Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (6): 873-885.doi: 10.3724/SP.J.1042.2024.00873
• Conceptual Framework • Next Articles
LIU Hai-ning1(), DONG Xian-ling2, LIU Hai-hon1, LIU Yan-li2, LI Xian-wen3
Received:
2023-10-13
Online:
2024-06-15
Published:
2024-04-07
CLC Number:
LIU Hai-ning, DONG Xian-ling, LIU Hai-hon, LIU Yan-li, LI Xian-wen. Neural mechanisms and digital promotion of executive function in older adults with amnestic mild cognitive impairment[J]. Advances in Psychological Science, 2024, 32(6): 873-885.
作者(年份) | ERP范式 | ERP成分 | 电极位置 | 波幅/能量效应 | 潜伏期效应 |
---|---|---|---|---|---|
抑制 | |||||
Chiang et al. (2018) | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, Pz | NS | N200: aMCI > HC P300: aMCI > HC |
Mudaret al. ( | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, CPz | NS | N200:aMCI > HC P300: NS |
Lydia T. Nguyen et al. ( | 语义 Go/no-go | Theta; Alpha 1; Alpha 2 | Fz, F1, F2, Cz, C1, C2, Pz, P1, P2 | Theta: aMCI< HC Alpha 1: NS Alpha 2: NS | / |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200 (Cz): aMCI < HC; P300: NS | NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300; PSW | Fz, Cz, Pz | N200: aMCI<HC P300: NS; PSW (Cz): sd-aMCI> md-aMCI, HC | N200: Go Md-aMCI> HC; P300: NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Cz, Pz | NS | N200: No-go aMCI>HC(Cz); P300: Go aMCI>HC(Pz) |
Lopez Zunini et al. ( | Go/no-go | N200; P300 | Fz, FCz, Cz, CPz, Pz | N200: NS; P300: aMCI < HC | NS |
Gu et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200: No-go md-aMCI< HC(Fz, Pz) sd-aMCI< HC(Pz) N200: Go md-aMCI< HC(all) P300: NS | NS |
Rabi et al. ( | Go/no-go | N200; P300 | FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2 | N200: NS; P300: aMCI < HC | NS |
刷新 | |||||
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | aMCI < HC (CPz, CP2, P1, P2) | NS |
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | 0-back: aMCI< HC(P1) 1-back: md-aMCI< HC (CP2, P1, Pz, P2) | NS |
Gu et al. ( | N-back | P300 | P1, Pz, P2 | 0-back: md-aMCI< HC(P1,P2) 1-back: md-aMCI< HC(all) | NS |
Zunini et al. ( | N-back | P200; N200; P300 | Fz, FCz, Cz, CPz, Pz | P200: NS N200: NS P300: aMCI< HC(all) | P200:aMCI>HC (CPz,Pz); N200:aMCI>HC(all); P300: NS |
Francisco J. Fraga et al. ( | N-back | Theta;Alpha; Beta;Gamma | C3, F4, Fz | Theta: NS Alpha: aMCI< HC Beta: aMCI< HC Gamma: NS | / |
转换 | |||||
Tsai et al. ( | Task-switching | P300 | Fz, Cz, Pz | aMCI < HC | aMCI > HC |
作者(年份) | ERP范式 | ERP成分 | 电极位置 | 波幅/能量效应 | 潜伏期效应 |
---|---|---|---|---|---|
抑制 | |||||
Chiang et al. (2018) | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, Pz | NS | N200: aMCI > HC P300: aMCI > HC |
Mudaret al. ( | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, CPz | NS | N200:aMCI > HC P300: NS |
Lydia T. Nguyen et al. ( | 语义 Go/no-go | Theta; Alpha 1; Alpha 2 | Fz, F1, F2, Cz, C1, C2, Pz, P1, P2 | Theta: aMCI< HC Alpha 1: NS Alpha 2: NS | / |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200 (Cz): aMCI < HC; P300: NS | NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300; PSW | Fz, Cz, Pz | N200: aMCI<HC P300: NS; PSW (Cz): sd-aMCI> md-aMCI, HC | N200: Go Md-aMCI> HC; P300: NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Cz, Pz | NS | N200: No-go aMCI>HC(Cz); P300: Go aMCI>HC(Pz) |
Lopez Zunini et al. ( | Go/no-go | N200; P300 | Fz, FCz, Cz, CPz, Pz | N200: NS; P300: aMCI < HC | NS |
Gu et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200: No-go md-aMCI< HC(Fz, Pz) sd-aMCI< HC(Pz) N200: Go md-aMCI< HC(all) P300: NS | NS |
Rabi et al. ( | Go/no-go | N200; P300 | FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2 | N200: NS; P300: aMCI < HC | NS |
刷新 | |||||
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | aMCI < HC (CPz, CP2, P1, P2) | NS |
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | 0-back: aMCI< HC(P1) 1-back: md-aMCI< HC (CP2, P1, Pz, P2) | NS |
