Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (3): 477-493.doi: 10.3724/SP.J.1042.2025.0477
• Regular Articles • Previous Articles Next Articles
XIA Yi, ZHANG Jie, ZHANG Huoyin, LEI Yi, DOU Haoran()
Received:
2024-02-02
Online:
2025-03-15
Published:
2025-01-24
CLC Number:
XIA Yi, ZHANG Jie, ZHANG Huoyin, LEI Yi, DOU Haoran. Understanding approach-avoidance conflict dysregulation in anxiety: Cognitive processes and neural mechanisms[J]. Advances in Psychological Science, 2025, 33(3): 477-493.
[1] |
李晓明, 刘小丹, 戴婷. (2022). 特质焦虑与青少年冒险行为的关系:基于双系统模型的机制探讨. 心理与行为研究, 20(4), 529-535.
doi: 10.12139/j.1672-0628.2022.04.014 |
[2] |
李小新, 郭永玉, 芈静, 胡小勇. (2014). 威胁敏感性的概念和测量:生理和认知两种取向. 心理科学进展, 22(10), 1608-1615.
doi: 10.3724/SP.J.1042.2014.01608 |
[3] | Abivardi, A., Khemka, S., & Bach, D. R. (2020). Hippocampal representation of threat features and behavior in a human approach-avoidance conflict anxiety task. The Journal of Neuroscience, 40(35), 6748-6758. |
[4] |
Amodio, D. M., & Harmon-Jones, E. (2011). Trait emotions and affective modulation of the startle eyeblink: On the unique relationship of trait anger. Emotion, 11(1), 47-51.
doi: 10.1037/a0021238 pmid: 21401224 |
[5] | Apergis-Schoute, A. M., Gillan, C. M., Fineberg, N. A., Fernandez-Egea, E., Sahakian, B. J., & Robbins, T. W. (2017). Neural basis of impaired safety signaling in obsessive compulsive disorder. Proceedings of the National Academy of Sciences, 114(12), 3216-3221. |
[6] |
Arnaudova, I., Kindt, M., Fanselow, M., & Beckers, T. (2017). Pathways towards the proliferation of avoidance in anxiety and implications for treatment. Behaviour Research and Therapy, 96, 3-13.
doi: S0005-7967(17)30071-2 pmid: 28457483 |
[7] | Auerbach, R. P., Pagliaccio, D., Hubbard, N. A., Frosch, I., Kremens, R., Cosby, E., ... Pizzagalli, D. A. (2022). Reward-Related neural circuitry in depressed and anxious adolescents: A human connectome project. Journal of the American Academy of Child & Adolescent Psychiatry, 61(2), 308-320. |
[8] |
Aupperle, R. L., & Paulus, M. P. (2010). Neural systems underlying approach and avoidance in anxiety disorders. Dialogues in Clinical Neuroscience, 12(4), 517-531.
pmid: 21319496 |
[9] |
Aylward, J., Valton, V., Ahn, W. -Y., Bond, R. L., Dayan, P., Roiser, J. P., & Robinson, O. J. (2019). Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nature Human Behaviour, 3(10), 1116-1123.
doi: 10.1038/s41562-019-0628-0 pmid: 31209369 |
[10] | Bach, D. R. (2022). Cross-species anxiety tests in psychiatry: Pitfalls and promises. Molecular Psychiatry, 27(1), 154-163. |
[11] | Bach, D. R., & Dayan, P. (2017). Algorithms for survival: A comparative perspective on emotions. Nature Reviews. Neuroscience, 18(5), 311-319. |
[12] |
Bach, D. R., Guitart-Masip, M., Packard, P. A., Miro, J., Falip, M., Fuentemilla, L., & Dolan, R. J. (2014). Human hippocampus arbitrates approach-avoidance conflict. Current Biology, 24(5), 541-547.
doi: 10.1016/j.cub.2014.01.046 pmid: 24560572 |
[13] | Bach, D. R., Hoffmann, M., Finke, C., Hurlemann, R., & Ploner, C. J. (2019). Disentangling hippocampal and amygdala contribution to human anxiety-like behavior. The Journal of Neuroscience, 39(43), 8517-8526. |
[14] |
Baczkowski, B. M., Haaker, J., & Schwabe, L. (2023). Inferring danger with minimal aversive experience. Trends in Cognitive Sciences, 27(5), 456-467.
doi: 10.1016/j.tics.2023.02.005 pmid: 36941184 |
[15] | Baker, A. E., & Galván, A. (2020). Threat or thrill? The neural mechanisms underlying the development of anxiety and risk taking in adolescence. Developmental Cognitive Neuroscience, 45, 100841. |
[16] | Baker, A. E., Padgaonkar, N. T., Peris, T. S., & Galván, A. (2022). Anxiety symptoms interact with approach motivations in adolescent risk-taking. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/nqdxc |
[17] | Baladron, J., & Hamker, F. H. (2020). Habit learning in hierarchical cortex-basal ganglia loops. The European Journal of Neuroscience, 52(12), 4613-4638. |
[18] |
Ball, T. M., & Gunaydin, L. A. (2022). Measuring maladaptive avoidance: From animal models to clinical anxiety. Neuropsychopharmacology, 47(5), 978-986.
doi: 10.1038/s41386-021-01263-4 pmid: 35034097 |
[19] | Banca, P., Voon, V., Vestergaard, M. D., Philipiak, G., Almeida, I., Pocinho, F., Relvas, J., & Castelo-Branco, M. (2015). Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain : A Journal of Neurology, 138(Pt 3), 798-811. |
[20] |
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1-24.
