Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (3): 425-438.doi: 10.3724/SP.J.1042.2025.0425
• Regular Articles • Previous Articles Next Articles
CHENG Xiaorong,†, QIU Shiming,†, DING Xianfeng, FAN Zhao()
Received:
2024-07-26
Online:
2025-03-15
Published:
2025-01-24
Contact:
FAN Zhao
E-mail:z.fan@ccnu.edu.cn
CLC Number:
CHENG Xiaorong, QIU Shiming, DING Xianfeng, FAN Zhao. How does action influence metacognition? — An exploration based on cognitive models and neural mechanisms[J]. Advances in Psychological Science, 2025, 33(3): 425-438.
[1] |
Al-Maghrabi M., Mamede S., Schmidt H. G., Omair A., Al-Nasser S., & Magzoub M. E. M. A. (2024). Overconfidence, time-on-task, and medical errors: Is there a relationship? Advances in Medical Education and Practice, 15, 133-140. https://doi.org/10.2147/AMEP.S442689
doi: 10.2147/AMEP.S442689 URL pmid: 38410282 |
[2] | Baird B., Smallwood J., Gorgolewski K. J., & Margulies D. S. (2013). Medial and lateral networks in anterior prefrontal cortex support meta-cognitive ability for memory and perception. Journal of Neuroscience, 33(42), 16657-16665. https://doi.org/10.1523/JNEUROSCI.0786-13.2013 |
[3] |
Boldt A., & Gilbert S. J. (2022). Partially overlapping neural correlates of metacognitive monitoring and metacognitive control. Journal of Neuroscience, 42(17), 3622-3635. https://doi.org/10.1523/JNEUROSCI.1326-21.2022
doi: 10.1523/JNEUROSCI.1326-21.2022 URL pmid: 35304428 |
[4] |
Boldt A., & Yeung N. (2015). Shared neural markers of decision confidence and error detection. Journal of Neuroscience, 35(8), 3478-3484. https://doi.org/10.1523/JNEUROSCI.0797-14.2015
doi: 10.1523/JNEUROSCI.0797-14.2015 URL pmid: 25716847 |
[5] | Brouillet D., Brouillet T., & Versace R. (2023). Motor fluency makes it possible to integrate the components of the trace in memory and facilitates its re-construction. Memory & Cognition, 51(2), 336-348. https://doi.org/10.3758/s13421-022-01350-x |
[6] | Cardellicchio P., Dolfini E., Hilt P. M., Fadiga L., & D’Ausilio A. (2020). Motor cortical inhibition during concurrent action execution and action observation. NeuroImage, 208, 116445. https://doi.org/10.1016/j.neuroimage.2019.116445 |
[7] |
Carter C. S., Braver T. S., Barch D. M., Botvinick M. M., Noll D., & Cohen J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747-749. https://doi.org/10.1126/science.280.5364.747
doi: 10.1126/science.280.5364.747 URL pmid: 9563953 |
[8] | Charles L., Chardin C., & Haggard P. (2020). Evidence for metacognitive bias in perception of voluntary action. Cognition, 194, 104041. https://doi.org/10.1016/j.cognition.2019.104041 |
[9] | Chye S., Valappil A. C., Wright D. J., Frank C., Shearer D. A., Tyler C. J., ... Bruton A. M. (2022). The effects of combined action observation and motor imagery on corticospinal excitability and movement outcomes: Two meta-analyses. Neuroscience and Biobehavioral Reviews, 143, 104911. https://doi.org/10.1016/j.neubiorev.2022.104911 |
[10] | Cook J. (2016). From movement kinematics to social cognition: The case of autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150372. https://doi.org/10.1098/rstb.2015.0372 |
[11] | Desender K., Donner T. H., & Verguts T. (2021). Dynamic expressions of confidence within an evidence accumulation framework. Cognition, 207, 104522. https://doi.org/10.1016/j.cognition.2020.104522 |
