Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (2): 291-304.doi: 10.3724/SP.J.1042.2025.0291
• Regular Articles • Previous Articles Next Articles
QI Ruiying, FENG Ye, SI Fuzhen
Received:
2024-05-31
Online:
2025-02-15
Published:
2024-12-06
QI Ruiying, FENG Ye, SI Fuzhen. Neural oscillations: Exploring the temporal dynamics of syntactic parsing[J]. Advances in Psychological Science, 2025, 33(2): 291-304.
[1] 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. (2022). 节律在听觉言语理解中的作用. [2] 胡瑞晨, 袁佩君, 蒋毅, 王莹. (2019). 时间结构信息在人类知觉中的作用及其脑机制. [3] 姜孟. (2009). 句法自治: 争鸣与证据. [4] 马宝鹏, 庄会彬. (2022). 二十年来韵律-句法接口研究的回顾与启示. [5] 司富珍. (2024). 语言与人脑科学研究中的“伽利略谜题”. [6] 杨烈祥. (2012). 唯递归论的跨语言比较述评. [7] 张力新, 王发颀, 王玲, 杨佳佳, 万柏坤. (2017). 认知功能研究中神经振荡交叉节律耦合应用研究进展. [8] Abbasi, O., & Gross, J. (2020). Beta-band oscillations play an essential role in motor-auditory interactions. [9] Abbott, N., & Love, T. (2023). Bridging the divide: Brain and behavior in developmental language disorder. [10] Attaheri A., Choisdealbha Á. N., Di Liberto G. M., Rocha S., Brusini P., Mead N., .. Goswami U. (2022). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. [11] Bai F., Meyer A. S., & Martin A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. [12] Bastiaansen M., Mazaheri A., & Jensen, O. (2011). Beyond ERPs: Oscillatory neuronal dynamics In E S Kappenman & S J Luck (Eds), The Oxford Handbook of event- related potential components Oxford University Press Oscillatory neuronal dynamics. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford Handbook of event- related potential components. Oxford University Press. [13] Berwick R. C., Friederici A. D., Chomsky N., & Bolhuis J. J. (2013). Evolution, brain, and the nature of language. [14] Brennan, J. R., & Hale, J. T. (2019). Hierarchical structure guides rapid linguistic predictions during naturalistic listening. [15] Brennan, J. R., & Martin, A. E. (2019). Phase synchronization varies systematically with linguistic structure composition. [16] Calmus R., Wilson B., Kikuchi Y., & Petkov C. I. (2020). Structured sequence processing and combinatorial binding: Neurobiologically and computationally informed hypotheses. [17] Chalas N., Daube C., Kluger D. S., Abbasi O., Nitsch R., & Gross J. (2023). Speech onsets and sustained speech contribute differentially to delta and theta speech tracking in auditory cortex. [18] Chomsky, N. (1957). [19] Chomsky, N. (1965). Aspects of the theory of syntax. The MIT Press.. [20] Chomsky, N. (1995). The minimalist program. The MIT Press.. [21] Chomsky, N. (2017). The Galilean challenge: Architecture and evolution of language. Journal of Physics: Conference Series, 880, 12-15. [22] Chomsky N.,& Moro, A. (2022). The Secrets of words. The MIT Press.. [23] Chomsky N., Seely T. D., Berwick R. C., Fong S., Huybregts M. A.C., Kitahara, H., McInnerney, A., & Sugimoto, Y. (2023). Merge and the strong minimalist thesis. Cambridge University Press.. [24] Coopmans C. W., Mai A., Slaats S., Weissbart H., & Martin A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. [25] Dikker S., Rabagliati H., Farmer T. A., & Pylkkänen L. (2010). Early occipital sensitivity to syntactic category is based on form typicality. [26] Ding, N. (2020). A structure-based memory maintenance model for neural tracking of linguistic structures. [27] Ding, N. (2022). The neural correlates of linguistic structure building: Comments on Kazanina & Tavano (2022). [28] Ding, N. (2023). Low-frequency neural parsing of hierarchical linguistic structures. [29] Ding N., Melloni L., Tian X., & Poeppel D. (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. [30] Ding N., Melloni L., Zhang H., Tian X., & Poeppel D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. [31] Flanagan, S., & Goswami, U. (2018). The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. [32] Frank, S. L., & Christiansen, M. H. (2018). Hierarchical and sequential processing of language: A response to: Ding, Melloni, Tian, and Poeppel (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. [33] Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. [34] Fridriksson J., Basilakos A., Hickok G., Bonilha L., & Rorden C. (2015). Speech entrainment compensates for Broca’s area damage. [35] Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. [36] Gardner M. K., Rothkopf E. Z., Lapan R., & Lafferty T. (1987). The word frequency effect in lexical decision: Finding a frequency-based component. [37] Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. [38] Giraud, A.