doi: 10.1037/0033-2909.133.1.1 pmid: 17201568 |
[21] | Barker, J. M., Bryant, K. G., & Chandler, L. J. (2018). Inactivation of ventral hippocampus projections promotes sensitivity to changes in contingency. Learning & Memory, 26(1), 1-8. |
[22] | Barnett, W. H., Kuznetsov, A., & Lapish, C. C. (2023). Distinct cortico-striatal compartments drive competition between adaptive and automatized behavior. PloS One, 18(3), e0279841. |
[23] | Bech, P., Crochet, S., Dard, R., Ghaderi, P., Liu, Y., Malekzadeh, M., ... Sourmpis, C. (2023). Striatal dopamine signals and reward learning. Function, 4(6), zqad056. |
[24] |
Biderman, N., Bakkour, A., & Shohamy, D. (2020). What are memories for? The hippocampus bridges past experience with future decisions. Trends in Cognitive Sciences, 24(7), 542-556.
doi: S1364-6613(20)30106-6 pmid: 32513572 |
[25] |
Bishop, S. J., & Gagne, C. (2018). Anxiety, depression, and decision making: A computational perspective. Annual Review of Neuroscience, 41, 371-388.
doi: 10.1146/annurev-neuro-080317-062007 pmid: 29709209 |
[26] | Bolles, R. C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77(1), 32-48. |
[27] |
Browning, M., Behrens, T. E., Jocham, G., O’Reilly, J. X., & Bishop, S. J. (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nature Neuroscience, 18(4), 590-596.
doi: 10.1038/nn.3961 pmid: 25730669 |
[28] | Bryant, K. G., & Barker, J. M. (2020). Arbitration of approach-avoidance conflict by ventral hippocampus. Frontiers in Neuroscience, 14, 615337. |
[29] | Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319-333. |
[30] | Castegnetti, G., Tzovara, A., Khemka, S., Melinščak, F., Barnes, G. R., Dolan, R. J., & Bach, D. R. (2020). Representation of probabilistic outcomes during risky decision-making. Nature Communications, 11(1), 2419. |
[31] |
Charpentier, C. J., Aylward, J., Roiser, J. P., & Robinson, O. J. (2017). Enhanced risk aversion, but not loss aversion, in unmedicated pathological anxiety. Biological Psychiatry, 81(12), 1014-1022.
doi: S0006-3223(16)33111-0 pmid: 28126210 |
[32] | Chavanne, A. V., & Robinson, O. J. (2021). The overlapping neurobiology of induced and pathological anxiety: A meta-analysis of functional neural activation. The American Journal of Psychiatry, 178(2), 156-164. |
[33] | Choi, J. S., & Kim, J. J. (2010). Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21773-21777. |
[34] | Cisler, J. M., Tamman, A. J. F., & Fonzo, G. A. (2023). Diminished prospective mental representations of reward mediate reward learning strategies among youth with internalizing symptoms. Psychological Medicine, 53(14), 1-11. |
[35] |
Cornwell, B. R., Garrido, M. I., Overstreet, C., Pine, D. S., & Grillon, C. (2017). The unpredictive brain under threat: A neurocomputational account of anxious hypervigilance. Biological Psychiatry, 82(6), 447-454.
doi: S0006-3223(17)31760-2 pmid: 28838469 |
[36] | Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neuroscience & Biobehavioral Reviews, 28(3), 317-332. |
[37] |
Corr, P. J., & Cooper, A. J. (2016). The reinforcement sensitivity theory of personality questionnaire (RST-PQ): Development and validation. Psychological Assessment, 28(11), 1427-1440.
pmid: 26845224 |
[38] | Corr, P. J., & Krupić, D. (2017). Motivating personality:Approach, avoidance, and their conflict. In A. J. Elliot (Ed.), Advances in motivation science (pp. 39-90). Elsevier Academic Press. |
[39] | Corr, P. J., & McNaughton, N. (2012). Neuroscience and approach/avoidance personality traits: A two stage (valuation-motivation) approach. Neuroscience & Biobehavioral Reviews, 36(10), 2339-2354. |
[40] |
Costa, V. D., Dal Monte, O., Lucas, D. R., Murray, E. A., & Averbeck, B. B. (2016). Amygdala and ventral striatum make distinct contributions to reinforcement learning. Neuron, 92(2), 505-517.
doi: S0896-6273(16)30584-0 pmid: 27720488 |
[41] | Couch, A. C. M., Berger, T., Hanger, B., Matuleviciute, R., Srivastava, D. P., Thuret, S., & Vernon, A. C. (2021). Maternal immune activation primes deficiencies in adult hippocampal neurogenesis. Brain, Behavior, and Immunity, 97, 410-422. |
[42] | Craske, M. G., Sandman, C. F., & Stein, M. B. (2022). How can neurobiology of fear extinction inform treatment? Neuroscience & Biobehavioral Reviews, 143, 104923. |
[43] | De Pascalis, V., Scacchia, P., Sommer, K., & Checcucci, C. (2019). Psychopathy traits and reinforcement sensitivity theory: Prepulse inhibition and ERP responses. Biological Psychology, 148, 107771. |
[44] |
de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: A case for animal-human translational models. Psychological Research, 73(4), 463-476.
doi: 10.1007/s00426-009-0230-6 pmid: 19350272 |
[45] | Del Arco, A., Park, J., & Moghaddam, B. (2020). Unanticipated stressful and rewarding experiences engage the same prefrontal cortex and ventral tegmental area neuronal populations. Eneuro, 7(3), 1-13. |
[46] | Dickson, J. M. (2006). Perceived consequences underlying approach goals and avoidance goals in relation to anxiety. Personality and Individual Differences, 41(8), 1527-1538. |
[47] |
Diederen, K. M., & Schultz, W. (2015). Scaling prediction errors to reward variability benefits error-driven learning in humans. Journal of Neurophysiology, 114(3), 1628-1640.