[12] | Dhingra B., & Yadav M. (2024). An empirical analysis of overconfidence behaviour in the Indian ETF market. International Journal of Revenue Management, 14(1), 72-94. https://doi.org/10.1504/IJRM.2024.135964 |
[13] | Di Gregorio F., Trajkovic J., Roperti C., Marcantoni E., Di Luzio P., Avenanti A., ... Romei V. (2022). Tuning alpha rhythms to shape conscious visual perception. Current Biology, 32(5), 988-998. https://doi.org/10.1016/j.cub.2022.01.003 |
[14] | Di Luzio P., Tarasi L., Silvanto J., Avenanti A., & Romei V. (2022). Human perceptual and metacognitive decision- making rely on distinct brain networks. PLoS Biology, 20(8), e3001750. https://doi.org/10.1371/journal.pbio.3001750 |
[15] |
Donner T. H., Siegel M., Fries P., & Engel A. K. (2009). Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Current Biology, 19(18), 1581-1585. https://doi.org/10.1016/j.cub.2009.07.066
doi: 10.1016/j.cub.2009.07.066 URL pmid: 19747828 |
[16] | Engel A. K., & Fries P. (2010). Beta-band oscillations — Signalling the status quo. Current Opinion in Neurobiology, 20(2), 156-165. https://doi.org/10.1016/j.conb.2010.02.015 |
[17] |
Faivre N., Filevich E., Solovey G., Kühn S., & Blanke O. (2018). Behavioral, modeling, and electrophysiological evidence for supramodality in human metacognition. Journal of Neuroscience, 38(2), 263-277. https://doi.org/10.1523/JNEUROSCI.0322-17.2017
doi: 10.1523/JNEUROSCI.0322-17.2017 URL pmid: 28916521 |
[18] |
Faivre N., Vuillaume L., Bernasconi F., Salomon R., Blanke O., & Cleeremans A. (2020). Sensorimotor conflicts alter metacognitive and action monitoring. Cortex, 124, 224-234. https://doi.org/10.1016/j.cortex.2019.12.001
doi: S0010-9452(19)30401-0 URL pmid: 31927241 |
[19] | Feuerriegel D., Murphy M., Konski A., Mepani V., Sun J., Hester R., & Bode S. (2022). Electrophysiological correlates of confidence differ across correct and erroneous perceptual decisions. NeuroImage, 259, 119447. https://doi.org/10.1016/j.neuroimage.2022.119447 |
[20] | Filevich E., Koß C., & Faivre N. (2020). Response-related signals increase confidence but not metacognitive performance. Eneuro, 7(3), 1-14. https://doi.org/10.1523/ENEURO.0326-19.2020 |
[21] | Fleming S. M. (2024). Metacognition and confidence: A review and synthesis. Annual Review of Psychology, 75, 241-268. https://doi.org/10.1146/annurev-psych-022423-032425 |
[22] |
Fleming S. M., & Daw N. D. (2017). Self-evaluation of decision-making: A general bayesian framework for metacognitive computation. Psychological Review, 124(1), 91-114. https://doi.org/10.1037/rev0000045
doi: 10.1037/rev0000045 URL pmid: 28004960 |
[23] |
Fleming S. M., & Lau H. (2014). How to measure metacognition. Frontiers in Human Neuroscience, 8, 443. https://doi.org/10.3389/fnhum.2014.00443
doi: 10.3389/fnhum.2014.00443 URL pmid: 25076880 |
[24] |
Fleming S. M., Maniscalco B., Ko Y. D., Amendi N., Ro T., & Lau H. (2015). Action-specific disruption of perceptual confidence. Psychological Science, 26(1), 89-98. https://doi.org/10.1177/0956797614557697
doi: 10.1177/0956797614557697 URL pmid: 25425059 |
[25] |
Foxe J. J., Simpson G. V., & Ahlfors S. P. (1998). Parieto- occipital -10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport, 9(17), 3929-3933. https://doi.org/10.1097/00001756-199812010-00030
doi: 10.1097/00001756-199812010-00030 URL pmid: 9875731 |
[26] | Foxe J. J., & Snyder A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 10747. https://doi.org/10.3389/fpsyg.2011.00154 |
