Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (10): 1567-1577.doi: 10.3724/SP.J.1042.2024.01567
• Conceptual Framework • Next Articles
SUN Lijun1, YANG Yufang2,3
Received:
2024-04-07
Online:
2024-10-15
Published:
2024-08-13
SUN Lijun, YANG Yufang. The cognitive and neural mechanisms of metric structure in music: A predictive perspective[J]. Advances in Psychological Science, 2024, 32(10): 1567-1577.
[1] 蒋存梅. (2016). 音乐心理学: 华东师范大学出版社, 上海. [2] 江俊, 王梓梦, 万璇, 蒋存梅. (2014). 音乐时间加工的影响因素. [3] 欧阳玥, 戴志强. (2010). 音乐节拍认知的研究评述. [4] 孙丽君, 周临舒, 阎芮平, 蒋存梅. (2017). 旋律语调疗法及其对失语症的临床应用. [5] 张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. (2020). 音乐句法加工的认知机制与音乐结构的影响模式. [6] 张巍. (2019). 20世纪音乐节奏的研究——若干问题及分析. [7] 张雪, 袁佩君, 王莹, 蒋毅. (2016). 知觉相关的神经振荡-外界节律同步化现象. [8] Arnal L. H., Doelling K. B., & Poeppel D. (2014). Delta-Beta coupled oscillations underlie temporal prediction accuracy.Cerebral Cortex, 25(9), 3077-3085. [9] Asano R., Boeckx C., & Seifert U. (2021). Hierarchical control as a shared neurocognitive mechanism for language and music.Cognition, 216, 104847. [10] Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time.Cognitive Psychology, 41(3), 254-311. [11] Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.Journal of Neuroscience Methods, 134(1), 9-21. [12] Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise.Proceedings of the National Academy of Sciences of the United States of America, 112(45), E6233-E6242. [13] Fitch, W. T. (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception.Frontiers in Systems Neuroscience, 7, 68. [14] Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle.Philosophical Transactions of The Royal Society B Biological Sciences, 364(1521), 1211-1221. [15] Fujioka T., Ross B., & Trainor L. J. (2015). Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery.Journal of Neuroscience, 35(45), 15187-15198. [16] Fujioka T., Trainor L. J., Large E. W., & Ross B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations.Journal of Neuroscience, 32(5), 1791-1802. [17] Geiser E., Notter M., & Gabrieli J. D. (2012). A corticostriatal neural system enhances auditory perception through temporal context processing.Journal of Neuroscience, 32(18), 6177-6182. [18] Geiser E., Sandmann P., Jäncke L., & Meyer M. (2010). Refinement of metre perception-training increases hierarchical metre processing. European Journal of Neuroscience, 32(11), 1979-1985. [19] Geiser E., Ziegler E., Jäncke L., & Meyer M. (2009). Early electrophysiological correlates of meter and rhythm processing in music perception.Cortex, 45(1), 93-102. [20] Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain.Journal of Cognitive Neuroscience, 19(5), 893-906. [21] Habibi A., Wirantana V., & Starr A. (2014). Cortical activity during perception of musical rhythm: Comparing musicians and non-musicians.Psychomusicology: Music, Mind, and Brain, 24(2), 125-135. [22] Hannon E. E., Snyder J. S., Eerola T., & Krumhansl C. L. (2004). The role of melodic and temporal cues in perceiving musical meter.Journal of Experimental Psychology: Human Perception and Performance, 30(5), 956-974. [23] Harding E. E., Sammler D., Henry M. J., Large E. W., & Kotz S. A. (2019). Cortical tracking of rhythm in music and speech.NeuroImage, 185, 96-101. [24] Huron, D. B. (2008). [25] Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations.Trends in Cognitive Sciences, 11(7), 267-269. [26] Jia, H. (2019). Microstate Analysis. In L. Hu, & Z.Zhang (Eds.), [27] Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355. [28] Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491. [29] Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions.Physics of Life Reviews, 10(3), 235-266. [30] Koelsch, S. (2012). [31] Koelsch S., Gunter T., Friederici A. D., & Schröger E. (2000). Brain indices of music processing: “Nonmusicians” are musical.Journal of Cognitive Neuroscience, 12(3), 520-541. [32] Koelsch S., Rohrmeier M., Torrecuso R., & Jentschke S. (2013). Processing of hierarchical syntactic structure in music.Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15443-15448. [33] Koelsch S., Vuust P., & Friston K. (2019). Predictive processes and the peculiar case of music.Trends in Cognitive Sciences, 23(1), 63-77. [34] Kuperberg G. R., Brothers T., & Wlotko E. W. (2020). A tale of two positivities and the N400: Distinct neural signatures are evoked by confirmed and violated predictions at different levels of representation.Journal of Cognitive Neuroscience, 32(1), 12-35. [35] Lakatos P., Gross J., & Thut G. (2019). A new unifying account of the roles of neuronal entrainment.Current Biology, 29(18), R890-R905. [36] Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., & Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex.Journal of Neurophysiology, 94(3), 1904-1911. [37] Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119-159. [38] Large, E. W., & Snyder, J. S. (2009). Pulse and meter as neural resonance.Annals of the New York Academy of Sciences, 1169(1), 46-57. [39] Lerdahl F.,& Jackendoff, R. (1983). A generative theory of tonal music. MIT Press. [40] Li Q., Liu G., Wei D., Liu Y., Yuan G., & Wang G. (2019). Distinct neuronal entrainment to beat and meter: Revealed by simultaneous EEG-fMRI.NeuroImage, 194, 128-135. [41] Li X., Zhang Y., Xia J., & Swaab T. Y. (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations.Neuropsychologia, 102, 70-81. [42] Liégeois-Chauvel C., Peretz I., Babaï M., Laguitton V., & Chauvel P. (1998). Contribution of different cortical areas in the temporal lobes to music processing.Brain, 121(10), 1853-1867. [43] Ma X., Ding N., Tao Y., & Yang Y. F. (2018). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures.Frontiers in Human Neuroscience, 12, 425. [44] Margulis, E. H. (2005). A model of melodic expectation.Music Perception: An Interdisciplinary Journal, 22(4), 663-714. [45] Nave-Blodgett J. E., Snyder J. S., & Hannon E. E. (2021). Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training.Journal of Experimental Psychology: General, 150(2), 314-339. [46] Nozaradan S., Peretz I., & Mouraux A. (2012). Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.Journal of Neuroscience, 32(49), 17572-17581. [47] Nozaradan S., Schönwiesner M., Keller P. E., Lenc T., & Lehmann A. (2018). Neural bases of rhythmic entrainment in humans: Critical transformation between cortical and lower-level representations of auditory rhythm.European Journal of Neuroscience, 47(4), 321-332. [48] Overy, K., & Turner, R. (2009). The rhythmic brain.Cortex, 45(1), 1-3. [49] Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation.Annals of the New York Academy of Sciences, 1423(1), 378-395. [50] Phillips C., Kazanina N., & Abada S. H. (2005). ERP effects of the processing of syntactic long-distance dependencies.Cognitive Brain Research, 22(3), 407-428. [51] Rankin S. K., Large E. W., & Fink P. W. (2009). Fractal tempo fluctuation and pulse prediction.Music Perception: An Interdisciplinary Journal, 26(5), 401-413. [52] Rao S. M., Mayer A. R., & Harrington D. L. (2001). The evolution of brain activation during temporal processing.Nature Neuroscience, 4(3), 317-323. [53] Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006-2012).Psychonomic Bulletin & Review, 20(3), 403-452. [54] Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review.International Journal of Psychophysiology, 83(2), 164-175. [55] Sun L., Feng C., & Yang Y. (2020). Tension experience induced by nested structures in music.Frontiers in Human Neuroscience, 14, 210. [56] Sun L., Hu L., Ren G., & Yang Y. (2020). Musical tension associated with violations of hierarchical structure.Frontiers in Human Neuroscience, 14, 578112. [57] Sun L., Liu F., Zhou L., & Jiang C. (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing.Psychophysiology, 55(2), e12983. [58] Sun L., Thompson W. F., Liu F., Zhou L., & Jiang C. (2020). The human brain processes hierarchical structures of meter and harmony differently: Evidence from musicians and nonmusicians.Psychophysiology, 