Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 79-92.doi: 10.3724/SP.J.1042.2021.00079
• Regular Articles • Previous Articles Next Articles
GUO Ying1, GONG Xianmin2, WANG Dahua1()
Received:
2020-05-14
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Dahua
E-mail:wangdahua@bnu.edu.cn
CLC Number:
GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective[J]. Advances in Psychological Science, 2021, 29(1): 79-92.
[1] | 陈红, 郭春彦, 杨海波. (2015). 延迟间隔和提取条件对短时错误记忆的影响. 心理与行为研究, 13(1), 37-43. |
[2] | 江荣焕, 李晓东. (2015). 错误记忆的发展性逆转: 为什么越长大越易“错”? 心理科学进展, 23(8), 1371-1379. |
[3] | 雷威, 杨志, 詹旻野, 李红, 翁旭初. (2010). 利用脑成像多体素模式分析解码认知的神经表征: 原理和应用. 心理科学进展, 18(12), 1934-1941. |
[4] | 刘振亮, 刘田田, 韩佳慧, 沐守宽. (2015). 错误记忆的可植入性. 心理科学进展, 23(5), 806-814. |
[5] | 王密, 耿海燕. (2010). 从关联性记忆错觉的毕生发展看记忆的适应性特质. 科学通报, 55(4), 307-315. |
[6] |
Addis, D. R., & McAndrews, M. P. (2006). Prefrontal and hippocampal contributions to the generation and binding of semantic associations during successful encoding. Neuroimage, 33(4), 1194-1206.
URL pmid: 17023179 |
[7] |
Aminoff, E., Schacter, D. L., & Bar, M. (2008). The cortical underpinnings of context-based memory distortion. Journal of Cognitive Neuroscience, 20(12), 2226-2237.
URL pmid: 18457503 |
[8] |
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709-721.
URL pmid: 28772125 |
[9] |
Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during narrative perception. Journal of Neuroscience, 38(45), 9689-9699.
URL pmid: 30249790 |
[10] | Baym, C. L., & Gonsalves, B. D. (2010). Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect. Cognitive, Affective, & Behavioral Neuroscience, 10(3), 339-348. |
[11] |
Berkers, R. M. W. J., van der Linden, M., de Almeida, R. F., Müller, N. C. J., Bovy, L., Dresler, M., ... Fernández, G. (2017). Transient medial prefrontal perturbation reduces false memory formation. Cortex, 88, 42-52.
URL pmid: 28068640 |
[12] |
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536.
URL pmid: 22001867 |
[13] |
Bonasia, K., Sekeres, M. J., Gilboa, A., Grady, C. L., Winocur, G., & Moscovitch, M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26-39.
URL pmid: 29269085 |
[14] |
Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive Psychology, 11(2), 177-220.
doi: 10.1016/0010-0285(79)90009-4 URL |
[15] |
Bowman, C. R., & Dennis, N. A. (2016). The neural basis of recollection rejection: Increases in hippocampal-prefrontal connectivity in the absence of a shared recall-to-reject and target recollection network. Journal of cognitive neuroscience, 28(8), 1194-1209.
URL pmid: 27054401 |
[16] |
Brainerd, C. J., & Reyna, V. F. (1993). Memory independence and memory interference in cognitive development. Psychological Review, 100(1), 42-67.
URL pmid: 8426881 |
[17] |
Brainerd, C. J., & Reyna, V. F. (2002). Fuzzy-trace theory and false memory. Current Directions in Psychological Science, 11(5), 164-169.
doi: 10.1111/1467-8721.00192 URL |
[18] |
Bridge, D. J., & Voss, J. L. (2014). Hippocampal binding of novel information with dominant memory traces can support both memory stability and change. Journal of Neuroscience, 34(6), 2203-2213.
URL pmid: 24501360 |
[19] |
Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4805-4810.
URL pmid: 11287664 |
[20] |
Chadwick, M. J., Anjum, R. S., Kumaran, D., Schacter, D. L., Spiers, H. J., & Hassabis, D. (2016). Semantic representations in the temporal pole predict false memories. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10180-10185.
URL pmid: 27551087 |
[21] |
Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115-125.
doi: 10.1038/nn.4450 URL pmid: 27918531 |
[22] |
Chen, J., Olsen, R. K., Preston, A. R., Glover, G. H., & Wagner, A. D. (2011). Associative retrieval processes in the human medial temporal lobe: Hippocampal retrieval success and CA1 mismatch detection. Learning & Memory, 18(8), 523-528.