[27] | Gajdos T., Fleming S. M., Saez Garcia M., Weindel G., & Davranche K. (2019). Revealing subthreshold motor contributions to perceptual confidence. Neuroscience of Consciousness, 2019(1), niz001. https://doi.org/10.1093/nc/niz001 |
[28] | Geurts L. S., Cooke J. R., van Bergen R. S., & Jehee J. F. (2022). Subjective confidence reflects representation of Bayesian probability in cortex. Nature Human Behaviour, 6(2), 294-305. https://doi.org/10.1038/s41562-021-01247-w |
[29] |
Gherman S., & Philiastides M. G. (2015). Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage, 106, 134-143. https://doi.org/10.1016/j.neuroimage.2014.11.036
doi: 10.1016/j.neuroimage.2014.11.036 URL pmid: 25463461 |
[30] | Ghin F., Stock A. K., & Beste C. (2022). The importance of resource allocation for the interplay between automatic and cognitive control in response inhibition-An EEG source localization study. Cortex, 155, 202-217. https://doi.org/10.1016/j.cortex.2022.07.004 |
[31] |
Giarrocco F., & Averbeck B. B. (2021). Organization of parietoprefrontal and temporoprefrontal networks in the macaque. Journal of Neurophysiology, 126(4), 1289-1309. https://doi.org/10.1152/jn.00092.2021
doi: 10.1152/jn.00092.2021 URL pmid: 34379536 |
[32] |
Goodale M. A., & Milner A. D. (1992). Separate visual pathways for perception and action. Trends in neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8
doi: 10.1016/0166-2236(92)90344-8 URL pmid: 1374953 |
[33] | Grogan J. P., Rys W., Kelly S. P., & O'Connell R. G. (2023). Confidence is predicted by pre- and post-choice decision signal dynamics. Imaging Neuroscience, 1, 1-23. https://doi.org/10.1162/imag_a_00005 |
[34] | Hobot J., Koculak M., Paulewicz B., Sandberg K., & Wierzchoń M. (2020). Transcranial magnetic stimulation- induced motor cortex activity influences visual awareness judgments. Frontiers in Neuroscience, 14, 580712. https://doi.org/10.3389/fnins.2020.580712 |
[35] | Hobot J., Skora Z., Wierzchoń M., & Sandberg K. (2023). Continuous theta burst stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. NeuroImage, 272, 119991. https://doi.org/10.1016/j.neuroimage.2023.119991 |
[36] | Hoven M., Brunner G., de Boer N. S., Goudriaan A. E., Denys D., van Holst R. J., ... Lebreton M. (2022). Motivational signals disrupt metacognitive signals in the human ventromedial prefrontal cortex. Communications biology, 5(1), 244. https://doi.org/10.1038/s42003-022-03197-z |
[37] | Jaeger C., Glim S., Dimulescu C., Ries A., & Wohlschlger A. (2020). Segregated Co-activation Patterns in the Emergence of Decision Confidence During Visual Perception. Frontiers in Systems Neuroscience, 14, 557693. https://doi.org/10.3389/fnsys.2020.557693 |
[38] |
Kelly S. P., Corbett E. A., & O’Connell R. G. (2021). Neurocomputational mechanisms of prior-informed perceptual decision-making in humans. Nature Human Behaviour, 5(4), 467-481. https://doi.org/10.1038/s41562-020-00967-9
doi: 10.1038/s41562-020-00967-9 URL pmid: 33318661 |
[39] |
Ko Y. H., Zhou A., Niessen E., Stahl J., Weiss P. H., Hester R., ... Feuerriegel D. (2024). Neural correlates of confidence during decision formation in a perceptual judgment task. Cortex, 173, 248-262. https://doi.org/10.1016/j.cortex.2024.01.006
doi: 10.1016/j.cortex.2024.01.006 URL pmid: 38432176 |
[40] |
Lapate R. C., Samaha J., Rokers B., Postle B. R., & Davidson R. J. (2020). Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex. Communications Biology, 3(1), 360. https://doi.org/10.1038/s42003-020-1049-3