Gu et al. ( | N-back | P300 | P1, Pz, P2 | 0-back: md-aMCI< HC(P1,P2) 1-back: md-aMCI< HC(all) | NS |
Zunini et al. ( | N-back | P200; N200; P300 | Fz, FCz, Cz, CPz, Pz | P200: NS N200: NS P300: aMCI< HC(all) | P200:aMCI>HC (CPz,Pz); N200:aMCI>HC(all); P300: NS |
Francisco J. Fraga et al. ( | N-back | Theta;Alpha; Beta;Gamma | C3, F4, Fz | Theta: NS Alpha: aMCI< HC Beta: aMCI< HC Gamma: NS | / |
转换 | |||||
Tsai et al. ( | Task-switching | P300 | Fz, Cz, Pz | aMCI < HC | aMCI > HC |
[1] | 区健新, 吴寅, 刘金婷, 李红. (2020). 计算精神病学:抑郁症研究和临床应用的新视角. 心理科学进展, 28(01), 111−127. |
[2] | 张军鹏, 施玉杰, 蒋睿, 董静静, 邱昌建. (2023). 基于脑电信号的认知功能障碍识别与分类进展综述. 计算机应用, 43(10), 3297−3308. |
[3] | Anderson N. D. (2019). State of the science on mild cognitive impairment (MCI). CNS Spectrums, 24(1), 78−87. |
[4] | Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., ... Gazzaley A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97−101. |
[5] | Babiloni C., Arakaki X., Azami H., Bennys K., Blinowska K., Bonanni L., ... Guntekin B. (2021). Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimers & Dementia, 17(9), 1528−1553. |
[6] | Baddeley A. D., Bressi S., Sala S. D., Logie R. H., & Spinnler H. (1992). The decline of working memory in Alzheimer's disease: A longitudinal study. Brain, 114(Pt 6), 2521−2542. |
[7] | Blair C. (2016). Developmental Science and Executive Function. Current Directions in Psychological Science, 25(1), 3−7. |
[8] | Bondi M. W., Edmonds E. C., & Salmon D. P. (2017). Alzheimer's disease: Past, present, and future. Journal of the International Neuropsychological Society, 23(9-10), 818−831. |
[9] | Bull R., & Scerif G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273−293. |
[10] | Chainay H., Joubert C., & Massol S. (2021). Behavioural and ERP effects of cognitive and combined cognitive and physical training on working memory and executive function in healthy older adults. Advances in Cognitive Psychology, 17(1), 58−69. |
[11] | Chatzikostopoulos A., Moraitou D., Tsolaki M., Masoura E., Papantoniou G., Sofologi M., ... Papatzikis E. (2022). Episodic memory in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease dementia (ADD): Using the "doors and people" tool to differentiate between early aMCI-Late aMCI-Mild ADD diagnostic groups. Diagnostics (Basel), 12(7), 1768. |
[12] | Chiang H. S., Spence J. S., Kraut M. A., & Mudar R. A. (2018). Age effects on event-related potentials in individuals with amnestic Mild Cognitive Impairment during semantic categorization Go/NoGo tasks. Neuroscience Letters, 670, 19−21. |
[13] | Cid-Fernández S., Lindín M., & Díaz F. (2014). Effects of amnestic mild cognitive impairment on N2 and P3 Go/NoGo ERP components. Journal of Alzheimers Disease, 38(2), 295−306. |
[14] | Cid-Fernández S., Lindín M., & Díaz F. (2017). Neurocognitive and behavioral indexes for identifying the amnestic subtypes of mild cognitive impairment. Journal of Alzheimers Disease, 60(2), 633−649. |
[15] | da Costa Armentano C. G., Porto C. S., Nitrini R., & Dozzi Brucki S. M. (2013). Ecological evaluation of executive functions in mild cognitive impairment and Alzheimer disease. Alzheimer Disease & Associated Disorders, 27(2), 95−101. |
[16] | De Wit L., Marsiske M., O'Shea D., Kessels R. P. C., Kurasz A. M., DeFeis B., ... Smith G. E. (2021). Procedural learning in individuals with amnestic mild cognitive impairment and Alzheimer's dementia: A systematic review and meta-analysis. Neuropsychology Reveiw, 31(1), 103−114. |
[17] | Domhardt M., Steubl L., Boettcher J., Buntrock C., Karyotaki E., Ebert D. D., ... Baumeister H. (2021). Mediators and mechanisms of change in internet- and mobile-based interventions for depression: A systematic review. Clinical Psychology Reveiw, 83, 101953. |
