, W., & Schneider, E. (2015). Gaze in visual search is guided more efficiently by positive cues than by negative cues. PLoS ONE, 10(12), Article e0145910. http://dx.doi.org/10.6084/m9.figshare.1276159 |
[68] |
Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
pmid: 8008793 |
[69] |
Lupyan, G. (2008). The conceptual grouping effect: Categories matter (and named categories matter more). Cognition, 108(2), 566-577.
doi: 10.1016/j.cognition.2008.03.009 pmid: 18448087 |
[70] | Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 1-13. |
[71] |
Marciano, H., Gal, E., Kimchi, R., Hedley, D., Goldfarb, Y., & Bonneh, Y. S. (2021). Visual detection and decoding skills of aerial photography by adults with autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 52(3), 1346-1360.
doi: 10.1007/s10803-021-05039-z pmid: 33948824 |
[72] |
Meyer, A. S., Belke, E., Telling, A. L., & Humphreys, G. W. (2007). Early activation of object names in visual search. Psychonomic Bulletin and Review, 14(4), 710-716.
doi: 10.3758/bf03196826 pmid: 17972738 |
[73] |
Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, and Psychophysics, 74(8), 1590-1605.
doi: 10.3758/s13414-012-0358-0 URL |
[74] |
Moores, E., Laiti, L., & Chelazzi, L. (2003). Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 6(2), 182-189.
pmid: 12514738 |
[75] |
Nako, R., Smith, T. J., & Eimer, M. (2015). Activation of new attentional templates for real-world objects in visual search. Journal of Cognitive Neuroscience, 27(5), 902-912.
doi: 10.1162/jocn_a_00747 pmid: 25321485 |
[76] |
Noonan, M. A. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797-1807.
doi: 10.1523/JNEUROSCI.2133-15.2016 pmid: 26865606 |
[77] |
Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334.
doi: 10.1016/j.tics.2011.05.004 pmid: 21665518 |
[78] |
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147.
doi: 10.1177/0956797617705667 pmid: 28661761 |
[79] |
Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460(7251), 94-97.
doi: 10.1038/nature08103 URL |
[80] |
Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12125-12130.
doi: 10.1073/pnas.1101042108 pmid: 21730192 |
[81] |
Rajsic, J., & Woodman, G. F. (2019). Do we remember templates better so that we can reject distractors better? Attention, Perception, and Psychophysics, 82(1), 269-279.
doi: 10.3758/s13414-019-01721-8 URL |
[82] |
Reeder, R. R., Olivers, C. N. L., Hanke, M., & Pollmann, S. (2018). No evidence for enhanced distractor template representation in early visual cortex. Cortex, 108, 279-282.
doi: S0010-9452(18)30255-7 pmid: 30245200 |
[83] |
Reeder, R. R., Olivers, C. N. L., & Pollmann, S. (2017). Cortical evidence for negative search templates. Visual Cognition, 25(1-3), 278-290.
doi: 10.1080/13506285.2017.1354952 URL |
[84] |
Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 13.
doi: 10.1167/13.3.13 pmid: 23750015 |
[85] |
Reeder, R. R., Perini, F., & Peelen, M. V. (2015). Preparatory activity in posterior temporal cortex causally contributes to object detection in scenes. Journal of Cognitive Neuroscience, 27(11), 2117-2125.
doi: 10.1162/jocn_a_00845 pmid: 26102225 |
[86] |
Reeder, R. R., van Zoest, W., & Peelen, M. V. (2015). Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes. Attention, Perception, and Psychophysics, 77(4), 1070-1080.
doi: 10.3758/s13414-015-0867-8 URL |
[87] |
Reinhart, R. M. G., & Woodman, G. F. (2014a). Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. Journal of Neuroscience, 34(12), 4214-4227.
doi: 10.1523/JNEUROSCI.5421-13.2014 URL |
[88] |
Reinhart, R. M. G., & Woodman, G. F. (2014b). High stakes trigger the use of multiple memories to enhance the control of attention. Cerebral Cortex, 24(8), 2022-2035.
doi: 10.1093/cercor/bht057 URL |
[89] |
Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 625-630.