doi: 10.1038/s42003-020-1049-3 URL pmid: 32647260 |
[41] |
Lau H., & Rosenthal D. (2011). Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences, 15(8), 365-373. https://doi.org/10.1016/j.tics.2011.05.009
doi: 10.1016/j.tics.2011.05.009 URL pmid: 21737339 |
[42] | Lebensfeld T. C., & Smalarz L. (2024). Witnessing- condition information differentially affects evaluations of high-and moderate-confidence eyewitness identifications. Cognition, 250, 105841. https://doi.org/10.1016/j.cognition.2024.105841 |
[43] | Lee D. G., Daunizeau J., & Pezzulo G. (2023). Evidence or confidence: What is really monitored during a decision? Psychonomic Bulletin & Review, 30(4), 1360-1379. https://doi.org/10.3758/s13423-023-02255-9 |
[44] | Legrand N., Engen S. S., Correa C. M. C., Mathiasen N. K., Nikolova N., Fardo F., & Allen M. (2021). Emotional metacognition: stimulus valence modulates cardiac arousal and metamemory. Cognition and Emotion, 35(4), 705-721. https://doi.org/10.1080/02699931.2020.1859993 |
[45] | Lei W., Chen J., Yang C., Guo Y., Feng P., Feng T., & Li H. (2020). Metacognition-related regions modulate the reactivity effect of confidence ratings on perceptual decision-making. Neuropsychologia, 144, 107502. https://doi.org/10.1016/j.neuropsychologia.2020.107502 |
[46] |
Macerollo A., Bose S., Ricciardi L., Edwards M. J., & Kilner J. M. (2015). Linking differences in action perception with differences in action execution. Social Cognitive and Affective Neuroscience, 10(8), 1121-1127. https://doi.org/10.1093/scan/nsu161
doi: 10.1093/scan/nsu161 URL pmid: 25691777 |
[47] | MacNeil S. L., Wood E., & Arslantas F. (2024). Development of a metacognition co-curriculum for a university course in introductory organic chemistry. Frontiers in Education, 9, 1402599. https://doi.org/10. 3389/feduc.2024.1402599 |
[48] | Mamassian P., & de Gardelle V. (2022). Modeling perceptual confidence and the confidence forced-choice paradigm. Psychological Review, 129(5), 976-998. https://doi.org/10.1037/rev0000312 |
[49] | Maniscalco B., Castaneda O. G., Odegaard B., Morales J., Rajananda S., & Peters M. A. (2020). The metaperceptual function: Exploring dissociations between confidence and task performance with type 2 psychometric curves. PsyArxiv 2020. https://doi.org/10.31234/osf.io/5qrjn |
[50] |
Maniscalco B., & Lau H. (2012). A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 422-430. https://doi.org/10.1016/j.concog.2011.09.021
doi: 10.1016/j.concog.2011.09.021 URL pmid: 22071269 |
[51] | Maniscalco B., & Lau H. (2016). The signal processing architecture underlying subjective reports of sensory awareness. Neuroscience of Consciousness, 2016(1), 1-17. https://doi.org/10.1093/nc/niw002 |
[52] | Maniscalco B., Odegaard B., Grimaldi P., Cho S. H., Basso M. A., Lau H., & Peters M. A. (2021). Tuned inhibition in perceptual decision-making circuits can explain seemingly suboptimal confidence behavior. PLoS Computational Biology, 17(3), e1008779. https://doi.org/10.1371/journal.pcbi.1008779 |
[53] | Mazancieux A., Pereira M., Faivre N., Mamassian P., Moulin C., & Souchay C. (2023). Towards a common conceptual space for metacognition in perception and memory. Nature Reviews Psychology, 2, 751-766. https://doi.org/10.1038/s44159-023-00245-1 |
[54] | Milner A. D. (2017). How do the two visual streams interact with each other? Experimental Brain Research, 235(3), 1297-1308. https://doi.org/10.1007/s00221-017-4917-4 |