[18] | Fields E. C., & Kuperberg G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data. Psychophysiology, 57(2), e13468. |
[19] | Fraga F. J., Ferreira L. A., Falk T. H., Johns E., & Phillips N. D. (2017). Event-related synchronisation responses to N-back memory tasks discriminate between healthy ageing, mild cognitive impairment, and mild Alzheimer's disease. New Orleans, LA. |
[20] | Friedman N. P., & Robbins T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(1), 72−89. |
[21] | Gauthier S., Reisberg B., Zaudig M., Petersen R. C., Ritchie K., Broich K., ... Winblad B. (2006). Mild cognitive impairment. Lancet, 367(9518), 1262−1270. |
[22] | Gu L., Chen J., Gao L., Shu H., Wang Z., Liu D., ... Zhang Z. (2019). Deficits of visuospatial working memory and executive function in single- versus multiple-domain amnestic mild cognitive impairment: A combined ERP and sLORETA study. Clinical Neurophysiology, 130(5), 739−751. |
[23] |
Gu L. H., Chen J., Gao L. J., Shu H., Wang Z., Liu D., ... Zhang Z. J. (2017). The effect of Apolipoprotein E ε4 (APOE ε4) on visuospatial working memory in healthy elderly and amnestic mild cognitive impairment patients: An event-related potentials study. Frontiers in Aging Neuroscience, 9, 145.
doi: 10.3389/fnagi.2017.00145 pmid: 28567013 |
[24] | Gu L. H., & Zhang Z. J. (2017). Exploring potential electrophysiological biomarkers in mild cognitive impairment: A systematic review and meta-analysis of event-related potential studies. Journal of Alzheimers Disease, 58(4), 1283−1292. |
[25] | Guo Q. H., Zhou B., Zhao Q. H., Wang B., & Hong Z. (2012). Memory and Executive Screening (MES): A brief cognitive test for detecting mild cognitive impairment. BMC Neurology, 12(1), 119. |
[26] | Hillary F. G., & Grafman J. H. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385−401. |
[27] | Holmes E. A., Ghaderi A., Harmer C. J., Ramchandani P. G., Cuijpers P., Morrison A. P., ... Craske M. G. (2018). The Lancet Psychiatry Commission on psychological treatments research in tomorrow's science. Lancet Psychiatry, 5(3), 237−286. |
[28] | Huang J. (2023). Functional and effective connectivity based classification and prediction of Alzheimer’s disease. North Carolina State University. |
[29] | Iachini T., Ruotolo F., Iavarone A., Mazzi M. C., & Ruggiero G. (2021). From aMCI to AD: The role of visuo-spatial memory span and executive functions in egocentric and allocentric spatial impairments. Brain Sciences, 11(11), 1536. |
[30] | Jia J., Wei C., Chen S., Li F., Tang Y., Qin W., ... Gauthier S. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers & Dementia, 14(4), 483−491. |
[31] | Kappenman E. S., MacNamara A., & Proudfit G. H. (2015). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task. Social Cognitive and Affective Neuroscience, 10(4), 577−583. |
[32] | Karr J. E., Areshenkoff C. N., Rast P., Hofer S. M., Iverson G. L., & Garcia-Barrera M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 1147−1185. |
[33] | Kim J. G., Kim H., Hwang J., Kang S. H., Lee C. N., Woo J., ... Park K. W. (2022). Differentiating amnestic from non-amnestic mild cognitive impairment subtypes using graph theoretical measures of electroencephalography. Scientific Reports, 12(1), 6219. |
[34] | Kollins S. H., DeLoss D. J., Cañadas E., Lutz J., Findling R. L., Keefe R. S. E., ... Faraone S. V. (2020). A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): A randomised controlled trial. Lancet Digital Health, 2(4), Article e168−e178. |
[35] | Krumpe T., Scharinger C., Rosenstiel W., Gerjets P., & Spüler M. (2018). Unity and diversity in working memory load: Evidence for the separability of the executive functions updating and inhibition using machine learning. Biological Psychology, 139, 163−172. |
[36] |
Kumar N., & Michmizos K. P. (2022). A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity. Scientific Reports, 12(1), 1101.