URL pmid: 21775513 |
[23] |
Cooper, R. A., & Ritchey, M. (2020). Progression from feature-specific brain activity to hippocampal binding during episodic encoding. Journal of Neuroscience, 40(8), 1701-1709.
URL pmid: 31826947 |
[24] |
Davis, T., & Poldrack, R. A. (2013). Measuring neural representations with fMRI: practices and pitfalls. Annals of the New York Academy of Sciences, 1296(1), 108-134.
doi: 10.1111/nyas.12156 URL |
[25] | Dennis, N. A., Bowman, C. R., & Turney, I. C. (2015). Functional neuroimaging of false memories. In D. R. Addis, M. Barense & A. Duarte (Eds.), The Wiley Handbook on the Cognitive Neuroscience of Memory (pp. 150-171). Hoboken, NJ: John Wiley & Sons, Ltd. |
[26] |
Dennis, N. A., Kim, H., & Cabeza, R. (2008). Age-related differences in brain activity during true and false memory retrieval. Journal of cognitive neuroscience, 20(8), 1390-1402.
URL pmid: 18303982 |
[27] |
Doss, M. K., Picart, J. K., & Gallo, D. A. (2018). The dark side of context: Context reinstatement can distort memory. Psychological Science, 29(6), 914-925.
URL pmid: 29671680 |
[28] | Friedman, A. (1979). Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108(3), 316-355. |
[29] | Gallo, D. A. (2006). Processes that cause false memory. In H. L. Roediger & J. R. Pomerantz (Eds.), Associative illusions of memory: False memory research in DRM and related tasks (pp. 39-73). New York, NY: Psychology Press. |
[30] |
Garoff-Eaton, R. J., Kensinger, E. A., & Schacter, D. L. (2007). The neural correlates of conceptual and perceptual false recognition. Learning & Memory, 14(10), 684-692.
URL pmid: 17911372 |
[31] |
Garoff-Eaton, R. J., Slotnick, S. D., & Schacter, D. L. (2005). The neural origins of specific and general memory: The role of the fusiform cortex. Neuropsychologia, 43(6), 847-859.
URL pmid: 15716157 |
[32] |
Gershman, S. J., Schapiro, A. C., Hupbach, A., & Norman, K. A. (2013). Neural context reinstatement predicts memory misattribution. Journal of Neuroscience, 33(20), 8590-8595.
doi: 10.1523/JNEUROSCI.0096-13.2013 URL |
[33] |
Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104-114.
doi: 10.1016/j.neuropsychologia.2013.11.010 URL |
[34] |
Ghosh, V. E., Moscovitch, M., Colella, B. M., & Gilboa, A. (2014). Schema representation in patients with ventromedial PFC lesions. Journal of Neuroscience, 34(36), 12057-12070.
doi: 10.1523/JNEUROSCI.0740-14.2014 URL |
[35] |
Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618-631.
URL pmid: 28551107 |
[36] |
Gilboa, A., & Moscovitch, M. (2017). Ventromedial prefrontal cortex generates pre-stimulus theta coherence desynchronization: A schema instantiation hypothesis. Cortex, 87, 16-30.
URL pmid: 27890323 |
[37] |
Gonsalves, B., & Paller, K. A. (2000). Neural events that underlie remembering something that never happened. Nature Neuroscience, 3(12), 1316-1321.
URL pmid: 11100153 |
[38] |
Gordon, A. M., Rissman, J., Kiani, R., & Wagner, A. D. (2014). Cortical reinstatement mediates the relationship between content-specific encoding activity and subsequent recollection decisions. Cerebral Cortex, 24(12), 3350-3364.
URL pmid: 23921785 |
[39] |
Guerin, S. A., Robbins, C. A., Gilmore, A. W., & Schacter, D. L. (2012a). Interactions between visual attention and episodic retrieval: dissociable contributions of parietal regions during gist-based false recognition. Neuron, 75(6), 1122-1134.
URL pmid: 22998879 |
[40] |
Guerin, S. A., Robbins, C. A., Gilmore, A. W., & Schacter, D. L. (2012b). Retrieval failure contributes to gist-based false recognition. Journal of Memory and Language, 66(1), 68-78.
URL pmid: 22125357 |
[41] |
Hannigan, S. L., & Reinitz, M. T. (2001). A demonstration and comparison of two types of inference-based memory errors. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(4), 931-940.
URL pmid: 11486926 |
[42] | Hardt, O., Einarsson, E. Ö., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61(1), 141-167. |
[43] |
Hupbach, A., Gomez, R., & Nadel, L. (2009). Episodic memory reconsolidation: Updating or source confusion? Memory, 17(5), 502-510.