doi: 10.1073/pnas.1417259112 pmid: 25548192 |
[90] | Salahub, C., & Emrich, S. M. (2021). Drawn to distraction: Anxiety impairs neural suppression of known distractor features in visual search. Journal of Cognitive Neuroscience, 33(8), 1506-1516. |
[91] |
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012 pmid: 22855820 |
[92] |
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Atten Percept Psychophys, 72(6), 1455-1470.
doi: 10.3758/APP.72.6.1455 pmid: 20675793 |
[93] |
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
pmid: 22053147 |
[94] |
Schönhammer, J. G., Becker, S. I., & Kerzel, D. (2020). Attentional capture by context cues, not inhibition of cue singletons, explains same location costs. Journal of Experimental Psychology: Human Perception and Performance, 46(6), 610-628.
doi: 10.1037/xhp0000735 URL |
[95] |
Shirama, A., Kato, N., & Kashino, M. (2017). When do individuals with autism spectrum disorder show superiority in visual search? Autism, 21(8), 942-951.
doi: 10.1177/1362361316656943 pmid: 27899713 |
[96] |
Soto, D., Greene, C. M., Chaudhary, A., & Rotshtein, P. (2012). Competition in working memory reduces frontal guidance of visual selection. Cerebral Cortex, 22(5), 1159-1169.
doi: 10.1093/cercor/bhr190 URL |
[97] |
Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348.
doi: 10.1016/j.tics.2008.05.007 pmid: 18693131 |
[98] |
Sun, S. Z., Shen, J., Shaw, M., Cant, J. S., & Ferber, S. (2015). Automatic capture of attention by conceptually generated working memory templates. Attention, Perception, and Psychophysics, 77(6), 1841-1847.
doi: 10.3758/s13414-015-0918-1 URL |
[99] |
Suzuki, M., & Gottlieb, J. (2012). Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nature Neuroscience, 16(1), 98-104.
doi: 10.1038/nn.3282 URL |
[100] |
Tanda, T., & Kawahara, J. (2020). An object-based template for rejection effect. Visual Cognition, 28(2), 87-96.
doi: 10.1080/13506285.2020.1722774 URL |
[101] |
Tanda, T., & Kawahara, J. I. (2019). Association between cue lead time and template-for-rejection effect. Attention, Perception, and Psychophysics, 81(6), 1880-1889.
doi: 10.3758/s13414-019-01761-0 |
[102] |
Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2010). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience, 22(10), 2212-2225.
doi: 10.1162/jocn.2009.21348 pmid: 19803680 |
[103] |
Theeuwes, J., Kramer, A. F., & Atchley, P. (1998). Visual marking of old objects. Psychonomic Bulletin and Review, 5(1), 130-134.
doi: 10.3758/BF03209468 URL |
[104] |
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
pmid: 7351125 |
[105] |
Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459-478.
doi: 10.1037/0096-1523.16.3.459 URL |
[106] |
Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain. Journal of Experimental Psychology: General, 147(12), 1827-1850.
doi: 10.1037/xge0000503 URL |
[107] |
van Diepen, R. M., Foxe, J. J., & Mazaheri, A. (2019). The functional role of alpha-band activity in attentional processing: The current zeitgeist and future outlook. Current Opinion in Psychology, 29, 229-238.
doi: S2352-250X(18)30229-X pmid: 31100655 |
[108] |
van Loon, A. M., Olmos-Solis, K., & Olivers, C. N. L. (2017). Subtle eye movement metrics reveal task-relevant representations prior to visual search. Journal of Vision, 17(6), 13.
doi: 10.1167/17.6.13 pmid: 28637052 |
[109] |
van Moorselaar, D., Olivers, C. N. L., Theeuwes, J., Lamme, V. A. F., & Sligte, I. G. (2015). Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory. Journal of Experimental Psychology: Learning Memory and Cognition, 41(6), 1755-1763.
doi: 10.1037/xlm0000124 URL |
[110] |
van Moorselaar, D., Theeuwes, J., & Olivers, C. N. (2014). In competition for the attentional template: Only a single item in visual working memory can guide attention. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450.
doi: 10.1037/a0036229 URL |
[111] |
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin and Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4 pmid: 22696250 |
[112] |
Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 81-92.
pmid: 15831069 |
[113] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
doi: 10.1038/nature02447 URL |
[114] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503.