doi: 10.1038/s41598-022-05079-0 pmid: 35058514 |
[37] | Li J., Broster L. S., Jicha G. A., Munro N. B., Schmitt F. A., Abner E., ... Jiang Y. (2017). A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging. Alzheimer's Research & Therapy, 9(1), 3. |
[38] | López Zunini R. A., Knoefel F., Lord C., Breau M., Sweet L., Goubran R., ... Taler V. (2016). P300 amplitude alterations during inhibitory control in persons with Mild Cognitive Impairment. Brain Research, 1646, 241−248. |
[39] | López Zunini R. A., Knoefel F., Lord C., Dzuali F., Breau M., Sweet L., ... Taler V. (2016). Event-related potentials elicited during working memory are altered in mild cognitive impairment. International Journal of Psychophysiology, 109, 1−8. |
[40] | Marks D. F. (2019). I am conscious, therefore, I am: Imagery, affect, action, and a general theory of behavior. Brain Science, 9(5), 107. |
[41] | May K. E., & Kana R. K. (2020). Frontoparietal network in executive functioning in autism spectrum disorder. Autism Research, 13(10), 1762−1777. |
[42] | Moshe I., Terhorst Y., Philippi P., Domhardt M., Cuijpers P., Cristea I., ... Sander L. B. (2021). Digital interventions for the treatment of depression: A meta-analytic review. Psychological Bulletin, 147(8), 749−786. |
[43] | Mudar R. A., Chiang H. S., Eroh J., Nguyen L. T., Maguire M. J., Spence J. S., ... Hart J. (2016). The effects of amnestic mild cognitive impairment on go/nogo semantic categorization task performance and event-related potentials. Journal of Alzheimers Disease, 50(2), 577−590. |
[44] | Musaeus C. S., Engedal K., Høgh P., Jelic V., Mørup M., Naik M., ... Andersen B. B. (2018). EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer's disease. Journal of Alzheimers Disease, 64(4), 1359−1371. |
[45] | Nguyen L. T., Shende S. A., Rackley A., Chapman S. B., & Mudar R. A. (2018). Strategy-based cognitive training effects on event-related neural oscillations in amnestic mild cognitive impairment. Alzheimer's & Dementia, 14(7), 1067. |
[46] | Panza F., Frisardi V., Capurso C., D'Introno A., Colacicco A. M., Imbimbo B. P., ... Solfrizzi V. (2010). Late-life depression, mild cognitive impairment, and dementia: Possible continuum? American Journal of Geriatric Psychiatry, 18(2), 98−116. |
[47] | Petersen R. C., Lopez O., Armstrong M. J., Getchius T. S. D., Ganguli M., Gloss D., ... Rae-Grant A. (2018). Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 90(3), 126−135. |
[48] | Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., & Kokmen E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303−308. |
[49] | Rabi R., Vasquez B. P., Alain C., Hasher L., Belleville S., & Anderson N. D. (2020). Inhibitory control deficits in individuals with amnestic mild cognitive impairment: A meta-analysis. Neuropsychology Reveiw, 30(1), 97−125. |
[50] | Schmeichel B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology- Genaral, 136(2), 241−255. |
[51] | Sherman D. S., Mauser J., Nuno M., & Sherzai D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): A meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27(4), 440−484. |
[52] | Stahl D., Pickles A., Elsabbagh M., & Johnson M. H. (2012). Novel machine learning methods for ERP analysis: A validation from research on infants at risk for autism. Develomental Neuropsychology, 37(3), 274−298. |
[53] | Taylor R. L., Cooper S. R., Jackson J. J., & Barch D. M. (2020). Assessment of neighborhood poverty, cognitive function, and prefrontal and hippocampal volumes in children. JAMA Network Open, 3(11), e2023774. |
[54] | Tsai C. L., Pai M. C., Ukropec J., & Ukropcová B. (2016). The role of physical fitness in the neurocognitive performance of task switching in older persons with mild cognitive impairment. Journal of Alzheimers Disease, 53(1), 143−159. |
[55] |
Tusch E. S., Alperin B. R., Ryan E., Holcomb P. J., Mohammed A. H., & Daffner K. R. (2016). Changes in neural activity underlying working memory after computerized cognitive training in older adults. Frontiers in Aging Neuroscience, 8, 255.
pmid: 27877122 |
[56] | Ulbl J., & Rakusa M. (2023). The importance of subjective cognitive decline recognition and the potential of molecular and neurophysiological biomarkers-A systematic review. International Journal of Molecular Sciences, 24(12), 10158. |
[57] |
Wang P., Li R., Liu B., Wang C., Huang Z., Dai R., ... Li J. (2019). Altered static and temporal dynamic amplitude of low-frequency fluctuations in the background network during working memory states in mild cognitive impairment. Frontiers in Aging Neuroscience, 11, 152.