[55] |
Milner A. D., & Goodale M. A. (1993). Visual pathways to perception and action. Progress in Brain Research, 95, 317-337. https://doi.org/10.1016/s0079-6123(08)60379-9
URL pmid: 8493342 |
[56] | Milner A. D., & Goodale M. A. (1995). The visual brain in action. Oxford University Press. |
[57] | Milshtein D., Henik A., Ben-Zedeff E. H., & Milstein U. (2024). Mind on the battlefield: What can cognitive science add to the military lessons-learned process? Defence Studies, 24(2), 277-298. https://doi.org/10.1080/14702436.2024.2316138 |
[58] | Moro V., Scandola M., & Aglioti S. M. (2022). What the study of spinal cord injured patients can tell us about the significance of the body in cognition. Psychonomic Bulletin & Review, 29(6), 2052-2069. https://doi.org/10.3758/s13423-022-02129-6 |
[59] | Olawole-Scott H., & Yon D. (2023). Expectations about precision bias metacognition and awareness. Journal of Experimental Psychology: General, 152(8), 2177-2189. https://doi.org/https://doi.org/10.1037/xge0001371 |
[60] |
Overhoff H., Ko Y. H., Feuerriegel D., Fink G. R., Stahl J., Weiss P. H., ... Niessen E. (2021). Neural correlates of metacognition across the adult lifespan. Neurobiology of Aging, 108, 34-46. https://doi.org/10.1016/j.neurobiolaging.2021.08.001
doi: 10.1016/j.neurobiolaging.2021.08.001 URL pmid: 34487950 |
[61] | Overhoff H., Ko Y. H., Fink G. R., Weiss P. H., Stahl J., Bode S., & Niessen E. (2022). The relationship between response dynamics and the formation of confidence varies across the lifespan. Frontiers in Aging Neuroscience, 14, 969074. https://doi.org/10.3389/fnagi.2022.969074 |
[62] |
Palmer C. E., Bunday K. L., Davare M., & Kilner J. M. (2016). A causal role for primary motor cortex in perception of observed actions. Journal of Cognitive Neuroscience, 28(12), 2021-2029. https://doi.org/10.1162/jocn_a_01015
URL pmid: 27458752 |
[63] | Palser E. R., Fotopoulou A., & Kilner J. M. (2018). Altering movement parameters disrupts metacognitive accuracy. Consciousness & Cognition, 57, 33-40. https://doi.org/10.1016/j.concog.2017.11.005 |
[64] | Patel D., Fleming S. M., & Kilner J. M. (2012). Inferring subjective states through the observation of actions. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4853-4860. https://doi.org/10.1098/rspb.2012.1847 |
[65] | Pereira M., Faivre N., Iturrate I., Wirthlin M., Serafini L., Martin S., ... Millán J. D. R. (2020). Disentangling the origins of confidence in speeded perceptual judgments through multimodal imaging. Proceedings of the National Academy of Sciences, 117(15), 8382-8390. https://doi.org/10.1073/pnas.1918335117 |
[66] | Pezzetta R., Wokke M. E., Aglioti S. M., & Ridderinkhof K. R. (2022). Doing it wrong: A systematic review on electrocortical and behavioral correlates of error monitoring in patients with neurological disorders. Neuroscience, 486, 103-125. https://doi.org/10.1016/j.neuroscience.2021.01.027 |
[67] |
Pfurtscheller G., & Lopes da Silva F. H. (1999). Event- related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/S1388-2457(99)00141-8
doi: 10.1016/s1388-2457(99)00141-8 URL pmid: 10576479 |
[68] | Philiastides M. G., Heekeren H. R., & Sajda P. (2014). Human scalp potentials reflect a mixture of decision- related signals during perceptual choices. Journal of Neuroscience, 24(50), 16877-16889. https://doi.org/10.1523/JNEUROSCI.3012-14.2014 |
