Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 31-44.doi: 10.3724/SP.J.1042.2021.00031
• ·Research Method· • Previous Articles Next Articles
JIA Lei, XU Yu-fan, WANG Cheng, REN Jun(), WANG Jun()
Received:
2019-11-20
Online:
2021-01-15
Published:
2020-11-23
Contact:
REN Jun,WANG Jun
E-mail:drinren@163.com;jun.wang@zjnu.edu.cn
CLC Number:
JIA Lei, XU Yu-fan, WANG Cheng, REN Jun, WANG Jun. Gamma oscillation: An important biomarker reflecting multisensory integration deficits in autism spectrum disorders[J]. Advances in Psychological Science, 2021, 29(1): 31-44.
频谱能量类型 | 刺激/反应的锁相情况 | 与锁相系数的相关性 | 提取分析方法 |
---|---|---|---|
总频谱能量(total) | 非确定性的 | 根据锁相系数的大小来确定神经振荡是诱发型的还是引发型的 | 基于单个试次做频谱/时频分析后, 再对所有试次进行平均; |
诱发型(evoked) | 高锁相 | 正相关 | 先在时域对试次平均后进行频谱/时频分析; |
引发型(induced) | 低锁相或非锁相 | 负相关 | 用总的神经振荡能量减去诱发性的神经振荡能量; |
自发型(spontaneous) | 非确定性的 | 非确定性的 | 对连续记录的EEG/MEG数据进行分段后, 基于每个分段进行频谱/时频分析, 之后再做平均。 |
频谱能量类型 | 刺激/反应的锁相情况 | 与锁相系数的相关性 | 提取分析方法 |
---|---|---|---|
总频谱能量(total) | 非确定性的 | 根据锁相系数的大小来确定神经振荡是诱发型的还是引发型的 | 基于单个试次做频谱/时频分析后, 再对所有试次进行平均; |
诱发型(evoked) | 高锁相 | 正相关 | 先在时域对试次平均后进行频谱/时频分析; |
引发型(induced) | 低锁相或非锁相 | 负相关 | 用总的神经振荡能量减去诱发性的神经振荡能量; |
自发型(spontaneous) | 非确定性的 | 非确定性的 | 对连续记录的EEG/MEG数据进行分段后, 基于每个分段进行频谱/时频分析, 之后再做平均。 |
[1] | 陈彩琦, 刘志华, 金志成. (2003). 特征捆绑机制的理论模型. 心理科学进展, 11(6), 616-622. |
[2] | 陈楚侨, 杨斌让, 王亚. (2008). 内表型方法在精神疾病研究中的应用. 心理科学进展, 16(3), 378-391. |
[3] | 李涛涛, 胡金生, 王琦, 李骋诗, 李松泽, 何建青, ... 刘淑清. (2018). 孤独症谱系障碍者的视听时间整合. 心理科学进展, 26(6), 1031-1040. |
[4] | 钱浩悦, 黄逸慧, 高湘萍. (2018). Gamma神经振荡和信息整合加工. 心理科学进展, 26(3), 433-441. |
[5] |
王静, 李小俚, 邢国刚, 万有. (2011). Gamma神经振荡产生机制及其功能研究进展. 生物化学与生物物理进展, 38(8), 688-693.
doi: 10.3724/SP.J.1206.2010.00413 URL |
[6] | 武侠, 钟楚鹏, 丁玉珑, 曲折. (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364. |
[7] | 袁祥勇, 黄希庭. (2011). 多感觉整合的时间再校准. 心理科学进展, 19(5), 692-700. |
[8] |
Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390-398.
doi: 10.1016/j.tics.2012.05.003 URL |
[9] |
Balz, J., Keil, J., Romero, Y. R., Mekle, R., Schubert, F., Aydin, S., ... Senkowski, D. (2016). GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion. NeuroImage, 125, 724-730.
doi: 10.1016/j.neuroimage.2015.10.087 URL pmid: 26546865 |
[10] |
Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., & Sokhadze, E. (2010). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorder. Journal of Neurotherapy, 14(3), 179-194.
doi: 10.1080/10874208.2010.501500 URL pmid: 21116441 |
[11] |
Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in Neurobiology, 134, 140-160.