57(9), e13598. [59] Thaut M. H., Trimarchi P., & Parsons L. (2014). Human brain basis of musical rhythm perception: Common and distinct neural substrates for meter, tempo, and pattern.Brain Sciences, 4(2), 428-452. [60] Trost W. J., Labbé C., & Grandjean D. (2017). Rhythmic entrainment as a musical affect induction mechanism.Neuropsychologia, 96, 96-110. [61] Trost W.,& Vuilleumier, P. (2013). ‘Rhythmic entrainment’ as a mechanism for emotion induction by music: A neurophysiological perspective. In T. Cochrane, B. Fantini & K. R. Scherer (Eds.), The emotional power of music (pp. 213-225). Oxford University Press. [62] Van der Steen, M. C., & Keller, P. E. (2013). The Adaptation and Anticipation Model (ADAM) of sensorimotor synchronization.Frontiers in Human Neuroscience, 7, 253. [63] Vuust P., Gebauer L. K., & Witek M. A. (2014). Neural underpinnings of music: The polyrhythmic brain.Advances in Experimental Medicine and Biology, 829, 339-356. [64] Vuust P., Heggli O. A., Friston K. J., & Kringelbach M. L. (2022). Music in the brain.Nature Reviews Neuroscience, 23(5), 287-305. [65] Vuust P., Ostergaard L., Pallesen K. J., Bailey C., & Roepstorff A. (2009). Predictive coding of music-brain responses to rhythmic incongruity.Cortex, 45(1), 80-92. [66] Vuust P., Pallesen K. J., Bailey C., van Zuijen T. L., Gjedde A., Roepstorff A., & Ostergaard L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians.NeuroImage, 24(2), 560-564. [67] Wolff A., Berberian N., Golesorkhi M., Gomez-Pilar J., Zilio F., & Northoff G. (2022). Intrinsic neural timescales: Temporal integration and segregation.Trends in Cognitive Sciences, 26(2), 159-173. [68] Wu Q., Sun L., Ding N., & Yang Y. (2024). Musical tension is affected by metrical structure dynamically and hierarchically.Cognitive Neurodynamics, 1-22. [69] You S., Sun L., Li X., & Yang Y. (2021). Contextual prediction modulates musical tension: Evidence from behavioral and neural responses.Brain and Cognition, 152, 105771. [70] You S., Sun L., & Yang Y. (2023). The effects of contextual certainty on tension induction and resolution. Cognitive Neurodynamics, 17(1), 191-201. [71] Zendel B. R., Lagrois M. ‐É., Robitaille N., & Peretz I. (2015). Attending to pitch information inhibits processing of pitch information: The curious case of amusia.Journal of Neuroscience, 35(9), 3815-3824. [72] Zhou L., Liu F., Jiang J., & Jiang C. (2019). Impaired emotional processing of chords in congenital amusia: Electrophysiological and behavioral evidence.Brain and Cognition, 135, 103577. |
[1] | DING Ying, WANG Ziying, LI Weidong. Behavioral characteristics and neural mechanisms of pain processing in depression [J]. Advances in Psychological Science, 2024, 32(8): 1315-1327. |
[2] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[3] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[4] | CAO Jinjing, QIU Shiming, DING Xianfeng, CHENG Xiaorong, FAN Zhao. The gradedness and richness of consciousness: Two pathways toward decoding consciousness [J]. Advances in Psychological Science, 2023, 31(7): 1172-1185. |
[5] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[6] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[7] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[8] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[9] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[10] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[11] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[12] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[13] | YANG Xiaomeng, WANG Fuxing, WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry [J]. Advances in Psychological Science, 2020, 28(7): 1029-1041. |
[14] | ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing [J]. Advances in Psychological Science, 2020, 28(6): 883-892. |
[15] | WANG Xin, HANG Mingli, LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing [J]. Advances in Psychological Science, 2020, 28(1): 62-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||