URL pmid: 19468955 |
[44] |
Jacques, P. L. S., Olm, C., & Schacter, D. L. (2013). Neural mechanisms of reactivation-induced updating that enhance and distort memory. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19671-19678.
URL pmid: 24191059 |
[45] | Johnson, M. K., Raye, C. L., Mitchell, K. J., & Ankudowich, E. (2012). The cognitive neuroscience of true and false memories. In R. F. Belli (Ed.). True and false recovered memories: Toward a reconsolidation of the debate (pp. 15-52). New York, NY: Springer. |
[46] |
Jonker, T. R., Dimsdale-zucker, H., Ritchey, M., Clarke, A., & Ranganath, C. (2018). Neural reactivation in parietal cortex enhances memory for episodically linked information. Proceedings of the National Academy of Sciences of the United States of America, 115(43), 11084-11089.
doi: 10.1073/pnas.1800006115 URL pmid: 30297400 |
[47] |
Kensinger, E. A., & Schacter, D. L. (2006). Neural processes underlying memory attribution on a reality-monitoring task. Cerebral Cortex, 16(8), 1126-1133.
URL pmid: 16648457 |
[48] |
Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B. (2014). Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8997-9002.
URL pmid: 24889631 |
[49] |
Kim, H., & Cabeza, R. (2007). Differential contributions of prefrontal, medial temporal, and sensory-perceptual regions to true and false memory formation. Cerebral Cortex, 17(9), 2143-2150.
URL pmid: 17110592 |
[50] |
Koen, J. D., & Rugg, M. D. (2016). Memory reactivation predicts resistance to retroactive interference: evidence from multivariate classification and pattern similarity analyses. Journal of Neuroscience, 36(15), 4389-4399.
URL pmid: 27076433 |
[51] |
Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4.
URL pmid: 19104670 |
[52] |
Kubota, Y., Toichi, M., Shimizu, M., Mason, R. A., Findling, R. L., Yamamoto, K., & Calabrese, J. R. (2006). Prefrontal hemodynamic activity predicts false memory—A near-infrared spectroscopy study. Neuroimage, 31(4), 1783-1789.
URL pmid: 16545964 |
[53] |
Kuhl, B. A., Bainbridge, W. A., & Chun, M. M. (2012). Neural reactivation reveals mechanisms for updating memory. Journal of Neuroscience, 32(10), 3453-3461.
URL pmid: 22399768 |
[54] |
Kuhl, B. A., & Chun, M. M. (2014). Successful remembering elicits event-specific activity patterns in lateral parietal cortex. Journal of Neuroscience, 34(23), 8051-8060.
URL pmid: 24899726 |
[55] |
Kuhl, B. A., Johnson, M. K., & Chun, M. M. (2013). Dissociable neural mechanisms for goal-directed versus incidental memory reactivation. Journal of Neuroscience, 33(41), 16099-16109.
URL pmid: 24107943 |
[56] |
Kuhl, B. A., Rissman, J., Chun, M. M., & Wagner, A. D. (2011). Fidelity of neural reactivation reveals competition between memories. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5903-5908.
URL pmid: 21436044 |
[57] |
Kuhl, B. A., Shah, A. T., DuBrow, S., & Wagner, A. D. (2010). Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nature neuroscience, 13(4), 501-506.
URL pmid: 20190745 |
[58] |
Kurkela, K. A., & Dennis, N. A. (2016). Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis. Neuropsychologia, 81, 149-167.
URL pmid: 26683385 |
[59] |
LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, A. D. (2013). Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience, 33(13), 5466-5474.
URL pmid: 23536062 |
[60] |
Lee, H. M., Samide, R., Richter, F. R., & Kuhl, B. A. (2019). Decomposing parietal memory reactivation to predict consequences of remembering. Cerebral Cortex, 29(8), 3305-3318.
URL pmid: 30137255 |
[61] |
Lee, J. L. C. (2009). Reconsolidation: maintaining memory relevance. Trends in Neurosciences, 32(8), 413-420.
doi: 10.1016/j.tins.2009.05.002 URL pmid: 19640595 |
[62] |
McDermott, K. B., Gilmore, A. W., Nelson, S. M., Watson, J. M., & Ojemann, J. G. (2017). The parietal memory network activates similarly for true and associative false recognition elicited via the DRM procedure. Cortex, 87, 96-107.
URL pmid: 27745847 |
[63] |
Moritz, S., Gläscher, J., Sommer, T., Büchel, C., & Braus, D. F. (2006). Neural correlates of memory confidence. Neuroimage, 33(4), 1188-1193.
doi: 10.1016/j.neuroimage.2006.08.003 URL pmid: 17029986 |
[64] |
Norman, K. A. (2010). How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model. Hippocampus, 20(11), 1217-1227.