doi: 10.1152/jn.00483.2015 pmid: 26180123 |
[48] | Diehl, M. M., Bravo-Rivera, C., & Quirk, G. J. (2019). The study of active avoidance: A platform for discussion. Neuroscience & Biobehavioral Reviews, 107, 229-237. |
[49] | Dillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., & Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1-18. |
[50] |
Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience, 18(5), 767-772.
doi: 10.1038/nn.3981 pmid: 25799041 |
[51] |
Duval, E. R., Javanbakht, A., & Liberzon, I. (2015). Neural circuits in anxiety and stress disorders: A focused review. Therapeutics and Clinical Risk Management, 11, 115-126.
doi: 10.2147/TCRM.S48528 pmid: 25670901 |
[52] | Elliot, A. J. (2006). The hierarchical model of approach-avoidance motivation. Motivation and Emotion, 30(2), 111-116. |
[53] | Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., ... Witten, I. B. (2019). Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature, 570(7762), 509-513. |
[54] | Enkhtaivan, E., Nishimura, J., & Cochran, A. (2023). Placing approach-avoidance conflict within the framework of multi-objective reinforcement learning. Bulletin of Mathematical Biology, 85(11), 116. |
[55] |
Feigley, D. A., & Spear, N. E. (1970). Effect of age and punishment condition on long-term retention by the rat of active- and passive-avoidance learning. Journal of Comparative and Physiological Psychology, 73(3), 515-526.
pmid: 5514687 |
[56] |
Felix-Ortiz, A. C., Beyeler, A., Seo, C., Leppla, C. A., Wildes, C. P., & Tye, K. M. (2013). BLA to vHPC inputs modulate anxiety-related behaviors. Neuron, 79(4), 658-664.
doi: 10.1016/j.neuron.2013.06.016 pmid: 23972595 |
[57] | Fernández-Teruel, A. (2021). Conflict between threat sensitivity and sensation seeking in the adolescent brain: Role of the hippocampus, and neurobehavioural plasticity induced by pleasurable early enriched experience. Brain Sciences, 11(2), 268. |
[58] | Fernández-Teruel, A., & McNaughton, N. (2023). Post-encounter freezing during approach-avoidance conflict: The role of the hippocampus. Nature Reviews Neuroscience, 24(7), 451-452. |
[59] | Fernández-Teruel, A., & Tobeña, A. (2020). Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: Pharmacological, behavioural and neuroanatomical convergence. Neuroscience & Biobehavioral Reviews, 118, 739-758. |
[60] | Fineberg, N. A., Apergis-Schoute, A. M., Vaghi, M. M., Banca, P., Gillan, C. M., Voon, V., ... Robbins, T. W. (2018). Mapping compulsivity in the DSM-5 obsessive compulsive and related disorders: Cognitive domains, neural circuitry, and treatment. International Journal of Neuropsychopharmacology, 21(1), 42-58. |
[61] |
Flores, A., López, F. J., Vervliet, B., & Cobos, P. L. (2018). Intolerance of uncertainty as a vulnerability factor for excessive and inflexible avoidance behavior. Behaviour Research and Therapy, 104, 34-43.
doi: S0005-7967(18)30036-6 pmid: 29524740 |
[62] |
Fox, A. S., Oler, J. A., Birn, R. M., Shackman, A. J., Alexander, A. L., & Kalin, N. H. (2018). Functional connectivity within the primate extended amygdala is heritable and associated with early-life anxious temperament. Journal of Neuroscience, 38(35), 7611-7621.
doi: 10.1523/JNEUROSCI.0102-18.2018 pmid: 30061190 |
[63] |
Fung, B. J., Qi, S., Hassabis, D., Daw, N., & Mobbs, D. (2019). Slow escape decisions are swayed by trait anxiety. Nature Human Behaviour, 3(7), 702-708.
doi: 10.1038/s41562-019-0595-5 pmid: 31110337 |
[64] | Garrison, J., Erdeniz, B., & Done, J. (2013). Prediction error in reinforcement learning: A meta-analysis of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(7), 1297-1310. |
[65] | Gazit, T., Gonen, T., Gurevitch, G., Cohen, N., Strauss, I., Zeevi, Y., ... Fried, I. (2020). The role of mPFC and MTL neurons in human choice under goal-conflict. Nature Communications, 11(1), 3192. |
[66] |
Gilbert, D. T., & Wilson, T. D. (2007). Prospection: Experiencing the future. Science, 317(5843), 1351-1354.
doi: 10.1126/science.1144161 pmid: 17823345 |
[67] | Gillan, C. M., Otto, A. R., Phelps, E. A., & Daw, N. D. (2015). Model-based learning protects against forming habits. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 523-536. |
[68] | Gillan, C. M., Vaghi, M. M., Hezemans, F. H., van Ghesel Grothe, S., Dafflon, J., Brühl, A. B., ... Robbins, T. W. (2021). Experimentally induced and real-world anxiety have no demonstrable effect on goal-directed behaviour. Psychological Medicine, 51(9), 1467-1478. |
[69] | Glück, V. M., Boschet-Lange, J. M., Pittig, R., & Pittig, A. (2023). Persistence of extensively trained avoidance is not elevated in anxiety disorders in an outcome devaluation paradigm. Behaviour Research and Therapy, 170, 104417. |
[70] | Glück, V. M., Zwosta, K., Wolfensteller, U., Ruge, H., & Pittig, A. (2021). Costly habitual avoidance is reduced by concurrent goal-directed approach in a modified devaluation paradigm. Behaviour Research and Therapy, 146, 103964. |
[71] | Gray, J. A. (1987). Perspectives on anxiety and impulsivity: A commentary. Journal of Research in Personality, 21(4), 493-509. |
[72] | Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of septo-hippocampal system. Oxford University Press. |
[73] |
Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488-501.