doi: 10.1038/nature04171 URL |
[115] |
Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80(4), 860-870.
doi: 10.3758/s13414-018-1493-z URL |
[116] |
Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13-17.
doi: 10.1037/xhp0000472 URL |
[117] |
Watson, G. D., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90-122.
pmid: 9009881 |
[118] |
Wei, P., Müller, H. J., Pollmann, S., & Zhou, X. (2009). Neural basis of interaction between target presence and display homogeneity in visual search: An fMRI study. NeuroImage, 45(3), 993-1001.
doi: 10.1016/j.neuroimage.2008.12.053 pmid: 19166947 |
[119] | Witkowski, P., & Geng, J. J. (2019). Learned feature variance is encoded in the target template and drives visual search. Visual Cognition, 27(5-8), 487-501. |
[120] |
Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698-703.
doi: 10.1177/0956797612443968 pmid: 22623508 |
[121] | Wolfe, J. M. (2020a). Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of Anne Treisman. Attention, Perception, and Psychophysics, 82(1), 1-6. |
[122] |
Wolfe, J. M. (2020b). Visual search: How do we find what we are looking for? Annual Review of Vision Science, 6, 539-562.
doi: 10.1146/annurev-vision-091718-015048 URL |
[123] |
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501.
pmid: 15152199 |
[124] |
Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128-1141.
doi: 10.1037/xhp0000521 URL |
[125] |
Won, B. Y., Haberman, J., Bliss-Moreau, E., & Geng, J. J. (2020). Flexible target templates improve visual search accuracy for faces depicting emotion. Attention, Perception, and Psychophysics, 82(6), 2909-2923.
doi: 10.3758/s13414-019-01965-4 URL |
[126] |
Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215.
doi: 10.1177/0956797610395395 pmid: 21193780 |
[127] | Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1-17. |
[128] | Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(Suppl. 1), 118-124. |
[129] |
Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219-224.
pmid: 11437304 |
[130] |
Worschech, F., & Ansorge, U. (2012). Top-down search for color prevents voluntary directing of attention to informative singleton cues. Experimental Psychology, 59(3), 153-162.
doi: 10.1027/1618-3169/a000138 pmid: 22246061 |
[131] |
Wurth, M., & Reeder, R. R. (2019). Diagnostic parts are not exclusive in the search template for real-world object categories. Acta Psychologica, 196(March),11-17.
doi: S0001-6918(18)30553-5 pmid: 30939331 |
[132] |
Yu, X., Hanks, T. D., & Geng, J. J. (2022). Attentional guidance and match decisions rely on different template information during visual search. Psychological Science, 33(1), 105-120.
doi: 10.1177/09567976211032225 URL |
[133] | Zhang, J., Ye, C., Sun, H.-J., Zhou, J., Liang, T., Li, Y., & Liu, Q. (2021). The Passive State: A Protective Mechanism for Information in Working Memory Tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. https://doi.org/10.1037/xlm0001092 |
[134] |
Zhang, Q., & Li, S. (2020). The roles of spatial frequency in category-level visual search of real-world scenes. PsyCh Journal, 9(1), 44-55.
doi: 10.1002/pchj.294 pmid: 31155857 |
[135] |
Zhang, Z., Gapelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, and Psychophysics, 82(3), 1166-1175.
doi: 10.3758/s13414-019-01864-8 |
[136] |
Zhou, C., Lorist, M. M., & Mathôt, S. (2020). Concurrent guidance of attention by multiple working memory items: Behavioral and computational evidence. Attention, Perception, and Psychophysics, 82(6), 2950-2962.
doi: 10.3758/s13414-020-02048-5 URL |
[1] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun. Processing characteristics and mechanisms of perception and memory of mind sports experts in domain-specific tasks [J]. Advances in Psychological Science, 2022, 30(9): 1993-2003. |
[5] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[6] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[7] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[8] | WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. Modulating working memory related-oscillation via entrainment of neural oscillation [J]. Advances in Psychological Science, 2022, 30(4): 802-816. |
[9] | LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. The function and mechanisms of prediction error in updating fear memories [J]. Advances in Psychological Science, 2022, 30(4): 834-850. |
[10] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[11] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
[12] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[13] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[14] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[15] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||