URL pmid: 20857486 |
[65] |
Nyberg, L., Habib, R., Mcintosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11120-11124.
URL pmid: 11005878 |
[66] |
Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12(1), 3-11.
URL pmid: 15687227 |
[67] |
Packard, P. A., Rodríguez-Fornells, A., Bunzeck, N., Nicolás, B., de Diego-Balaguer, R., & Fuentemilla, L. (2017). Semantic congruence accelerates the onset of the neural signals of successful memory encoding. The Journal of Neuroscience, 37(2), 291-301.
URL pmid: 28077709 |
[68] |
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976-987.
URL pmid: 18026167 |
[69] |
Pidgeon, L. M., & Morcom, A. M. (2016). Cortical pattern separation and item-specific memory encoding. Neuropsychologia, 85, 256-271.
URL pmid: 27018483 |
[70] |
Putnam, A. L., Sungkhasettee, V. W., & Roediger III, H. L. (2017). When misinformation improves memory: The effects of recollecting change. Psychological Science, 28(1), 36-46.
URL pmid: 27879321 |
[71] |
Richter, F. R., Cooper, R., Bays, P. M., & Simons, J. S. (2016). Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife, 5, e18260.
URL pmid: 28009253 |
[72] |
Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726-742.
doi: 10.1016/j.tics.2019.06.007 URL pmid: 31358438 |
[73] |
Schacter, D. L., Guerin, S. A., & Jacques, P. L. S. (2011). Memory distortion: An adaptive perspective. Trends in Cognitive Sciences, 15(10), 467-474.
doi: 10.1016/j.tics.2011.08.004 URL pmid: 21908231 |
[74] | Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual Review of Psychology, 49(1), 289-318. |
[75] |
Sederberg, P. B., Gershman, S. J., Polyn, S. M., & Norman, K. A. (2011). Human memory reconsolidation can be explained using the temporal context model. Psychonomic Bulletin & Review, 18(3), 455-468.
doi: 10.3758/s13423-011-0086-9 URL pmid: 21512839 |
[76] |
Sekeres, M. J., Bonasia, K., St-Laurent, M., Pishdadian, S., Winocur, G., Grady, C., & Moscovitch, M. (2016). Recovering and preventing loss of detailed memory: Differential rates of forgetting for detail types in episodic memory. Learning & Memory, 23(2), 72-82.
URL pmid: 26773100 |
[77] |
Sinclair, A. H., & Barense, M. D. (2018). Surprise and destabilize: prediction error influences episodic memory reconsolidation. Learning & Memory, 25(8), 369-381.
doi: 10.1101/lm.046912.117 URL pmid: 30012882 |
[78] |
Sinclair, A. H., & Barense, M. D. (2019). Prediction error and memory reactivation: How incomplete reminders drive reconsolidation. Trends in Neurosciences, 42(10), 727-739.
URL pmid: 31506189 |
[79] |
Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7(6), 664-672.
URL pmid: 15156146 |
[80] |
Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906-1921.
URL pmid: 26908636 |
[81] |
Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. Journal of Neuroscience, 35(47), 15746-15751.
URL pmid: 26609165 |
[82] |
Staresina, B. P., Henson, R. N. A., Nikolaus, K., & Arjen, A. (2012). Episodic reinstatement in the medial temporal lobe. Journal of Neuroscience, 32(50), 18150-18156.
URL pmid: 23238729 |
[83] |
Stevenson, R. F., Reagh, Z. M., Chun, A. P., Murray, E. A., & Yassa, M. A. (2020). Pattern separation and source memory engage distinct hippocampal and neocortical regions during retrieval. Journal of Neuroscience, 40(4), 843-851.
doi: 10.1523/JNEUROSCI.0564-19.2019 URL pmid: 31748377 |
[84] |
St-Laurent, M., Abdi, H., Bondad, A., & Buchsbaum, B. R. (2014). Memory reactivation in healthy aging: evidence of stimulus-specific dedifferentiation. Journal of Neuroscience, 34(12), 4175-4186.
URL pmid: 24647939 |
[85] | Straube, B. (2012). An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behavioral and Brain Functions, 8(1), 35-35. |
[86] |
Sweegers, C. C. G., Coleman, G. A., van Poppel, E. A. M., Cox, R., & Talamini, L. M. (2015). Mental schemas hamper memory storage of goal-irrelevant information. Frontiers in Human Neuroscience, 9, 629-629.