doi: 10.1016/j.pneurobio.2015.09.007 URL pmid: 26455789 |
[12] |
Bebko, J. M., Schroeder, J. H., & Weiss, J. A. (2014). The McGurk effect in children with autism and Asperger syndrome. Autism Research, 7(1), 50-59.
doi: 10.1002/aur.1343 URL |
[13] |
Beker, S., Foxe, J. J., & Molholm, S. (2018). Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neuroscience & Biobehavioral Reviews, 84, 182-192.
doi: 10.1016/j.neubiorev.2017.11.008 URL pmid: 29162518 |
[14] |
Brandwein, A. B., Foxe, J. J., Butler, J. S., Frey, H.-P., Bates, J. C., Shulman, L. H., & Molholm, S. (2015). Neurophysiological indices of atypical auditory processing and multisensory integration are associated with symptom severity in autism. Journal of Autism and Developmental Disorders, 45(1), 230-244.
doi: 10.1007/s10803-014-2212-9 URL pmid: 25245785 |
[15] |
Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14(2), 209-224.
doi: 10.1017/s0954579402002018 URL pmid: 12030688 |
[16] |
Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41(3), 364-376.
doi: 10.1016/s0010-9452(08)70273-9 URL pmid: 15871601 |
[17] |
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., ... Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628.
doi: 10.1126/science.1128115 URL pmid: 16973878 |
[18] |
Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692-695.
URL pmid: 12503647 |
[19] |
Casanova, M. F., Hensley, M. K., Sokhadze, E. M., El-Baz, A. S., Wang, Y., Li, X. L., & Sears, L. (2014). Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Frontiers in Human Neuroscience, 8, 851.
doi: 10.3389/fnhum.2014.00851 URL pmid: 25374530 |
[20] |
Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 2, 70.
doi: 10.3389/fped.2014.00128 URL pmid: 25478553 |
[21] |
Chan, J. S., Langer, A., & Kaiser, J. (2016). Temporal integration of multisensory stimuli in autism spectrum disorder: A predictive coding perspective. Journal of Neural Transmission, 123(8), 917-923.
doi: 10.1007/s00702-016-1587-5 URL pmid: 27324803 |
[22] |
Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over- connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225-230.
doi: 10.1016/j.conb.2005.03.001 URL pmid: 15831407 |
[23] |
di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 63-74.
doi: 10.1016/j.biopsych.2008.09.022 URL pmid: 18996505 |
[24] |
Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16-25.
doi: 10.1016/s1364-6613(00)01568-0 URL pmid: 11164732 |
[25] |
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169.
doi: 10.1016/j.tics.2004.02.002 URL |
[26] |
Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381-389.
doi: 10.1007/s00221-010-2240-4 URL |
[27] |
Gabard-Durnam, L. J., Wilkinson, C., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nature Communications, 10(1), 4188.
doi: 10.1038/s41467-019-12202-9 URL pmid: 31519897 |
[28] |
Gogolla, N., Leblanc, J. J., Quast, K. B., Sudhof, T. C., Fagiolini, M., Hensch, T. K. (2009). Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders, 1, 172-181.
doi: 10.1007/s11689-009-9023-x URL |
[29] |
Gogolla, N., Takesian, A. E., Feng, G. P., Fagiolini, M., & Hensch, T. K. (2014). Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron, 83(4), 894-905.
doi: 10.1016/j.neuron.2014.06.033 URL |
[30] |
Gondan, M., Lange, K., Rösler, F., & Röder, B. (2004). The redundant target effect is affected by modality switch costs. Psychonomic Bulletin & Review, 11(2), 307-313.
doi: 10.3758/bf03196575 URL pmid: 15260198 |
[31] |
Hagiwara, K., Okamoto, T., Shigeto, H., Ogata, K., Somehara, Y., Matsushita, T., ... Tobimatsu, S. (2010). Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. NeuroImage, 51(1), 412-420.
doi: 10.1016/j.neuroimage.2010.02.001 URL |
[32] |
Hoy, J. A., Hatton, C., & Hare, D. (2004). Weak central coherence: A cross-domain phenomenon specific to autism? Autism, 8(3), 267-281.