[69] |
Pleskac T. J., & Busemeyer J. R. (2010). Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review, 117(3), 864-901. https://doi.org/10.1037/a0019737
doi: 10.1037/a0019737 URL pmid: 20658856 |
[70] | Qiu L., Su J., Ni Y., Bai Y., Zhang X., Li X., & Wan X. (2018). The neural system of metacognition accompanying decision-making in the prefrontal cortex. PLoS Biology, 16(4), e2004037. https://doi.org/10.1371/journal.pbio.2004037 |
[71] | Qiu S., Cheng X., CHeng Z., Cao J., Fan Z., & Ding X. (2024). Physical effort modulates perceptual awareness judgment independent of level of processing. Consciousness and Cognition, 124, 103746. https://doi.org/10.1016/j.concog.2024.103746 |
[72] | Rahnev D., Desender K., Lee A. L. F., Adler W. T., Aguilar-Lleyda D, Akdogan B., ... Zylberberg A. (2020). The confidence database. Nature Human Behaviour, 4(3), 317-325. https://doi.org/10.1038/s41562-019-0813-1 |
[73] | Rahnev D., & Fleming S. M. (2019). How experimental procedures influence estimates of metacognitive ability. Neuroscience of Consciousness, 2019(1), niz009. https://doi.org/10.1093/nc/niz009 |
[74] | Rausch M., Hellmann S., & Zehetleitner M. (2023). Measures of metacognitive efficiency across cognitive models of decision confidence. Psychological Methods, 10.1037/met0000634. Advance online publication. https://doi.org/10.1037/met0000634 |
[75] | Rausch M., Zehetleitner M., Steinhauser M., & Maier M. E. (2020). Cognitive modelling reveals distinct electrophysiological markers of decision confidence and error monitoring. NeuroImage, 218, 116963. https://doi.org/10.1016/j.neuroimage.2020.116963 |
[76] |
Rollwage M., Loosen A., Hauser T. U., Moran R., Dolan R. J., & Fleming S. M. (2020). Confidence drives a neural confirmation bias. Nature Communications, 11(1), 2634. https://doi.org/10.1038/s41467-020-16278-6
doi: 10.1038/s41467-020-16278-6 URL pmid: 32457308 |
[77] | Rouault M., & Fleming S. M. (2020). Formation of global self-beliefs in the human brain. Proceedings of the National Academy of Sciences, 117(44), 27268-27276. https://doi.org/10.1073/pnas.200309411 |
[78] | Samaha J., & Denison R. (2022). The positive evidence bias in perceptual confidence is unlikely post-decisional. Neuroscience of Consciousness, 2022(1), 1-8. https://doi.org/10.1093/nc/niac010 |
[79] |
Samaha J., Switzky M., & Postle B. R. (2019). Confidence boosts serial dependence in orientation estimation. Journal of Vision, 19(4), 25. https://doi.org/10.1167/19.4.25
doi: 10.1167/19.4.25 URL pmid: 31009526 |
[80] | Sanchez R., Courant A., Desantis A., & Gajdos T. (2024). Making precise movements increases confidence in perceptual decisions. Cognition, 249, 105832. https://doi.org/10.1016/j.cognition.2024.105832 |
[81] | Sanchez R., Davranche K., Gajdos T., & Desantis A. (2023). Action monitoring boosts perceptual confidence. BioRxiv, 2023-08. https://doi.org/10.1101/2023.08.14.553210 |
[82] |
Sanders J. I., Hangya B., & Kepecs A. (2016). Signatures of a statistical computation in the human sense of confidence. Neuron, 90(3), 499-506. https://doi.org/10.1016/j.neuron.2016.03.025
doi: 10.1016/j.neuron.2016.03.025 URL pmid: 27151640 |
[83] | Scheliga S., Kellermann T., Lampert A., Rolke R., Spehr M., & Habel U. (2023). Neural correlates of multisensory integration in the human brain: An ALE meta-analysis. Reviews in the Neurosciences, 34(2), 223-245. https://doi.org/10.1515/revneuro-2022-0065 |