doi: 10.1038/nrn3524 pmid: 23783199 |
[74] | Han, S., Gao, J., Hu, J., Ye, Y., Huang, H., Liu, J., ... Xu, P. (2023). Disruptions of salience network during uncertain anticipation of conflict control in anxiety. Asian Journal of Psychiatry, 88, 103721. |
[75] |
Hertwig, R., & Erev, I. (2009). The description-experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517-523.
doi: 10.1016/j.tics.2009.09.004 pmid: 19836292 |
[76] |
Hofmann, S. G., & Hay, A. C. (2018). Rethinking avoidance: Toward a balanced approach to avoidance in treating anxiety disorders. Journal of Anxiety Disorders, 55, 14-21.
doi: S0887-6185(17)30557-1 pmid: 29550689 |
[77] |
Howlett, J. R., & Paulus, M. P. (2020). Where perception meets belief updating: Computational evidence for slower updating of visual expectations in anxious individuals. Journal of Affective Disorders, 266, 633-638.
doi: S0165-0327(19)32093-2 pmid: 32056939 |
[78] | Hundt, N. E., Brown, L. H., Kimbrel, N. A., Walsh, M. A., Nelson-Gray, R. O., & Kwapil, T. R. (2013). Reinforcement sensitivity theory predicts positive and negative affect in daily life. Personality and Individual Differences, 54(3), 350-354. |
[79] | Iordanova, M. D., Yau, J. O. -Y., McDannald, M. A., & Corbit, L. H. (2021). Neural substrates of appetitive and aversive prediction error. Neuroscience & Biobehavioral Reviews, 123, 337-351. |
[80] |
Ito, R., & Lee, A. C. H. (2016). The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behavioural Brain Research, 313, 345-357.
doi: S0166-4328(16)30467-3 pmid: 27457133 |
[81] | Izadpanah, S., Schumacher, M., Bähr, A., Stopsack, M., Grabe, H. J., & Barnow, S. (2016). A 5-year longitudinal study of the adolescent reinforcement sensitivity as a risk factor for anxiety symptoms in adulthood: Investigating the indirect effect of cognitive emotion regulation. Personality and Individual Differences, 95, 68-73. |
[82] |
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., ... Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97(3), 670-683.
doi: S0896-6273(18)30019-9 pmid: 29397273 |
[83] | Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 313-327. |
[84] |
Kalisch, R., Gerlicher, A. M. V., & Duvarci, S. (2019). A dopaminergic basis for fear extinction. Trends in Cognitive Sciences, 23(4), 274-277.
doi: S1364-6613(19)30041-5 pmid: 30803871 |
[85] | Katz, B. A., Matanky, K., Aviram, G., & Yovel, I. (2020). Reinforcement sensitivity, depression and anxiety: A meta-analysis and meta-analytic structural equation model. Clinical Psychology Review, 77, 101842. |
[86] | Kaye, S. A., White, M. J., & Lewis, I. (2018). Young females' attention toward road safety images: An ERP study of the revised reinforcement sensitivity theory. Traffic Injury Prevention, 19(2), 201-206. |
[87] |
Kelley, N. J., Hortensius, R., Schutter, D. J., & Harmon-Jones, E. (2017). The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: A review of studies manipulating frontal asymmetry. International Journal of Psychophysiology, 119, 19-30.
doi: S0167-8760(17)30177-0 pmid: 28288803 |
[88] | Keramati, M., Dezfouli, A., & Piray, P. (2011). Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Computational Biology, 7(5), e1002055. |
[89] | Kim, H. F., & Hikosaka, O. (2015). Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain, 138(7), 1776-1800. |
[90] |
Kirlic, N., Young, J., & Aupperle, R. L. (2017). Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behaviour Research and Therapy, 96, 14-29.
doi: S0005-7967(17)30089-X pmid: 28495358 |
[91] | Kirry, A. J., Twining, R. C., & Gilmartin, M. R. (2020). Prelimbic input to basolateral amygdala facilitates the acquisition of trace cued fear memory under weak training conditions. Neurobiology of Learning and Memory, 172, 107249. |
[92] | Korn, C. W., Vunder, J., Miró, J., Fuentemilla, L., Hurlemann, R., & Bach, D. R. (2017). Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine- sensitive approach-avoidance conflict test. Biological Psychiatry, 82(7), 522-531. |
[93] |
Kreuze, L. J., Jonker, N. C., Hartman, C. A., Nauta, M. H., & de Jong, P. J. (2020). Attentional bias for cues signaling punishment and reward in adolescents: Cross-sectional and prognostic associations with symptoms of Anxiety and behavioral disorders. Journal of Abnormal Child Psychology, 48(8), 1007-1021.
doi: 10.1007/s10802-020-00654-3 pmid: 32445103 |
[94] | Krypotos, A. -M., Effting, M., Kindt, M., & Beckers, T. (2015). Avoidance learning: A review of theoretical models and recent developments. Frontiers in Behavioral Neuroscience, 9, 189. |
[95] | Lacey, M. F., & Gable, P. A. (2021). Frontal asymmetry in an approach-avoidance conflict paradigm. Psychophysiology, 58(5), e13780. |
[96] |
Lamba, A., Frank, M. J., & FeldmanHall, O. (2020). Anxiety impedes adaptive social learning under uncertainty. Psychological Science, 31(5), 592-603.
doi: 10.1177/0956797620910993 pmid: 32343637 |
[97] |
LeBlanc, K. H., London, T. D., Szczot, I., Bocarsly, M. E., Friend, D. M., Nguyen, K. P., ... Kravitz, A. V. (2020). Striatopallidal neurons control avoidance behavior in exploratory tasks. Molecular Psychiatry, 25(2), 491-505.
doi: 10.1038/s41380-018-0051-3 pmid: 29695836 |
[98] |
LeDoux, J. E., Moscarello, J., Sears, R., & Campese, V. (2017). The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Molecular Psychiatry, 22(1), 24-36.