doi: 10.1177/1362361304045218 URL pmid: 15358870 |
[33] |
Jochaut, D., Lehongre, K., Saitovitch, A., Devauchelle, A.-D., Olasagasti, I., Chabane, N., ... Giraud, A. L. (2015). Atypical coordination of cortical oscillations in response to speech in autism. Frontiers in Human Neuroscience, 9, 171.
doi: 10.3389/fnhum.2015.00171 URL pmid: 25870556 |
[34] |
Kaiser, J., Hertrich, I., Ackermann, H., Mathiak, K., & Lutzenberger, W. (2004). Hearing lips: Gamma-band activity during audiovisual speech perception. Cerebral Cortex, 15(5), 646-653.
doi: 10.1093/cercor/bhh166 URL pmid: 15342432 |
[35] |
Kanayama, N., Sato, A., & Ohira, H. (2007). Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology, 44(3), 392-402.
doi: 10.1111/j.1469-8986.2007.00511.x URL pmid: 17371495 |
[36] |
Kessler, K., Seymour, R. A., & Rippon, G. (2016). Brain oscillations and connectivity in autism spectrum disorders (ASD): New approaches to methodology, measurement and modelling. Neuroscience & Biobehavioral Reviews, 71, 601-620.
doi: 10.1016/j.neubiorev.2016.10.002 URL pmid: 27720724 |
[37] |
Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., ... Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences, 110(8), 3107-3112.
doi: 10.1073/pnas.1214533110 URL |
[38] |
Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302.
doi: 10.3389/fnhum.2014.00302 URL pmid: 24860482 |
[39] |
Liu, Z. M., de Zwart, J. A., Yao, B., van Gelderen, P., Kuo, L. W., & Duyn, J. H. (2012). Finding thalamic BOLD correlates to posterior alpha EEG. NeuroImage, 63(3), 1060-1069.
doi: 10.1016/j.neuroimage.2012.08.025 URL |
[40] |
Malekmohammadi, M., Elias, W. J., & Pouratian, N. (2014). Human thalamus regulates cortical activity via spatially specific and structurally constrained phase-amplitude coupling. Cerebral Cortex, 25(6), 1618-1628.
doi: 10.1093/cercor/bht358 URL pmid: 24408958 |
[41] |
Mckavanagh, R., Buckley, E., & Chance, S. A. (2015). Wider minicolumns in autism: A neural basis for altered processing? Brain, 138(7), 2034-2045.
doi: 10.1093/brain/awv110 URL |
[42] |
Michalareas, G., Vezoli, V., van Pelt, S., Schoffelen, J.-M., Kennedy, H., Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397.
doi: 10.1016/j.neuron.2015.12.018 URL pmid: 26777277 |
[43] |
Noel, J.-P., de Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders: Audiovisual temporal recalibration in ASD. Autism Research, 10(1), 121-129.
doi: 10.1002/aur.1633 URL pmid: 27156926 |
[44] |
Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
doi: 10.1016/j.tics.2012.08.009 URL |
[45] |
Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8(1), 66.
doi: 10.1186/1471-244X-8-66 URL |
[46] |
Rojas, D. C., Teale, P. D., Maharajh, K., Kronberg, E., Youngpeter, K., Wilson, L. B., ... Hepburn, S. (2011). Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Molecular Autism, 2, 11.
doi: 10.1186/2040-2392-2-11 URL pmid: 21729257 |
[47] |
Rojas, D. C., & Wilson, L. B. (2014). γ-band abnormalities as markers of autism spectrum disorders. Biomarkers in Medicine, 8(3), 353-368.
doi: 10.2217/bmm.14.15 URL |
[48] |
Schuetze, M., Park, M. T. M., Cho, I. Y. K., Macmaster, F. P., Chakravarty, M. M., & Bray, S. L. (2016). Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology, 41(11), 2627-2637.
doi: 10.1038/npp.2016.64 URL pmid: 27125303 |
[49] |
Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding through neural coherence: Implications for multisensory processing. Trends in Neurosciences, 31(8), 401-409.
doi: 10.1016/j.tins.2008.05.002 URL pmid: 18602171 |
[50] |
Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C. S., & Woldorff, M. G. (2007). Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia, 45(3), 561-571.