[84] |
Schulz L., Fleming S. M., & Dayan P. (2023). Metacognitive computations for information search: Confidence in control. Psychological Review, 130(3), 604-639. https://doi.org/10.1037/rev0000401
doi: 10.1037/rev0000401 URL pmid: 36757948 |
[85] |
Shekhar M., & Rahnev D. (2018). Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition. Journal of Neuroscience, 38(22), 5078-5087. https://doi.org/10.1523/JNEUROSCI.3484-17.2018
doi: 10.1523/JNEUROSCI.3484-17.2018 URL pmid: 29720553 |
[86] | Shekhar M., & Rahnev D. (2021). The nature of metacognitive inefficiency in perceptual decision making. Psychological Review, 128(1), 45-70. https://doi.org/10.1037/rev0000249 |
[87] | Shekhar M., & Rahnev D. (2024). How do humans give confidence? A comprehensive comparison of process models of perceptual metacognition. Journal of Experimental Psychology: General, 153(3), 656-688. https://doi.org/10.1037/xge0001524 |
[88] | Siedlecka M., Hobot J., Skora Z., Paulewicz B., Timmermans B., & Wierzchoń M. (2019). Motor response influences perceptual awareness judgements. Consciousness and Cognition, 75, 102804. https://doi.org/10.1016/j.concog.2019.102804 |
[89] | Siedlecka M., Koculak M., & Paulewicz B. (2021). Confidence in action: Differences between perceived accuracy of decision and motor response. Psychonomic Bulletin & Review, 28(5), 1698-1706. https://doi.org/10.3758/s13423-021-01913-0 |
[90] | Siedlecka M., Paulewicz B., & Koculak M. (2020). Task-related motor response inflates confidence. BioRxiv, 2020-2003. https://doi.org/10.1101/2020.03.26.010306 |
[91] | Siedlecka M., Paulewicz B., & Wierzchoń M. (2016). But I was so sure! Metacognitive judgments are less accurate given prospectively than retrospectively. Frontiers in Psychology, 7, 171892. https://doi.org/10.3389/fpsyg.2016.00218 |
[92] | Siegel M., Donner T. H., & Engel A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 20-25. https://doi.org/10.1038/nrn3137 |
[93] | Tang H., Costa V. D., Bartolo R., & Averbeck B. B. (2022). Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports, 38(1), 110198. https://doi.org/10.1016/j.celrep.2021.110198 |
[94] | Turner W., Angdias R., Feuerriegel D., Chong T. J., Hester R., & Bode S. (2021). Perceptual decision confidence is sensitive to forgone physical effort expenditure. Cognition, 207(1), 104525. https://doi.org/10.1016/j.cognition.2020.104525 |
[95] |
Van Marcke H., Denmat P. L., Verguts T., & Desender K. (2024). Manipulating prior beliefs causally induces under- and overconfidence. Psychological Science, 35(4), 358-375. https://doi.org/10.1177/09567976241231572
doi: 10.1177/09567976241231572 URL pmid: 38427319 |
[96] |
Wokke M. E., Achoui D., & Cleeremans A. (2020). Action information contributes to metacognitive decision-making. Scientific Reports, 10(1), 3632. https://doi.org/10.1038/s41598-020-60382-y
doi: 10.1038/s41598-020-60382-y URL pmid: 32107455 |
[97] | Wokke M. E., Cleeremans A., & Ridderinkhof K. R. (2017). Sure I’m sure: Prefrontal oscillations support metacognitive monitoring of decision making. Journal of Neuroscience, 37(4), 781-789. https://doi.org/10.1523/JNEUROSCI.1612-16.2016 |
[98] |
Xie L., Cao B., Li Z., & Li F. (2020). Neural dynamics of cognitive control in various types of incongruence. Frontiers in Human Neuroscience, 14, 214. https://doi.org/10.3389/fnhum.2020.00214
doi: 10.3389/fnhum.2020.00214 URL pmid: 32581754 |
