Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (11): 1854-1871.doi: 10.3724/SP.J.1042.2024.01854
• Regular Articles • Previous Articles Next Articles
ZHOU Fan1, TIAN Haoyue2, JIANG Yingjie2,3
Received:
2024-01-26
Online:
2024-11-15
Published:
2024-09-05
CLC Number:
ZHOU Fan, TIAN Haoyue, JIANG Yingjie. Rapid memory consolidation: Schema-based learning and repeated reactivation[J]. Advances in Psychological Science, 2024, 32(11): 1854-1871.
[1] 杜建政, 杨治良. (2002). 随机棋局存在专家记忆优势效应吗? 心理学报, 34(3), 34-38. [2] Ahmad F. N., Fernandes M., & Hockley W. E. (2015). Improving associative memory in older adults with unitization. Aging, Neuropsychology, and Cognition, 22(4), 452-472. [3] Alam T. R. G., Krieger-Redwood K., Evans M., Rice G. E., Smallwood J., & Jefferies E. (2021). Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex, 134, 76-91. [4] Alme C. B., Miao C., Jezek K., Treves A., Moser E. I., & Moser M. B. (2014). Place cells in the hippocampus: Eleven maps for eleven rooms. Proceedings of the National Academy of Sciences, 111(52), 18428-18435. [5] Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and interference. Psychological Science, 13(1), 27-33. [6] Anagnostaras S. G., Maren S., & Fanselow M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within-subjects examination. Journal of Neuroscience, 19(3), 1106-1114. [7] Anderson M. C., Bjork R. A., & Bjork E. L. (1994). Remembering can cause forgetting: Retrieval dynamics in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1063-1087. [8] Antony J. W., Ferreira C. S., Norman K. A., & Wimber M. (2017). Retrieval as a fast route to memory consolidation. Trends in Cognitive Sciences, 21(8), 573-576. [9] Antony, J. W., & Paller, K. A. (2018). Retrieval and sleep both counteract the forgetting of spatial information. Learning & Memory, 25(6), 258-263. [10] Asfestani M. A., Brechtmann V., Santiago J., Peter A., Born J., & Feld G. B. (2020). Consolidation of reward memory during sleep does not require dopaminergic activation. Journal of Cognitive Neuroscience, 32(9), 1688-1703. [11] Audrain S., Gilmore A. W., Wilson J. M., Schacter D. L., & Martin A. (2022). A role for the anterior hippocampus in autobiographical memory construction regardless of temporal distance. Journal of Neuroscience, 42(33), 6445-6452. [12] Audrain, S., & McAndrews, M. P. (2022). Schemas provide a scaffold for neocortical integration of new memories over time. Nature Communications, 13(1), 5795. [13] Axmacher N., Elger C. E., & Fell J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131(7), 1806-1817. [14] Bader R., Opitz B., Reith W., & Mecklinger A. (2014). Is a novel conceptual unit more than the sum of its parts?: FMRI evidence from an associative recognition memory study. Neuropsychologia, 61(1), 123-134. [15] Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory: III. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327. [16] Bartlett F. C.(1932). Remembering: A study in Experimental and Social Psychology. Cambridge: Cambridge University Press. [17] Bayley P. J., Hopkins R. O., & Squire L. R. (2006). The fate of old memories after medial temporal lobe damage. Journal of Neuroscience, 26(51), 13311-13317. [18] Berkers R. M., van Der Linden M., De Almeida R. F., Müller N. C., Bovy L., Dresler M., ... Fernández G. (2017). Transient medial prefrontal perturbation reduces false memory formation. Cortex, 88, 42-52. [19] Bernstein L. J., Beig S., Siegenthaler A. L., & Grady C. L. (2002). The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia, 40(1), 86-98. [20] Bilalić M., McLeod P., & Gobet F. (2009). Specialization effect and its influence on memory and problem solving in expert chess players. Cognitive Science, 33(6), 1117-1143. [21] Bjork R. A.(1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185-205). MIT Press. [22] Bloom, P., & Markson, L. (1998). Capacities underlying word learning. Trends in Cognitive Sciences, 2(2), 67-73. [23] Bonasia K., Sekeres M. J., Gilboa A., Grady C. L., Winocur G., & Moscovitch M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26-39. [24] Bonnici, H. M., & Maguire, E. A. (2018). Two years later-Revisiting autobiographical memory representations in vmPFC and hippocampus. Neuropsychologia, 110, 159-169. [25] Bright P., Buckman J., Fradera A., Yoshimasu H., Colchester A. C., & Kopelman M. D. (2006). Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology. Learning & Memory, 13(5), 545-557. [26] Brodt S., Inostroza M., Niethard N., & Born J. (2023). Sleep—A brain-state serving systems memory consolidation. Neuron, 111(7), 1050-1075. [27] Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1118-1133. [28] Carpenter, S. K. (2011). Semantic information activated during retrieval contributes to later retention: Support for the mediator effectiveness hypothesis of the testing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1547-1552. [29] Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20(6), 633-642. [30] Chan J. C. K., Thomas A. K., & Bulevich J. B. (2009). Recalling a witnessed event increases eyewitness suggestibility: The reversed testing effect. Psychological Science, 20(1), 66-73. [31] Clark R. E., Broadbent N. J., & Squire L. R. (2005). Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus, 15(3), 340-346. [32] Cooper E., Greve A., & Henson R. N. (2019). Little evidence for Fast Mapping (FM) in adults: A review and discussion. Cognitive Neuroscience, 10(4), 196-209. [33] Coutanche, M. N., & Thompson-Schill, S. L. (2014). Fast mapping rapidly integrates information into existing memory networks. Journal of Experimental Psychology: General, 143(6), 2296-2303. [34] Cowan E., Liu A., Henin S., Kothare S., Devinsky O., & Davachi L. (2020). Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional connectivity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(9), 1909-1919. [35] Cowan N., Beschin N., & Della Sala S. (2004). Verbal recall in amnesiacs under conditions of diminished retroactive interference. Brain, 127(4), 825-834. [36] Cowan N., Beschin N., Perini M., & Della Sala S. (2005). Just lying there, remembering: Improving recall of prose in amnesic patients with mild cognitive impairment by minimising interference. Memory, 13(3-4), 435-440. [37] Craik, F. I. M. (2002). Levels of processing: Past, present ... and future? Memory, 10(5-6), 305-318. [38] D’Angelo M. C., Kacollja A., Rabin J. S., Rosenbaum R. S., & Ryan J. D. (2015). Unitization supports lasting performance and generalization on a relational memory task: Evidence from a previously undocumented developmental amnesic case. Neuropsychologia, 77, 185-200. [39] de Sousa A. F., Cowansage K. K., Zutshi I., Cardozo L. M., Yoo E. J., Leutgeb S., & Mayford M. (2019). Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences, 116(17), 8576-8581. [40] De Vivo L., Bellesi M., Marshall W., Bushong E. A., Ellisman M. H., Tononi G., & Cirelli C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science, 355(6324), 507-510. [41] Delhaye E., Tibon R., Gronau N., Levy D. A., & Bastin C. (2018). Misrecollection prevents older adults from benefitting from semantic relatedness of the memoranda in associative memory. Aging, Neuropsychology, and Cognition, 25(5), 634-654. [42] Denis D., Kim S. Y., Kark S. M., Daley R. T., Kensinger E. A., & Payne J. D. (2022). Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress. European Journal of Neuroscience, 55(9-10), 2632-2650. [43] Dewar M., Garcia Y. F., Cowan N., & Sala S. D. (2009). Delaying interference enhances memory consolidation in amnesic patients. Neuropsychology, 23(5), 627-634. [44] Diana R. A., Yonelinas A. P., & Ranganath C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11(9), 379-386. [45] Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126. [46] Dudai, Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35, 227-247. [47] Dudai Y., Karni A., & Born J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20-32. [48] Duff M. C., Covington N. V., Hilverman C., & Cohen N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, 471. [49] Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18(1), 35-39. [50] Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95(5), 1007-1018. [51] Ellenbogen J. M., Hu P. T., Payne J. D., Titone D., & Walker M. P. (2007). Human relational memory requires time and sleep. Proceedings of the National Academy of Sciences, 104(18), 7723-7728. [52] Elward R. L., Dzieciol A. M., & Vargha-Khadem F. (2019). Little evidence for fast mapping in adults with developmental amnesia. Cognitive Neuroscience, 10(4), 215-217. [53] Fernández-Ruiz A., Oliva A., Fermino de Oliveira E., Rocha-Almeida F., Tingley D., & Buzsáki G. (2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445), 1082-1086. [54] Ferreira C. S., Charest I., & Wimber M. (2019). Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. NeuroImage, 201, 115996. [55] Ferreira, C. S., & Wimber, M. (2023). The testing effect for visual materials depends on preexisting knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1557-1571. [56] Fitzroy A. B., Kainec K. A., Seo J., & Spencer, R. M. C. (2021). Encoding and consolidation of motor sequence learning in young and older adults. Neurobiology of Learning and Memory, 185, 107508. [57] Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119-130. [58] Friedrich M., Wilhelm I., Born J., & Friederici A. D. (2015). Generalization of word meanings during infant sleep. Nature Communications, 6(1), 6004. [59] Gais S., Albouy G., Boly M., Dang-Vu T. T., Darsaud A., Desseilles M., ... Peigneux P. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences, 104(47), 18778-18783. [60] Galarza Vallejo A., Kroes M. C., Rey E., Acedo M. V., Moratti S., Fernández G., & Strange B. A. (2019). Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Science Advances, 5(3), eaav3801. [61] Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104-114. [62] Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618-631. [63] Gilboa, A., & Moscovitch, M. (2021). No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron, 109(14), 2239-2255. [64] Girardeau G., Benchenane K., Wiener S. I., Buzsáki G., & Zugaro M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222-1223. [65] Gisquet-Verrier, P., & Riccio, D. C. (2019). Memory integration as a challenge to the consolidation/ reconsolidation hypothesis: Similarities, differences and perspectives. Frontiers in Systems Neuroscience, 12, 71. [66] Giuliano A. E., Bonasia K., Ghosh V. E., Moscovitch M., & Gilboa A. (2021). Differential influence of ventromedial prefrontal cortex lesions on neural representations of schema and semantic category knowledge. Journal of Cognitive Neuroscience, 33(9), 1928-1955. [67] González-Rueda A., Pedrosa V., Feord R. C., Clopath C., & Paulsen O. (2018). Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron, 97(6), 1244-1252. [68] Gordon L. T., Bilolikar V. K., Hodhod T., & Thomas A. K. (2020). How prior testing impacts misinformation processing: A dual-task approach. Memory & Cognition, 48(2), 314-324. [69] Graf, P., & Schacter, D. L. (1989). Unitization and grouping mediate dissociations in memory for new associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 930-940. [70] Greve A., Cooper E., & Henson R. N. (2014). No evidence that ‘fast-mapping’ benefits novel learning in healthy older adults. Neuropsychologia, 60, 52-59. [71] Greve A., Cooper E., Tibon R., & Henson R. N. (2019). Knowledge is power: Prior knowledge aids memory for both congruent and incongruent events, but in different ways. Journal of Experimental Psychology: General, 148(2), 325-341. [72] Greve A., van Rossum M. C., & Donaldson D. I. (2007). Investigating the functional interaction between semantic and episodic memory: Convergent behavioral and electrophysiological evidence for the role of familiarity. Neuroimage, 34(2), 801-814. [73] Guo D., Chen G., & Yang J. (2023). Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory. Scientific Reports, 13(1), 8736. [74] Guo, D., & Yang, J. (2020). Interplay of the long axis of the hippocampus and ventromedial prefrontal cortex in schema‐related memory retrieval. Hippocampus, 30(3), 263-277. [75] Halberda, J. (2006). Is this a dax which I see before me? Use of the logical argument disjunctive syllogism supports word-learning in children and adults. Cognitive Psychology, 53(4), 310-344. [76] Hardt O., Einarsson E. Ö., & Nader K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61, 141-167. [77] Head, B. Y. H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34(2), 103-254. [78] Hebscher M., Wing E., Ryan J., & Gilboa A. (2019). Rapid cortical plasticity supports long-term memory formation. Trends in Cognitive Sciences, 23(12), 989-1002. [79] Helfrich R. F., Lendner J. D., Mander B. A., Guillen H., Paff M., Mnatsakanyan L., ... Knight R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1), 3572. [80] Hennies N., Ralph M. A. L., Kempkes M., Cousins J. N., & Lewis P. A. (2016). Sleep spindle density predicts the effect of prior knowledge on memory consolidation. Journal of Neuroscience, 36(13), 3799-3810. [81] Herbert, D. M., & Burt, J. S. (2004). What do students remember? Episodic memory and the development of schematization. Applied Cognitive Psychology, 18(1), 77-88. [82] Himmer L., Schönauer M., Heib D. P. J., Schabus M., & Gais S. (2019). Rehearsal initiates systems memory consolidation, sleep makes it last. Science Advances, 5(4), eaav1695. [83] Hu X., Cheng L. Y., Chiu M. H., & Paller K. A. (2020). Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244. [84] Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking. The American Journal of Psychology, 35(4), 605-612. [85] Jones B. J., Fitzroy A. B., & Spencer R. M. (2019). Emotional memory moderates the relationship between sigma activity and sleep-related improvement in affect. Frontiers in Psychology, 10, 500. [86] Karlsson, M. P., & Frank, L. M. (2008). Network dynamics underlying the formation of sparse, informative representations in the hippocampus. Journal of Neuroscience, 28(52), 14271-14281. [87] Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772-775. [88] Kim G., Kwon M., Kang W., & Lee S. H. (2021). Is reconsolidation a general property of memory? Frontiers in Human Neuroscience, 15, 643106. [89] Klinzing J. G., Niethard N., & Born J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598-1610. [90] Kornell N., Bjork R. A., & Garcia M. A. (2011). Why tests appear to prevent forgetting: A distribution-based bifurcation model. Journal of Memory and Language, 65(2), 85-97. [91] Kumaran D., Hassabis D., & McClelland J. L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20(7), 512-534. [92] Kuriyama K., Soshi T., & Kim Y. (2010). Sleep deprivation facilitates extinction of implicit fear generalization and physiological response to fear. Biological Psychiatry, 68(11), 991-998. [93] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621-647. [94] Lambon Ralph M. A., Ehsan S., Baker G. A., & Rogers T. T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(1), 242-258. [95] Lehmann H., Sparks F. T., Spanswick S. C., Hadikin C., McDonald R. J., & Sutherland R. J. (2009). Making context memories independent of the hippocampus. Learning & Memory, 16(7), 417-420. [96] Lerner, I., & Gluck, M. A. (2019). Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Medicine Reviews, 47, 39-50. [97] Lerner, I., & Gluck, M. A. (2022). Sleep facilitates extraction of temporal regularities with varying timescales. Frontiers in Behavioral Neuroscience, 16, 847083. [98] Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343-351. [99] Li W., Ma L., Yang G., & Gan W.-B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427-437. [100] Lifanov J., Linde-Domingo J., & Wimber M. (2021). Feature-specific reaction times reveal a semanticisation of memories over time and with repeated remembering. Nature Communications, 12(1), 3177. [101] Liu Z.-X., Grady C., & Moscovitch M. (2017). Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex, 27(3), 1991-2009. [102] Liu Z.-X., Grady C., & Moscovitch M. (2018). The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. NeuroImage, 167, 211-223. [103] Lu B., Liu Z., Wang Y., & Guo C. (2020). The different effects of concept definition and interactive imagery encoding on associative recognition for word and picture stimuli. International Journal of Psychophysiology, 158, 178-189. [104] Mankin E. A., Sparks F. T., Slayyeh B., Sutherland R. J., Leutgeb S., & Leutgeb J. K. (2012). Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences, 109(47), 19462-19467. [105] Manns J. R., Hopkins R. O., & Squire L. R. (2003). Semantic memory and the human hippocampus. Neuron, 38(1), 127-133. [106] McClelland, J. L. (2013). Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. Journal of Experimental Psychology: General, 142(4), 1190-1210. [107] McClelland J. L., McNaughton B. L., & O’Reilly R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457. [108] McDermott, K. B. (2021). Practicing retrieval facilitates learning. Annual Review of Psychology, 72(1), 609-633. [109] McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224-233. [110] Meßmer J. A., Bader R., & Mecklinger A. (2021). The more you know: Schema-congruency supports associative encoding of novel compound words. Evidence from event- related potentials. Brain and Cognition, 155, 105813. [111] Meßmer J. A., Bader R., & Mecklinger A. (2023). Schema-congruency supports the formation of unitized representations: Evidence from event-related potentials. Neuropsychologia, 194, 108782. [112] Merhav M., Karni A., & Gilboa A. (2014). Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus, 24(12), 1653-1662. [113] Merhav M., Karni A., & Gilboa A. (2015). Not all declarative memories are created equal: Fast Mapping as a direct route to cortical declarative representations. NeuroImage, 117, 80-92. [114] Michelmann S., Staresina B. P., Bowman H., & Hanslmayr S. (2019). Speed of time-compressed forward replay flexibly changes in human episodic memory. Nature Human Behaviour, 3(2), 143-154. [115] Miller T. D., Chong T. T., Aimola Davies A. M., Johnson M. R., Irani S. R., Husain M., ... Rosenthal C. R. (2020). Human hippocampal CA3 damage disrupts both recent and remote episodic memories. elife, 9, e41836. [116] Milton, A. L., & Everitt, B. J. (2010). The psychological and neurochemical mechanisms of drug memory reconsolidation: Implications for the treatment of addiction. European Journal of Neuroscience, 31(12), 2308-2319. [117] Morris C. D., Bransford J. D., & Franks J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519-533. [118] Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217-227. [119] Nakashiba T., Buhl D. L., McHugh T. J., & Tonegawa S. (2009). Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron, 62(6), 781-787. [120] Navarrete M., Valderrama M., & Lewis P. A. (2020). The role of slow-wave sleep rhythms in the cortical-hippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences, 32, 102-110. [121] Ngo, H.-V. V., & Staresina, B. P. (2022). Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proceedings of the National Academy of Sciences, 119(44), e2123428119. [122] Nitzan N., Swanson R., Schmitz D., & Buzsáki G. (2022). Brain-wide interactions during hippocampal sharp wave ripples. Proceedings of the National Academy of Sciences, 119(20), e2200931119. [123] Norman K. A., Newman E. L., & Detre G. (2007). A neural network model of retrieval-induced forgetting. Psychological Review, 114(4), 887-953. [124] O’Connor, R. J., & Riggs, K. J. (2019). Adult fast-mapping memory research is based on a misinterpretation of developmental-word-learning data. Current Directions in Psychological Science, 28(6), 528-533. [125] O’Neill J., Pleydell-Bouverie B., Dupret D., & Csicsvari J. (2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33(5), 220-229. [126] Pace-Schott E. F., Germain A., & Milad M. R. (2015). Effects of sleep on memory for conditioned fear and fear extinction. Psychological Bulletin, 141(4), 835-857. [127] Paller K. A., Creery J. D., & Schechtman E. (2021). Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72, 123-150. [128] Pan, S. C., & Rickard, T. C. (2018). Transfer of test- enhanced learning: Meta-analytic review and synthesis. Psychological Bulletin, 144(7), 710-756. [129] Parks, C. M. (2013). Transfer-appropriate processing in recognition memory: Perceptual and conceptual effects on recognition memory depend on task demands. Journal of Experimental Psychology: Learning Memory and Cognition, 39(4), 1280-1286. [130] Pedrosa R., Nazari M., Mohajerani M. H., Knöpfel T., Stella F., & Battaglia F. P. (2022). Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proceedings of the National Academy of Sciences, 119(44), e2204959119. [131] Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Archives of Neurology & Psychiatry, 79(5), 475-497. [132] Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press. [133] Poe, G. R. (2017). Sleep is for forgetting. Journal of Neuroscience, 37(3), 464-473. [134] Pöhlchen, D., & Schönauer, M. (2020). Sleep-dependent memory consolidation in the light of rapid neocortical plasticity. Current Opinion in Behavioral Sciences, 33, 118-125. [135] Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764-R773. [136] Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60(4), 437-447. [137] Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002), 335-335. [138] Quamme J. R., Yonelinas A. P., & Norman K. A. (2007). Effect of unitization on associative recognition in amnesia. Hippocampus, 17(3), 192-200. [139] Rakowska M., Abdellahi M. E. A., Bagrowska P., Navarrete M., & Lewis P. A. (2021). Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage, 244, 118573. [140] Rasch B., Büchel C., Gais S., & Born J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429. [141] Reagh, Z. M., & Yassa, M. A. (2014). Repetition strengthens target recognition but impairs similar lure discrimination: Evidence for trace competition. Learning & Memory, 21(7), 342-346. [142] Renoult L., Irish M., Moscovitch M., & Rugg M. D. (2019). From knowing to remembering: The semantic- episodic distinction. Trends in Cognitive Sciences, 23(12), 1041-1057. [143] Ritvo V. J. H., Turk-Browne N. B., & Norman K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726-742. [144] Robin, J., & Moscovitch, M. (2017). Details, gist and schema: Hippocampal-neocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 17, 114-123. [145] Roediger III, H. L., & Abel, M. (2022). The double-edged sword of memory retrieval. Nature Reviews Psychology, 1(12), 708-720. [146] Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249-255. [147] Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803-814. [148] Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1-48. [149] Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432-1463. [150] Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251-257. [151] Ryan J. D., Moses S. N., Barense M., & Shayna Rosenbaum R. (2013). Intact learning of new relations in amnesia as achieved through unitization. Journal of Neuroscience, 33(23), 9601-9613. [152] Sanders K. E. G., Osburn S., Paller K. A., & Beeman M. (2019). Targeted memory reactivation during sleep improves next-day problem solving. Psychological Science, 30(11), 1616-1624. [153] Schapiro A. C., McDevitt E. A., Chen L., Norman K. A., Mednick S. C., & Rogers T. T. (2017). Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Scientific Reports, 7(1), 14869. [154] Schlichting M. L., Mumford J. A., & Preston A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6(1), 8151. [155] Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11-21. [156] Sekeres M. J., Winocur G., & Moscovitch M. (2018). The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53. [157] Sharon T., Moscovitch M., & Gilboa A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences, 108(3), 1146-1151. [158] Siler, J., & Benjamin, A. S. (2020). Long-term inference and memory following retrieval practice. Memory & Cognition, 48(4), 645-654. [159] Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870-1873. [160] Skelin I., Zhang H., Zheng J., Ma S., Mander B. A., Kim McManus O., ... Lin J. J. (2021). Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans. Proceedings of the National Academy of Sciences, 118(21), e2012075118. [161] Smith, C. N., Urgolites, Z. J., Hopkins, R. O., & Squire, L. R. (2014). Comparison of explicit and incidental learning strategies in memory-impaired patients. Proceedings of the National Academy of Sciences, 111(1), 475-479. [162] Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906-1921. [163] Sommer, T., Hennies, N., Lewis, P. A., & Alink, A. (2022). The assimilation of novel information into schemata and its efficient consolidation. Journal of Neuroscience, 42(30), 5916-5929. [164] Souza, C., Garrido, M. V., Horchak, O. V., & Carmo, J. C. (2022). Conceptual knowledge modulates memory recognition of common items: The selective role of item-typicality. Memory & Cognition, 50(1), 77-94. [165] Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169-177. [166] Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. [167] Squire, L. R., Slater, P. C., & Chace, P. M. (1975). Retrograde amnesia: Temporal gradient in very long term memory following electroconvulsive therapy. Science, 187(4171), 77-79. [168] Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279-306. [169] Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380-1386. [170] Staresina, B. P., Bergmann, T. O., Bonnefond, M., Van Der Meij, R., Jensen, O., Deuker, L., ... Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679-1686. [171] Staresina, B. P., & Wimber, M. (2019). A neural chronometry of memory recall. Trends in Cognitive Sciences, 23(12), 1071-1085. [172] Sterpenich, V., van Schie, M. K., Catsiyannis, M., Ramyead, A., Perrig, S., Yang, H. D., ... Schwartz, S. (2021). Reward biases spontaneous neural reactivation during sleep. Nature Communications, 12(1), 4162. [173] Sun, W., Advani, M., Spruston, N., Saxe, A., & Fitzgerald, J. E. (2023). Organizing memories for generalization in complementary learning systems. Nature Neuroscience, 26(8), 1438-1448. [174] Sutherland, R. J., Lee, J. Q., McDonald, R. J., & Lehmann, H. (2020). Has multiple trace theory been refuted- Hippocampus, 30(8), 842-850.[175] Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon, F. M., Koerner, A., ... Hoesing, J. M. (2001). Retrograde amnesia after hippocampal damage: Recent vs. remote memories in two tasks. Hippocampus, 11(1), 27-42. [176] Tamminen, J., Davis, M. H., & Rastle, K. (2015). From specific examples to general knowledge in language learning. Cognitive Psychology, 79, 1-39. [177] Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 14356-14360. [178] Teyler, T. J., & DiScenna, P. (1986). The hippocampal memory indexing theory. Behavioral Neuroscience, 100(2), 147-154. [179] Tibon, R., Greve, A., & Henson, R. (2018). The missing link- Testing a schema account of unitization. Memory & Cognition, 46(7), 1023-1040. [180] Tibon, R., Gronau, N., Scheuplein, A. L., Mecklinger, A., & Levy, D. A. (2014). Associative recognition processes are modulated by the semantic unitizability of memoranda. Brain and Cognition, 92, 19-31. [181] Tompary, A., & Davachi, L. (2017). Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron, 96(1), 228-241. [182] Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12-34. [183] Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval: Questions and answers. Experimental Psychology, 56(4), 252-257. [184] Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus, 4(3), 374-391. [185] Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., ... Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82. [186] Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., ... Morris, R. G. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891-895. [187] van den Berg, N. H., Pozzobon, A., Fang, Z., Al-Kuwatli, J., Toor, B., Ray, L. B., & Fogel, S. M. (2022). Sleep enhances consolidation of memory traces for complex problem-solving skills. Cerebral Cortex, 32(4), 653-667. [188] van Kesteren, M. T. R., & Meeter, M. (2020). How to optimize knowledge construction in the brain. Npj Science of Learning, 5(1), 5. [189] van Kesteren, M. T., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2010). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. Journal of Neuroscience, 30(47), 15888-15894. [190] van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211-219. [191] Vaz, A. P., Inati, S. K., Brunel, N., & Zaghloul, K. A. (2019). Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 363(6430), 975-978. [192] Wagner, U., Gais, S., & Born, J. (2001). Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learning & Memory, 8(2), 112-119. [193] Wang, W. C., Brashier, N. M., Wing, E. A., Marsh, E. J., & Cabeza, R. (2018). Knowledge supports memory retrieval through familiarity, not recollection. Neuropsychologia, 113, 14-21. [194] Wang, X., Men, W., Gao, J., Caramazza, A., & Bi, Y. (2020). Two forms of knowledge representations in the human brain. Neuron, 107(2), 383-393.[195] Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: Implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677-7682. [196] Weis, S., Specht, K., Klaver, P., Tendolkar, I., Willmes, K., Ruhlmann, J., ... Fernández, G. (2004). Process dissociation between contextual retrieval and item recognition. Neuroreport, 15(18), 2729-2733. [197] Wimber, M., Alink, A., Charest, I., Kriegeskorte, N., & Anderson, M. C. (2015). Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nature Neuroscience, 18(4), 582-589. [198] Wimmer, G. E., Liu, Y., Vehar, N., Behrens, T. E. J., & Dolan, R. J. (2020). Episodic memory retrieval success is associated with rapid replay of episode content. Nature Neuroscience, 23(8), 1025-1033. [199] Wing, E. A., Burles, F., Ryan, J. D., & Gilboa, A. (2022). The structure of prior knowledge enhances memory in experts by reducing interference. Proceedings of the National Academy of Sciences, 119(26), e2204172119. [200] Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766-780. [201] Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia, 48(8), 2339-2356. [202] Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: Context manipulation and hippocampal representations of memory. Nature Neuroscience, 10(5), 555-557. [203] Witkowski, S., Noh, S. M., Lee, V., Grimaldi, D., Preston, A. R., & Paller, K. A. (2021). Does memory reactivation during sleep support generalization at the cost of memory specifics- Neurobiology of Learning and Memory, 182, 107442. [204] Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55(1), 235-269. [205] Xue, G. (2022). From remembering to reconstruction: The transformative neural representation of episodic memory. Progress in Neurobiology, 219, 102351. [206] Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441-517. [207] Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: Systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364-375. [208] Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nature Communications, 12(1), 6231. [209] Zheng, Z., Li, J., Xiao, F., Ren, W., & He, R. (2016). Unitization improves source memory in older adults: An event-related potential study. Neuropsychologia, 89, 232-244. [210] Zola-Morgan, S. M., & Squire, L. R. (1990). The primate hippocampal formation: Evidence for a time-limited role in memory storage. Science, 250(4978), 288-290. |
[1] | LIU Wei, CHEN Ruixin, GUO JinPeng. The neural replay mechanisms of episodic memory consolidation under stress in humans [J]. Advances in Psychological Science, 2024, 32(7): 1031-1047. |
[2] | PENG Zhilin, ZHENG Ruoying, HU Xiaoqing, ZHANG Dandan. The role of sleep in consolidating memory of learning in infants and toddlers [J]. Advances in Psychological Science, 2024, 32(2): 287-299. |
[3] | Jiaqi Li, Ling Liu, Huan Luo. Probing Spatiotemporal Neural Dynamics of Working Memory Reactivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 74-74. |
[4] | Ye Xie, Tinghao Zhao, Wei Zhang, Yunxia Li, Yixuan Ku. Hippocampal Deterioration and Frontal Compensation of Amnestic Mild Cognitive Impairment in Visual Short-term Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 105-105. |
[5] | XIE Zhipeng, QIN Huanyu, WANG Ziye, WANG Jingyuan, HE Yi. Tainted or elegant? Sexy effect on marketing [J]. Advances in Psychological Science, 2023, 31(11): 2200-2218. |
[6] | XUE Bing, WANG Xuejiao, MA Ning, GAO Jun. Effects of oxytocin on psychological resilience: The neurochemical mechanisms in the hippocampus [J]. Advances in Psychological Science, 2021, 29(2): 311-322. |
[7] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[8] | WEI Hua, WANG Tao, MAO Lei, FENG Wenting, XIONG Shasha. The effect of repeated two-syllable brand name on consumers’ perception and attitude [J]. Advances in Psychological Science, 2020, 28(7): 1071-1082. |
[9] | LONG Fangfang, LI Yuchen, CHEN Xiaoyu, LI Ziyuan, LIANG Tengfei, LIU Qiang. Consolidation processing of visual working memory: Time course, pattern and mechanism [J]. Advances in Psychological Science, 2019, 27(8): 1404-1416. |
[10] | CHENG Gang, JIA Yuncheng, DING Fangyuan, ZHANG Dajun, CHEN Jia, LONG Nü. Moderating effects of facial expression on the babyface schema and its neural mechanism [J]. Advances in Psychological Science, 2019, 27(5): 761-772. |
[11] | YUAN Luyi, CHANG Ruosong, MA Jinfei. Why does a driver can not see a critical event on the road?Interaction between “bottom-up” and “top-down” processing mechanisms [J]. Advances in Psychological Science, 2019, 27(3): 557-570. |
[12] | ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging [J]. Advances in Psychological Science, 2019, 27(12): 2019-2033. |
[13] | PAN Yangu, XIAO Yao, HU Yu, LIU Guangzeng, LI Zhiyang. Effects of secure attachment on empathy and altruistic behavior [J]. Advances in Psychological Science, 2019, 27(12): 2077-2083. |
[14] | BAI Xujia, CHEN Xu . Memory biases of attachment styles: Based on the interpretation of two processing modes [J]. Advances in Psychological Science, 2018, 26(3): 467-475. |
[15] | GAO Zhihua; LU Zhongyi; CUI Xinying. What is the mechanism of negation processes? Introduction and commentary on psychological theories on negation [J]. Advances in Psychological Science, 2017, 25(3): 413-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||