doi: 10.1016/j.neuropsychologia.2006.01.013 URL |
[51] |
Senkowski, D., Schneider, T. R., Tandler, F., & Engel, A. K. (2009). Gamma-band activity reflects multisensory matching in working memory. Experimental Brain Research, 198(2), 363-372.
doi: 10.1007/s00221-009-1835-0 URL |
[52] |
Simon, D. M., & Wallace, M. T. (2016). Dysfunction of sensory oscillations in autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 68, 848-861.
doi: 10.1016/j.neubiorev.2016.07.016 URL pmid: 27451342 |
[53] |
Sokhadze, E. M., El-baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619-634.
doi: 10.1007/s10803-008-0662-7 URL |
[54] |
Steriade, M., Contreras, D., Amzica, F., & Timofeev, I. (1996). Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. Journal of Neuroscience, 16(8), 2788-2808.
URL pmid: 8786454 |
[55] |
Stevenson, R. A., Siemann, J. K., Woynaroski, T. G., Schneider, B. C., Eberly, H. E., Camarata, S. M., & Wallace, M. T. (2014). Evidence for diminished multisensory integration in autism spectrum disorders. Journal of Autism and Developmental Disorders, 44(12), 3161-3167.
doi: 10.1007/s10803-014-2179-6 URL |
[56] |
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151-162.
doi: 10.1016/S1364-6613(99)01299-1 URL |
[57] |
Tamura, R., Kitamura, H., Endo, T., Hasegawa, N., & Someya, T. (2010). Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Research: Neuroimaging, 184(3), 186-188.
doi: 10.1016/j.pscychresns.2010.07.001 URL pmid: 20850279 |
[58] |
Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience & Biobehavioral Reviews, 33(8), 1198-1203.
doi: 10.1016/j.neubiorev.2009.06.002 URL pmid: 19538989 |
[59] |
van de Cruys, S., Evers, K., van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L., Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649-675.
doi: 10.1037/a0037665 URL |
[60] |
Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. The Journal of Physiology, 587(9), 1873-1879.
doi: 10.1113/jphysiol.2008.167635 URL |
[61] |
Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 24.
doi: 10.1186/1866-1955-5-24 URL pmid: 24040879 |
[62] |
Weinstein, M., Ben-Sira, L., Levy, Y., Zachor, D. A., Itzhak, E. B., Artzi, M., ... Bashat, D. B. (2011). Abnormal white matter integrity in young children with autism. Human Brain Mapping, 32(4), 534-543.
doi: 10.1002/hbm.21042 URL |
[63] | Zhang, Y. Y., Zhang, Y. F., Cai, P., Luo, H., & Fang, F. (2019). The causal role of α-oscillations in feature binding. Proceedings of the National Academy of Sciences, 116(34), 17023-17028. |
[64] |
Zhou, H.-Y., Cai, X.-L., Weigl, M., Bang, P., Cheung, E. F. C., & Chan, R. C. K. (2018). Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 86, 66-76.
doi: 10.1016/j.neubiorev.2017.12.013 URL pmid: 29317216 |
[1] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[2] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[3] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[4] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[5] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[6] | LIU Peihan, ZHANG Huoyin, ZHANG Xukai, LI Hong, LEI Yi. Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved [J]. Advances in Psychological Science, 2023, 31(3): 402-415. |
[7] | MA Yuanxiao, CHEN Xu. The functional mechanism of oxytocin in anxiety detection and extinction among anxiety-susceptible groups [J]. Advances in Psychological Science, 2023, 31(1): 10-19. |
[8] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[9] | WANG Rong, CHEN Xiaoyi, DU Xue, JIANG Jun. The regulatory mechanism of transcutaneous vagus nerve stimulation on inhibition control [J]. Advances in Psychological Science, 2022, 30(10): 2269-2277. |
[10] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[11] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[12] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[13] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[14] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[15] | LI Haihong, SHANG Siyuan, XIE Xiaofei. The role of genes in altruistic behavior: Evidence from quantitative genetics and molecular genetics [J]. Advances in Psychological Science, 2022, 30(7): 1574-1588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||