doi: 10.1038/mp.2016.166 pmid: 27752080 |
[99] | LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. The American Journal of Psychiatry, 173(11), 1083-1093. |
[100] | Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35(1), 287-308. |
[101] | Letkiewicz, A. M., Kottler, H. C., Shankman, S. A., & Cochran, A. L. (2023). Quantifying aberrant approach- avoidance conflict in psychopathology: A review of computational approaches. Neuroscience & Biobehavioral Reviews, 147, 105103. |
[102] | Lewin, K. (1935). A dynamic theory of personality. McGraw-Hill Higher Education. |
[103] | Liu, L., Wu, J., Geng, H., Liu, C., Luo, Y., Luo, J., & Qin, S. (2022). Long-term stress and trait anxiety affect brain network balance in dynamic cognitive computations. Cerebral Cortex, 32(14), 2957-2971. |
[104] | Livermore, J. J., Klaassen, F. H., Bramson, B., Hulsman, A. M., Meijer, S. W., Held, L., ... Roelofs, K. (2021). Approach-avoidance decisions under threat: The role of autonomic psychophysiological states. Frontiers in Neuroscience, 15, 621517. |
[105] | Loijen, A., Vrijsen, J. N., Egger, J. I. M., Becker, E. S., & Rinck, M. (2020). Biased approach-avoidance tendencies in psychopathology: A systematic review of their assessment and modification. Clinical Psychology Review, 77, 101825. |
[106] | Lovibond, P. (2006). Fear and Avoidance:An Integrated Expectancy Model. In M. G. Craske, D. Hermans, & D. Vansteenwegen (Eds.), Fear and learning: From basic processes to clinical implications (pp. 117-132). American Psychological Association. |
[107] |
Ma, L., Chen, W., Yu, D., & Han, Y. (2020). Brain-wide mapping of afferent inputs to accumbens nucleus core subdomains and accumbens nucleus subnuclei. Frontiers in Systems Neuroscience, 14, 15.
doi: 10.3389/fnsys.2020.00015 pmid: 32317941 |
[108] | Mack, N. R., Deng, S., Yang, S. S., Shu, Y., & Gao, W. J. (2023). Prefrontal cortical control of anxiety: Recent advances. The Neuroscientist, 29(4), 488-505. |
[109] | Mathews, A., & MacLeod, C. (2002). Induced processing biases have causal effects on anxiety. Cognition & Emotion, 16(3), 331-354. |
[110] | McDermott, T. J., Berg, H., Touthang, J., Akeman, E., Cannon, M. J., Santiago, J., ... Aupperle, R. L. (2022). Striatal reactivity during emotion and reward relates to approach-avoidance conflict behaviour and is altered in adults with anxiety or depression. Journal of Psychiatry and Neuroscience, 47(5), E311-E322. |
[111] | McNally, G. P. (2021). Motivational competition and the paraventricular thalamus. Neuroscience & Biobehavioral Reviews, 125, 193-207. |
[112] | McNaughton, N., DeYoung, C. G., & Corr, P. J. (2016). Approach/avoidance. In J. R. Absher, & J. Cloutier (Eds.), Neuroimaging personality and character: Traits and mental states in the brain (pp. 25-49). Elsevier. |
[113] | Miletić, S., Boag, R. J., Trutti, A. C., Stevenson, N., Forstmann, B. U., & Heathcote, A. (2021). A new model of decision processing in instrumental learning tasks. Elife, 10, e63055. |
[114] | Miller, N. E. (1948). Studies of fear as an acquirable drive: I. Fear as motivation and fear-reduction as reinforcement in the learning of new responses. Journal of Experimental Psychology, 38(1), 89-101. |
[115] |
Miller, S. M., Marcotulli, D., Shen, A., & Zweifel, L. S. (2019). Divergent medial amygdala projections regulate approach-avoidance conflict behavior. Nature Neuroscience, 22(4), 565-575.
doi: 10.1038/s41593-019-0337-z pmid: 30804529 |
[116] |
Mitte, K. (2008). Memory bias for threatening information in anxiety and anxiety disorders: A meta-analytic review. Psychological Bulletin, 134(6), 886-911.
doi: 10.1037/a0013343 pmid: 18954160 |
[117] | Monni, A., Olivier, E., Morin, A. J. S., Belardinelli, M. O., Mulvihill, K., & Scalas, L. F. (2020). Approach and avoidance in Gray's, Higgins', and Elliot's perspectives: A theoretical comparison and integration of approach-avoidance in motivated behavior. Personality and Individual Differences, 166, 110163. |
[118] |
Moscarello, J. M., & Maren, S. (2018). Flexibility in the face of fear: Hippocampal-prefrontal regulation of fear and avoidance. Current Opinion in Behavioral Sciences, 19, 44-49.
doi: 10.1016/j.cobeha.2017.09.010 pmid: 29333482 |
[119] | Moughrabi, N., Botsford, C., Gruichich, T. S., Azar, A., Heilicher, M., Hiser, J., ... Cisler, J. M. (2022). Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making. NeuroImage, 264, 119709. |
[120] | Mowrer, O. H. (1940). Anxiety-reduction and learning. Journal of Experimental Psychology, 27(5), 497-516. |
[121] |
Nguyen, D., Alushaj, E., Erb, S., & Ito, R. (2019). Dissociative effects of dorsomedial striatum D1 and D2 receptor antagonism in the regulation of anxiety and learned approach-avoidance conflict decision-making. Neuropharmacology, 146, 222-230.
doi: S0028-3908(18)30516-1 pmid: 30508508 |
[122] | Oler, J. A., Fox, A. S., Shelton, S. E., Rogers, J., Dyer, T. D., Davidson, R. J., ... Kalin, N. H. (2010). Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature, 466(7308), 864-868. |
[123] |
Otis, J. M., & Mueller, D. (2017). Reversal of cocaine-associated synaptic plasticity in medial prefrontal cortex parallels elimination of memory retrieval. Neuropsychopharmacology, 42(10), 2000-2010.