-L. (2020). Oscillations for all ¯_(ツ)_/¯? A commentary on Meyer, Sun & Martin (2020). [39] Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. [40] Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. [41] Gouvea A., Phillips C., Kazanina N., & Poeppel D. (2010). The linguistic processes underlying the P600. [42] Gross J., Hoogenboom N., Thut G., Schyns P., Panzeri S., Belin P., & Garrod S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. [43] Gwilliams L., Marantz A., Poeppel D., & King J. R. (2024). Hierarchical dynamic coding coordinates speech comprehension in the brain. [44] Haegens, S. (2020). Entrainment revisited: A commentary on Meyer, Sun, and Martin (2020). [45] Haegens, S., & Zion Golumbic, E. (2018). Rhythmic facilitation of sensory processing: A critical review. [46] Hale J. T., Campanelli L., Li J., Bhattasali S., Pallier C., & Brennan J. R. (2022). Neurocomputational models of language processing. [47] Henke L., Lewis A. G., & Meyer L. (2023). Fast and slow rhythms of naturalistic reading revealed by combined eye-tracking and electroencephalography. [48] Jin P., Lu Y., & Ding N. (2020). Low-frequency neural activity reflects rule-based chunking during speech listening. [49] Jin P., Zou J., Zhou T., & Ding N. (2018). Eye activity tracks task-relevant structures during speech and auditory sequence perception. [50] Kandylaki, K. D., & Kotz, S. A. (2020). Distinct cortical rhythms in speech and language processing and some more: A commentary on Meyer, Sun, & Martin (2019). [51] Kaufeld G., Bosker H. R., Ten Oever S., Alday P. M., Meyer A. S., & Martin A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content- specific hierarchy. [52] Kaushik, K. R., & Martin, A. E. (2022). A mathematical neural process model of language comprehension, from syllable to sentence. [53] Kazanina, N., & Tavano, A. (2023). What neural oscillations can and cannot do for syntactic structure building.Nature Reviews Neuroscience, 24(2), 113-128. [54] Keitel A., Gross J., & Kayser C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. [55] Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. [56] Klimovich-Gray, A., & Molinaro, N. (2020). Synchronising internal and external information: A commentary on Meyer, Sun & Martin (2020).Language, Cognition and Neuroscience, 35(9), 1129-1132. [57] Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. [58] Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. [59] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). [60] Lewis, A. G. (2020). Balancing exogenous and endogenous cortical rhythms for speech and language requires a lot of entraining: A commentary on Meyer, Sun & Martin (2020). [61] Lo C.-W., Tung T.-Y., Ke A. H., & Brennan J. R. (2022). Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension. [62] Lu L., Sheng J., Liu Z., & Gao J.-H. (2021). Neural representations of imagined speech revealed by frequency- tagged magnetoencephalography responses. [63] Lu Y., Jin P., Ding N., & Tian X. (2023). Delta-band neural tracking primarily reflects rule-based chunking instead of semantic relatedness between words. [64] Mai G., Minett J. W., & Wang W. S.-Y. (2016). Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing. [65] Marcolli M., Berwick R. C., & Chomsky N. (2023a). Old and New Minimalism: A Hopf algebra comparison. [66] Marcolli M., Berwick R. C., & Chomsky N. (2023b). Syntax-semantics interface: An algebraic model. [67] Marcolli M., Chomsky N., & Berwick R. (2023). Mathematical structure of syntactic merge. [68] Marr, D. (1982). [69] Martin, A. E. (2020). A compositional neural architecture for language. [70] Martin, A. E., & Doumas, L. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. [71] Martins, P. T., & Boeckx, C. (2019). Language evolution and complexity considerations: The no half-Merge fallacy. [72] McClamrock, R. (1991). Marr's three levels: A re-evaluation. [73] Meyer L., Lakatos P., & He Y. (2021). Language dysfunction in Schizophrenia: Assessing neural tracking to characterize the underlying disorder (s)? [74] Meyer L., Sun Y., & Martin A. E. (2020a). “Entraining” to speech, generating language? [75] Meyer L., Sun Y., & Martin A. E. (2020b). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. [76] Miller G. A., Heise G. A., & Lichten W. (1951). The intelligibility of speech as a function of the context of the test materials. [77] Murphy, E. (2024). ROSE: A neurocomputational architecture for syntax. [78] Nallet, C., & Gervain, J. (2021). Neurodevelopmental preparedness for language in the neonatal brain. [79] Obleser, J., & Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain. [80] Pallier C., Devauchelle A.