doi: 10.3389/fnagi.2019.00152 pmid: 31316370 |
[58] | Wen D., Cheng Z., Li J., Zheng X., Yao W., Dong X., ... Zhou Y. (2021). Classification of ERP signal from amnestic mild cognitive impairment with type 2 diabetes mellitus using single-scale multi-input convolution neural network. Journal of Neuroscience Methods, 363, 109353. |
[59] | Youn Y. C., Kang S. W., Lee H., & Park U. (2020). Machine-learning based EEG biomarker for early screening of amnestic mild cognitive impairment (aMCI). Alzheimer's Dementia, 16(S4), e044381. |
[60] | Yuan B., Chen J., Gong L., Shu H., Liao W., Wang Z., ... Zhang Z. (2016). Mediation of episodic memory performance by the executive function network in patients with amnestic mild cognitive impairment: A resting-state functional MRI study. Oncotarget, 7(40), 64711−64725. |
[61] | Zhong X., Chen B., Hou L., Wang Q., Liu M., Yang M., ... Ning Y. (2022). Shared and specific dynamics of brain activity and connectivity in amnestic and nonamnestic mild cognitive impairment. CNS Neuroscience & Therapeutics, 28(12), 2053−2065. |
[1] | LEI Yi, MEI Ying, Wang Jinxia, YUAN Zixin. Identifying the impact of unconscious fear on adolescent anxiety: Cognitive neural mechanisms and interventions [J]. Advances in Psychological Science, 2024, 32(8): 1221-1232. |
[2] | ZENG Qinghe, CUI Xiaoyu, TANG Wei, LI Juan. The cognitive neural mechanisms of age-related decline in mnemonic discrimination and its application [J]. Advances in Psychological Science, 2024, 32(7): 1138-1151. |
[3] | JIANG Ying, HU Jia, FENG Liangyu, REN Qidan. The effect of scarcity mindset on the executive function in children living in poverty and its mechanisms [J]. Advances in Psychological Science, 2024, 32(5): 728-737. |
[4] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[5] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[6] | Ye Xie, Tinghao Zhao, Wei Zhang, Yunxia Li, Yixuan Ku. Hippocampal Deterioration and Frontal Compensation of Amnestic Mild Cognitive Impairment in Visual Short-term Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 105-105. |
[7] | Rongjie Hu, Jie Liang, Yiwen Ding, Shuang Jian, Xiuwen Wu, Yanming Wang, Zhen Liang, Bensheng Qiu, Xiaoxiao Wang. MRGazerII: Camera-free Decoding Eye Movements from Functional Magnetic Resonance Imaging [J]. Advances in Psychological Science, 2023, 31(suppl.): 174-174. |
[8] | Yi Shi, Shixuan Zhao, Jiang Wu, Hongmei Yan. Traffic Fixated Object Detection based on Driver’s Selective Attention Mechanism [J]. Advances in Psychological Science, 2023, 31(suppl.): 180-180. |
[9] | LI Ziying, LI Jiajing, JIANG Jiali, LEI Xiuya, MENG Zelong. The relationship between media multitasking and creativity: Explanations from multiple perspectives [J]. Advances in Psychological Science, 2023, 31(7): 1195-1205. |
[10] | WANG Xueke, FENG Tingyong. The mechanism of “cool”/“hot” executive function deficit acting on the core symptoms of ADHD children [J]. Advances in Psychological Science, 2023, 31(11): 2106-2128. |
[11] | LIU Yong, CHEN Hong. Neural mechanism of food-related working memory in individuals with overweight/obesity and related intervention [J]. Advances in Psychological Science, 2023, 31(10): 1775-1784. |
[12] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[13] | MA Yajie, ZHAO Xin, HE Xiangchun, REN Liping. The impact of social media on executive functions: Beneficial or harmful? [J]. Advances in Psychological Science, 2022, 30(2): 406-413. |
[14] | CHENG Cheng, GUO Peiyang, YANG Li, WANG Mengya. A cognition-affective processing framework of psychopathy based on the TriPM model [J]. Advances in Psychological Science, 2021, 29(9): 1628-1646. |
[15] | ZHAO Xiaohong, TONG Wei, CHEN Taolin, WU Dongmei, ZHANG Lei, CHEN Zhengju, FANG Xiaoyi, GONG Qiyong, TANG Xiaorong. The psychological model and cognitive neural mechanism of awe [J]. Advances in Psychological Science, 2021, 29(3): 520-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||