doi: 10.1038/npp.2017.90 pmid: 28466871 |
[124] |
Padilla-Coreano, N., Bolkan, S. S., Pierce, G. M., Blackman, D. R., Hardin, W. D., Garcia-Garcia, A. L., ... Gordon, J. A. (2016). Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron, 89(4), 857-866.
doi: 10.1016/j.neuron.2016.01.011 pmid: 26853301 |
[125] | Pastor, V., & Medina, J. H. (2021). Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. The European Journal of Neuroscience, 53(9), 3039-3062. |
[126] | Patterson, D. A. J. (2020). The role of the ventral hippocampal-accumbens shell circuit in cued approach-avoidance decision making. University of Toronto. |
[127] |
Paulus, M. P. (2020). Driven by pain, not gain: Computational approaches to aversion-related decision making in psychiatry. Biological Psychiatry, 87(4), 359-367.
doi: S0006-3223(19)31665-8 pmid: 31653478 |
[128] | Piantadosi, P. T., Yeates, D. C. M., & Floresco, S. B. (2020). Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. Learning & Memory, 27(10), 429-440. |
[129] |
Pike, A. C., & Robinson, O. J. (2022). Reinforcement learning in patients with mood and anxiety disorders vs control individuals: A systematic review and meta-analysis. JAMA Psychiatry, 79(4), 313-322.
doi: 10.1001/jamapsychiatry.2022.0051 pmid: 35234834 |
[130] |
Pittig, A., Boschet, J. M., Glück, V. M., & Schneider, K. (2021). Elevated costly avoidance in anxiety disorders: Patients show little downregulation of acquired avoidance in face of competing rewards for approach. Depression and Anxiety, 38(3), 361-371.
doi: 10.1002/da.23119 pmid: 33258530 |
[131] |
Pittig, A., & Dehler, J. (2019). Same fear responses, less avoidance: Rewards competing with aversive outcomes do not buffer fear acquisition, but attenuate avoidance to accelerate subsequent fear extinction. Behaviour Research and Therapy, 112, 1-11.
doi: S0005-7967(18)30175-X pmid: 30448689 |
[132] | Pittig, A., Heinig, I., Goerigk, S., Richter, J., Hollandt, M., Lueken, U., ... Wittchen, H. U. (2023). Change of threat expectancy as mechanism of exposure-based psychotherapy for anxiety disorders: Evidence from 8, 484 exposure exercises of 605 patients. Clinical Psychological Science, 11(2), 199-217. |
[133] |
Pittig, A., Hengen, K., Bublatzky, F., & Alpers, G. W. (2018). Social and monetary incentives counteract fear-driven avoidance: Evidence from approach-avoidance decisions. Journal of Behavior Therapy and Experimental Psychiatry, 60, 69-77.
doi: S0005-7916(17)30217-3 pmid: 29747141 |
[134] | Pittig, A., Wong, A. H. K., Glück, V. M., & Boschet, J. M. (2020). Avoidance and its bi-directional relationship with conditioned fear: Mechanisms, moderators, and clinical implications. Behaviour Research and Therapy, 126, 103550. |
[135] |
Quartz, S. R. (2009). Reason, emotion and decision-making: Risk and reward computation with feeling. Trends in Cognitive Sciences, 13(5), 209-215.
doi: 10.1016/j.tics.2009.02.003 pmid: 19362037 |
[136] |
Rachman, S., & Hodgson, R. (1974). I. Synchrony and desynchrony in fear and avoidance. Behaviour Research and Therapy, 12(4), 311-318.
pmid: 4155621 |
[137] |
Ranaldi, R. (2014). Dopamine and reward seeking: The role of ventral tegmental area. Reviews in the Neurosciences, 25(5), 621-630.
doi: 10.1515/revneuro-2014-0019 pmid: 24887956 |
[138] |
Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545-556.
doi: 10.1038/nrn2357 pmid: 18545266 |
[139] | Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning:Variations in the effectiveness of reinforcement and non-reinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). Appleton-Century-Crofts. |
[140] | Richey, J. A., Brewer, J. A., Sullivan-Toole, H., Strege, M. V., Kim-Spoon, J., White, S. W., & Ollendick, T. H. (2019). Sensitivity shift theory: A developmental model of positive affect and motivational deficits in social anxiety disorder. Clinical Psychology Review, 72, 101756. |
[141] | Rief, W., Sperl, M. F., Braun-Koch, K., Khosrowtaj, Z., Kirchner, L., Schäfer, L., ... Panitz, C. (2022). Using expectation violation models to improve the outcome of psychological treatments. Clinical Psychology Review, 98, 102212. |
[142] | Roberts, C., Apergis-Schoute, A. M., Bruhl, A., Nowak, M., Baldwin, D. S., Sahakian, B. J., & Robbins, T. W. (2022). Threat reversal learning and avoidance habits in generalised anxiety disorder. Translational Psychiatry, 12(1), 216. |
[143] |
Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K., & Grillon, C. (2013). Stress increases aversive prediction error signal in the ventral striatum. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4129-4133.
doi: 10.1073/pnas.1213923110 pmid: 23401511 |
[144] |
Roesch, M. R., & Olson, C. R. (2004). Neuronal activity related to reward value and motivation in primate frontal cortex. Science, 304(5668), 307-310.
doi: 10.1126/science.1093223 pmid: 15073380 |
[145] |
Rozeske, R. R., Jercog, D., Karalis, N., Chaudun, F., Khoder, S., Girard, D., ... Herry, C. (2018). Prefrontal-periaqueductal gray-projecting neurons mediate context fear discrimination. Neuron, 97(4), 898-910.