URL pmid: 26793093 |
[87] |
van Buuren, M., Kroes, M. C. W., Wagner, I. C., Genzel, L., Morris, R. G. M., & Fernandez, G. (2014). Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. Journal of Neuroscience, 34(50), 16662-16670.
URL pmid: 25505319 |
[88] |
van den Honert, R. N., McCarthy, G., & Johnson, M. K. (2016). Reactivation during encoding supports the later discrimination of similar episodic memories. Hippocampus, 26(9), 1168-1178.
URL pmid: 27082832 |
[89] |
van der Linden, M., Berkers, R. M. W. J., Morris, R. G. M., & Fernández, G. (2017). Angular gyrus involvement at encoding and retrieval is associated with durable but less specific memories. Journal of Neuroscience, 37(39), 9474-9485.
URL pmid: 28871031 |
[90] |
van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2010). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. The Journal of Neuroscience, 30(47), 15888-15894.
URL pmid: 21106827 |
[91] |
Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677-7682.
URL pmid: 24872571 |
[92] |
Webb, C. E., Turney, I. C., & Dennis, N. A. (2016). What's the gist? The influence of schemas on the neural correlates underlying true and false memories. Neuropsychologia, 93, 61-75.
URL pmid: 27697593 |
[93] |
Weinstein, Y., McDermott, K. B., & Chan, J. C. (2010). True and false memories in the DRM paradigm on a forced choice test. Memory, 18(4), 375-384.
URL pmid: 20408042 |
[94] |
Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory's echo: vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11125-11129.
doi: 10.1073/pnas.97.20.11125 URL pmid: 11005879 |
[95] |
Wing, E. A., Geib, B. R., Wang, W. C., Monge, Z., Davis, S. W., & Cabeza, R. (2020). Cortical overlap and cortical-hippocampal interactions predict subsequent true and false memory. Journal of Neuroscience, 40(9), 1920-1930.
URL pmid: 31974208 |
[96] |
Xiao, X. Q., Dong, Q., Gao, J. H., Men, W. W., Poldrack, R. A., & Xue, G. (2017). Transformed neural pattern reinstatement during episodic memory retrieval. Journal of Neuroscience, 37(11), 2986-2998.
URL pmid: 28202612 |
[97] |
Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21(9), 968-979.
URL pmid: 20865732 |
[98] |
Ye, Z. F., Zhu, B., Zhuang, L. P., Lu, Z. L., Chen, C. S., & Xue, G. (2016). Neural global pattern similarity underlies true and false memories. Journal of Neuroscience, 36(25), 6792-6802.
URL pmid: 27335409 |
[99] |
Zhu, B., Chen, C. S., Shao, X. H., Liu, W. Z., Ye, Z. F., Zhuang, L. P., ... Xue, G. (2019). Multiple interactive memory representations underlie the induction of false memory. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3466-3475.
URL pmid: 30765524 |
[1] | ZHANG Hao, XIAO Bangming, HUANG Minxue. The in-feed native advertising avoidance mechanism and re-targeting strategy based on user dynamic information processing mode [J]. Advances in Psychological Science, 2023, 31(2): 223-239. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | LIU Wei, SHEN Xiaoling. A dynamic perspective on the relationship between team reflection-in-action and innovation: A moderated mediation model integrating cognition and emotion [J]. Advances in Psychological Science, 2022, 30(8): 1759-1769. |
[5] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[6] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[7] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[8] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[9] | ZHAO Na, QIN Xuezhe, LIU Yaqian, SUN Ling. You get what you pay for? The mechanisms and moderators of price-quality effect [J]. Advances in Psychological Science, 2022, 30(10): 2372-2380. |
[10] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[11] | WANG Yuhan, MA Guojie, ZHUANG Xiangling. The effect of cell phone distraction on pedestrians’ information processing and behavior during road crossing [J]. Advances in Psychological Science, 2021, 29(5): 806-814. |
[12] | YANG Xiaomeng, WANG Fuxing, WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry [J]. Advances in Psychological Science, 2020, 28(7): 1029-1041. |
[13] | ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing [J]. Advances in Psychological Science, 2020, 28(6): 883-892. |
[14] | ZHU Yanhan, CHEN Guoliang, XU Junying. Mindfulness in organization: Cognition-oriented dynamic derivative process and interventions [J]. Advances in Psychological Science, 2020, 28(3): 510-522. |
[15] | YIN Huazhan, CUI Xiaobing, BAI Youling, CAO Gege, DENG Jinxin, LI Dan. The important time parameters and related evidences from dual perspectives of temporal information processing and temporal processing of information [J]. Advances in Psychological Science, 2020, 28(11): 1853-1864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||