-D., & Dehaene S. (2011). Cortical representation of the constituent structure of sentences. [81] Peter V., Goswami U., Burnham D., & Kalashnikova M. (2023). Impaired neural entrainment to low frequency amplitude modulations in English-speaking children with dyslexia or dyslexia and DLD. [82] Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. [83] Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. [84] Poeppel D., Idsardi W. J., & van Wassenhove V. (2008). Speech perception at the interface of neurobiology and linguistics. [85] Prystauka, Y., & Lewis, A. G. (2019). The power of neural oscillations to inform sentence comprehension: A linguistic perspective. [86] Rafferty M. B., Saltuklaroglu T., Reilly K., Paek E. J., & Casenhiser D. M. (2023). Neural synchrony reflects closure of jabberwocky noun phrases but not predictable pseudoword sequences. [87] Si, F. (2016). [88] Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. [89] Slaats S., Weissbart H., Schoffelen J.-M., Meyer A. S., & Martin A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. [90] Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. [91] Steinhauer K., Alter K., & Friederici A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. [92] Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, Bayesian estimation, and good-enough parsing. [93] Xu N., Qin X., Zhou Z., Shan W., Ren J., Yang C., Lu L., & Wang Q. (2023). Age differentially modulates the cortical tracking of the lower and higher level linguistic structures during speech comprehension. [94] Xu N., Zhao B., Luo L., Zhang K., Shao X., Luan G., Wang Q., Hu W., & Wang Q. (2023). Two stages of speech envelope tracking in human auditory cortex modulated by speech intelligibility. |
[1] | SHI Weiting, ZHANG Yaning, LI Xingshan, LIN Nan. Neural basis of social concept representation and social semantic integration [J]. Advances in Psychological Science, 2024, 32(2): 276-286. |
[2] | Hetian Cao, Ye Liu, Zheyuan Chen, Yingfan Liu, Xiaotao Wang, Xiaohong Li, Yiliang Lu, Ian Andolina, Niall McLoughlin, Stewart Shipp, Wei Wang. Color Saturation Drives Oscillatory Responses in V4 [J]. Advances in Psychological Science, 2023, 31(suppl.): 38-38. |
[3] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[4] | CHEN Liangjie, LIU Lei, GE Zhongshu, YANG Xiaodong, LI Liang. The role of rhythm in auditory speech understanding [J]. Advances in Psychological Science, 2022, 30(8): 1818-1831. |
[5] | YE Chaoqun, LIN Yuhong, LIU Chunlei. Neural oscillation mechanism of creativity [J]. Advances in Psychological Science, 2021, 29(4): 697-706. |
[6] | FANG Lan, ZHENG Yuanyi, JIN Han, LI Xiaoqing, YANG Yufang, WANG Ruiming. Prosodic boundaries in speech: A window to spoken language comprehension [J]. Advances in Psychological Science, 2021, 29(3): 425-437. |
[7] | ZHANG Xiaodan, ZHANG Lijin, DING Yulong, QU Zhe. Behavioral oscillations in attentional processing [J]. Advances in Psychological Science, 2021, 29(3): 460-471. |
[8] | ZHONG Chupeng, QU Zhe, DING Yulong. The influences of prestimulus alpha oscillation on visual perception [J]. Advances in Psychological Science, 2020, 28(6): 945-958. |
[9] | Li Shen, Ruichen Hu, Xiangyong Yuan, Ying Wang, Yi Jiang. Cortical Tracking of Biological Motion Information [J]. Advances in Psychological Science, 2019, 27(suppl.): 80-80. |
[10] | LI Ping, ZHANG Mingming, LI Shuaixia, ZHANG Huoyin, LUO Wenbo. The integration of facial expression and vocal emotion and its brain mechanism [J]. Advances in Psychological Science, 2019, 27(7): 1205-1214. |
[11] | WANG Ping; PAN Zhihui; ZHANG Lijie; CHEN Xuhai. The Integration of Dynamic Facial and Vocal Emotion and Its Neurophysiological Mechanism [J]. Advances in Psychological Science, 2015, 23(7): 1109-1117. |
[12] | QU Fang-Bing;Yin Rong;Zhong Yuan;YE Hao-Sheng. Motor Perception in Language Comprehension: Perspective from Embodied Cognition [J]. , 2012, 20(6): 834-842. |
[13] | CHEN Qing-Rong. Syntactic Priming: Paradigm and Controversy in Language Comprehension [J]. , 2012, 20(2): 208-218. |
[14] | FANG Xiao-Ping;LIU You-Yi. The Brain Basis of Syntactic Processing During Language Comprehension [J]. Advances in Psychological Science, 2012, 20(12): 1940-1951. |
[15] | ZHENG Yuan-Yuan;LI Xiao-Qing. Subject Preference Effect and Its Cognitive Mechanism [J]. , 2011, 19(12): 1749-1758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||