doi: S0896-6273(17)31212-6 pmid: 29398355 |
[146] | Rusconi, F., Rossetti, M. G., Forastieri, C., Tritto, V., Bellani, M., & Battaglioli, E. (2022). Preclinical and clinical evidence on the approach-avoidance conflict evaluation as an integrative tool for psychopathology. Epidemiology and Psychiatric Sciences, 31, e90. |
[147] | Sánchez-Bellot, C., AlSubaie, R., Mishchanchuk, K., Wee, R. W., & MacAskill, A. F. (2022). Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nature Communications, 13(1), 339. |
[148] |
Schlund, M. W., Brewer, A. T., Magee, S. K., Richman, D. M., Solomon, S., Ludlum, M., & Dymond, S. (2016). The tipping point: Value differences and parallel dorsal-ventral frontal circuits gating human approach-avoidance behavior. Neuroimage, 136, 94-105.
doi: 10.1016/j.neuroimage.2016.04.070 pmid: 27153979 |
[149] |
Schumacher, A., Villaruel, F. R., Ussling, A., Riaz, S., Lee, A. C., & Ito, R. (2018). Ventral hippocampal CA1 and CA3 differentially mediate learned approach-avoidance conflict processing. Current Biology, 28(8), 1318-1324.
doi: S0960-9822(18)30313-0 pmid: 29606418 |
[150] | Seligman, M., & Johnston, J. (1973). A cognitive theory of avoidance learning. In F. J. McGuigan, & D. B. Lumsden (Eds.). Contemporary approaches to conditioning and learning (pp. 69-110). Wiley. |
[151] | Sequeira, S. L., Forbes, E. E., Hanson, J. L., & Silk, J. S. (2022). Positive valence systems in youth anxiety development: A scoping review. Journal of Anxiety Disorders, 89, 102588. |
[152] | Sharp, P. B., Russek, E. M., Huys, Q. J. M., Dolan, R. J., & Eldar, E. (2022). Humans perseverate on punishment avoidance goals in multigoal reinforcement learning. eLife, 11, e74402. |
[153] | Shi, H. J., Wang, S., Wang, X. P., Zhang, R. X., & Zhu, L. J. (2023). Hippocampus: Molecular, cellular, and circuit features in anxiety. Neuroscience Bulletin, 39(6), 1009-1026. |
[154] | Silvetti, S., & Verguts, T. (2012). Reinforcement learning, high-level cognition, and the human brain. In P. Bright (Ed.), Neuroimaging: Cognitive and clinical neuroscience (pp. 283-296). InTech. |
[155] | Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. Appleton-Century. |
[156] | Smith, R., Kirlic, N., Stewart, J. L., Touthang, J., Kuplicki, R., Khalsa, S. S., ... Aupperle, R. L. (2021). Greater decision uncertainty characterizes a transdiagnostic patient sample during approach-avoidance conflict: A computational modelling approach. Journal of Psychiatry and Neuroscience, 46(1), E74-E87. |
[157] | Smith, R., Kuplicki, R., Feinstein, J., Forthman, K. L., Stewart, J. L., Paulus, M. P., ... Khalsa, S. S. (2020). A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Computational Biology, 16(12), e1008484. |
[158] |
Stelly, C. E., Tritley, S. C., Rafati, Y., & Wanat, M. J. (2020). Acute stress enhances associative learning via dopamine signaling in the ventral lateral striatum. Journal of Neuroscience, 40(22), 4391-4400.
doi: 10.1523/JNEUROSCI.3003-19.2020 pmid: 32321745 |
[159] | Stout, D. M., Shackman, A. J., Pedersen, W. S., Miskovich, T. A., & Larson, C. L. (2017). Neural circuitry governing anxious individuals’ mis-allocation of working memory to threat. Scientific Reports, 7(1), 8742. |
[160] | Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1), 9-44. |
[161] | Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. |
[162] |
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208.
doi: 10.1037/h0061626 pmid: 18870876 |
[163] |
Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515-518.
doi: 10.1126/science.1134239 pmid: 17255512 |
[164] |
Towner, E., Chierchia, G., & Blakemore, S. J. (2023). Sensitivity and specificity in affective and social learning in adolescence. Trends in Cognitive Sciences, 27(7), 642-655.
doi: 10.1016/j.tics.2023.04.002 pmid: 37198089 |
[165] | Tymula, A., Wang, X., Imaizumi, Y., Kawai, T., Kunimatsu, J., Matsumoto, M., & Yamada, H. (2023). Dynamic prospect theory: Two core decision theories coexist in the gambling behavior of monkeys and humans. Science Advances, 9(20), eade7972. |
[166] |
Vasilchenko, K. F., & Chumakov, E. M. (2023). Current status, challenges and future prospects in computational psychiatry: A narrative review. Consortium Psychiatricum, 4(3), 33-42.
doi: 10.17816/CP11244 pmid: 38249533 |
[167] | Verharen, J. P., Adan, R. A., & Vanderschuren, L. J. (2020). How reward and aversion shape motivation and decision making: A computational account. The Neuroscientist, 26(1), 87-99. |
[168] |
Vogel, S., & Schwabe, L. (2019). Stress, aggression, and the balance of approach and avoidance. Psychoneuroendocrinology, 103, 137-146.