[99] | Yeung N., & Summerfield C. (2012). Metacognition in human decision-making: Confidence and error monitoring. Philosophical Transactions of The Royal Society B Biological Sciences, 367(1594), 1310-1321. https://doi.org/10.1098/rstb.2011.0416 |
[1] | SHU Xindi, LIU Hanyin, WANG Jin, LIU Zhiyuan, LIU Lanfang. The mechanisms and functions of inter-brain synchronization [J]. Advances in Psychological Science, 2025, 33(3): 439-451. |
[2] | GONG Fangying, SUN Yifan, HE Qin, SHI Ke, LIU Wei, CHEN Ning. Brain-to-brain synchronyduring teacher-student interactions and its regulatory factors in teaching interaction [J]. Advances in Psychological Science, 2025, 33(3): 452-464. |
[3] | HUANG Hanjing, RAU Pei-Luen Patrick. Exploration of multi-level human-machine integration theory between elderly users and intelligent systems [J]. Advances in Psychological Science, 2025, 33(2): 223-235. |
[4] | ZHANG Tianyu, ZHANG Yali, ZHANG Xiangkui. The influence of social networking site use on adolescents' body dissatisfaction and its internal mechanism [J]. Advances in Psychological Science, 2024, 32(9): 1514-1527. |
[5] | HE Jiani, YANG Jie, JI Tingting, DING Yi. The invisible disadvantaged: A review and theoretical explanation of interpersonal invisibility towards the disadvantaged groups [J]. Advances in Psychological Science, 2024, 32(9): 1539-1550. |
[6] | TANG Yipeng, FAN Wei, ZHANG Xiao, WANG Shuhong, XIONG Shankuo, PU Xiaoping. The effect of virtual communication styles on leadership emergence [J]. Advances in Psychological Science, 2024, 32(6): 886-907. |
[7] | WANG Yuling, LU Xiaowei, WU Zongjie, LI Guogen, ZHANG Lin. The cross-modal integration process in facial attractiveness judgments [J]. Advances in Psychological Science, 2024, 32(5): 790-799. |
[8] | GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders [J]. Advances in Psychological Science, 2024, 32(5): 834-844. |
[9] | HOU Hanchao, NI Shiguang, LIN Shuya, WANG Pusheng. When AI learns to empathize: Topics, scenarios, and optimization of empathy computing from a psychological perspective [J]. Advances in Psychological Science, 2024, 32(5): 845-858. |
[10] | ZHOU Qiwei, LI Qian, LIANG Shuang. How do employees respond to enterprise digital transformation?A research proposal from stress-based theoretical perspective [J]. Advances in Psychological Science, 2024, 32(4): 594-615. |
[11] | CHU Xin-Yu, WANG Ze-Jun. Cognitive superiority of athletic sports expert and its formation mechanisms: A perspective from automaticity and abstraction [J]. Advances in Psychological Science, 2024, 32(4): 689-699. |
[12] | HUANG Xinyu, LI Ye. Trust dampening and trust promoting: A dual-pathway of trust calibration in human-robot interaction [J]. Advances in Psychological Science, 2024, 32(3): 527-542. |
[13] | CUI Guodong. Re-exploring the dimensions, antecedents, and consequences of successful aging at work: Perspectives from intergenerational interaction [J]. Advances in Psychological Science, 2024, 32(10): 1593-1609. |
[14] | GUO Tongyang, MO Licheng, ZHANG Dandan. Neural mechanisms of face and gaze processing in infants [J]. Advances in Psychological Science, 2024, 32(10): 1670-1679. |
[15] | ZHAO Siqi, LIU Ruoting, HU Xiaomeng. Identification with all humanity promotes prosocial psychological processes and behavioral patterns and its underlying mechanisms [J]. Advances in Psychological Science, 2024, 32(10): 1697-1708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||