doi: S0306-4530(18)30919-3 pmid: 30685681 |
[169] | Walters, C. J., & Redish, A. D. (2018). A case study in computational psychiatry:Addiction as failure modes of the decision-making system. In A. Anticevic & J. D. Murray (Eds.), Computational psychiatry: Mathematical modeling of mental illness (pp. 199-217). Elsevier Academic Press. |
[170] | Warr, P. B., Sánchez-Cardona, I., Taneva, S. K., Vera, M., Bindl, U. K., & Cifre, E. (2021). Reinforcement sensitivity theory, approach-affect and avoidance-affect. Cognition and Emotion, 35(4), 619-635. |
[171] | Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3(1), 1-14. |
[172] | Watson, P., O’Callaghan, C., Perkes, I., Bradfield, L., & Turner, K. (2022). Making habits measurable beyond what they are not: A focus on associative dual-process models. Neuroscience & Biobehavioral Reviews, 142, 104869. |
[173] | Wise, T., Liu, Y., Chowdhury, F., & Dolan, R. J. (2021). Model-based aversive learning in humans is supported by preferential task state reactivation. Science Advances, 7(31), eabf9616. |
[174] | Wong, A. H. K., & Pittig, A. (2022). A dimensional measure of safety behavior: A non-dichotomous assessment of costly avoidance in human fear conditioning. Psychological Research, 86(1), 312-330. |
[175] |
Wood, W., & Neal, D. T. (2007). A new look at habits and the habit-goal interface. Psychological Review, 114(4), 843-863.
doi: 10.1037/0033-295X.114.4.843 pmid: 17907866 |
[176] | Wood, W., & Rünger, D. (2016). Psychology of habit. Annual Review of Psychology, 67(1), 289-314. |
[177] |
Xia, F., & Kheirbek, M. A. (2020). Circuit-based biomarkers for mood and anxiety disorders. Trends in Neurosciences, 43(11), 902-915.
doi: 10.1016/j.tins.2020.08.004 pmid: 32917408 |
[178] | Yamamori, Y., & Robinson, O. J. (2023). Computational perspectives on human fear and anxiety. Neuroscience & Biobehavioral Reviews, 144, 104959. |
[179] | Yamamori, Y., Robinson, O. J., & Roiser, J. P. (2023). Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance. ELife, 12, RP87720. |
[180] |
Ye, L., Allen, W. E., Thompson, K. R., Tian, Q., Hsueh, B., Ramakrishnan, C., ... Deisseroth, K. (2016). Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell, 165(7), 1776-1788.
doi: S0092-8674(16)30558-X pmid: 27238022 |
[181] | Yeates, D. C., Leavitt, D., Sujanthan, S., Khan, N., Alushaj, D., Lee, A. C., & Ito, R. (2022). Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict. Nature Communications, 13(1), 3349. |
[182] |
Yeates, D. C. M., Ussling, A., Lee, A. C. H., & Ito, R. (2020). Double dissociation of learned approach-avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus. Hippocampus, 30(6), 596-609.
doi: 10.1002/hipo.23182 pmid: 31749280 |
[183] | Zorowitz, S., Momennejad, I., & Daw, N. D. (2020). Anxiety, avoidance, and sequential evaluation. Computational Psychiatry, 4, 1-17. |
[1] | GONG Fangying, SUN Yifan, HE Qin, SHI Ke, LIU Wei, CHEN Ning. Brain-to-brain synchronyduring teacher-student interactions and its regulatory factors in teaching interaction [J]. Advances in Psychological Science, 2025, 33(3): 452-464. |
[2] | ZHAO Li, BAI Sha. The relationship between anxiety, depression and social comparison in an era of digital media [J]. Advances in Psychological Science, 2025, 33(1): 92-106. |
[3] | WEN Xiujuan, MA Yujing, TAN Siqi, LI Yun, LIU Wenhua. Motivation deficits in physical effort or cognitive effort expenditure? Evaluation of effort-based reward motivation and application of computational modeling in depression [J]. Advances in Psychological Science, 2025, 33(1): 107-122. |
[4] | LEI Yi, MEI Ying, Wang Jinxia, YUAN Zixin. Identifying the impact of unconscious fear on adolescent anxiety: Cognitive neural mechanisms and interventions [J]. Advances in Psychological Science, 2024, 32(8): 1221-1232. |
[5] | ZENG Qinghe, CUI Xiaoyu, TANG Wei, LI Juan. The cognitive neural mechanisms of age-related decline in mnemonic discrimination and its application [J]. Advances in Psychological Science, 2024, 32(7): 1138-1151. |
[6] | LIU Hai-ning, DONG Xian-ling, LIU Hai-hon, LIU Yan-li, LI Xian-wen. Neural mechanisms and digital promotion of executive function in older adults with amnestic mild cognitive impairment [J]. Advances in Psychological Science, 2024, 32(6): 873-885. |
[7] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[8] | HOU Jiawen, LIU Fengjun, MENG Lu. Solitude and its effect and psychological mechanisms in the marketing field [J]. Advances in Psychological Science, 2024, 32(4): 677-688. |
[9] | CHEN Yi, ZHANG Xinyi, LI Yajie. How can entrepreneurial failure experience serve as an open sesame for subsequent job-seeking? An impression management perspective [J]. Advances in Psychological Science, 2024, 32(2): 191-205. |
[10] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[11] | LI Yaqin, ZHAO Ruolan, YANG Qing. Effects of motivation on error processing: Controversy and integration [J]. Advances in Psychological Science, 2024, 32(1): 85-99. |
[12] | Yujie Chen, Ying Wang, Yi Jiang. ‘Pop-out’ of Fearful Face in Invisible Crowds: Nonconscious Attentional Capture Guides Gaze Behavior [J]. Advances in Psychological Science, 2023, 31(suppl.): 88-88. |
[13] | XU Xiaobing, CHENG Lanping, SUN Hongjie. Tendency to time anthropomorphism and its impact on prosocial behavior [J]. Advances in Psychological Science, 2023, 31(9): 1569-1582. |
[14] | MENG Liang, LI Dandan. Revisiting family motivation from the actor versus observer perspectives [J]. Advances in Psychological Science, 2023, 31(8): 1342-1358. |
[15] | PU Xiaoping, HU Hao, ZHU Jina, TANG Yipeng. Influence of facial attractiveness on the allocation of attentional resources: Moderating effect of evolutionary motivations [J]. Advances in Psychological Science, 2023, 31(7): 1109-1120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||