Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (9): 1478-1492.doi: 10.3724/SP.J.1042.2020.01478
• Regular Articles • Previous Articles Next Articles
Received:
2019-11-19
Online:
2020-09-15
Published:
2020-07-24
Contact:
WANG Ning
E-mail:wangn@psych.ac.cn
CLC Number:
WENG Chunchun, WANG Ning. Animal research paradigm and related neural mechanism of interval timing[J]. Advances in Psychological Science, 2020, 28(9): 1478-1492.
范式类别 | 重要参数 | 参数意义 | 优点 | 缺点 |
---|---|---|---|---|
时间二分任务 | 主观相等点 | 时距知觉加工速度 | 更适用于考察时间敏感性 | 动物需要进行二分判断, 而不是直接估计时距 |
韦伯分数 | 时间敏感性 | |||
峰值间隔法 | 峰值时间 | 时距知觉加工速度 | 动物在操作过程中较为自由, 可以主观判断时距 | 动物反复按压杠杆, 在记录神经元时容易受到运动的影响 |
峰值反应率 | 个体兴奋度 | |||
韦伯分数 | 时间敏感性 | |||
低比率差别强化法 | 峰值时间 | 时距知觉加工速度 | 动物需要等待特定时长, 更接近人类研究的产生式法 | 容易受到个体冲动性的影响 |
冲动反应数&未强化反应数 | 个体冲动性 | |||
自由操作心理物理法 | 无差别点 | 时距知觉加工速度 | 行为操作快速, 适用于长时距研究 | 自由操作过程中易混杂其他因素 |
失匹配负波 | 波幅和潜伏期 | 对时距的辨别 | 不受注意限制, 可考察时距知觉的自动加工过程 | 观察的时间窗较小 |
录制观察法 | 某种行为的时长 | 时距知觉加工速度 | 可观察动物在自然状态下日常行为的时距知觉变化, 不受到训练因素的影响 | 可量化的日常行为目前仍然较少 |
范式类别 | 重要参数 | 参数意义 | 优点 | 缺点 |
---|---|---|---|---|
时间二分任务 | 主观相等点 | 时距知觉加工速度 | 更适用于考察时间敏感性 | 动物需要进行二分判断, 而不是直接估计时距 |
韦伯分数 | 时间敏感性 | |||
峰值间隔法 | 峰值时间 | 时距知觉加工速度 | 动物在操作过程中较为自由, 可以主观判断时距 | 动物反复按压杠杆, 在记录神经元时容易受到运动的影响 |
峰值反应率 | 个体兴奋度 | |||
韦伯分数 | 时间敏感性 | |||
低比率差别强化法 | 峰值时间 | 时距知觉加工速度 | 动物需要等待特定时长, 更接近人类研究的产生式法 | 容易受到个体冲动性的影响 |
冲动反应数&未强化反应数 | 个体冲动性 | |||
自由操作心理物理法 | 无差别点 | 时距知觉加工速度 | 行为操作快速, 适用于长时距研究 | 自由操作过程中易混杂其他因素 |
失匹配负波 | 波幅和潜伏期 | 对时距的辨别 | 不受注意限制, 可考察时距知觉的自动加工过程 | 观察的时间窗较小 |
录制观察法 | 某种行为的时长 | 时距知觉加工速度 | 可观察动物在自然状态下日常行为的时距知觉变化, 不受到训练因素的影响 | 可量化的日常行为目前仍然较少 |
[1] |
Asaoka, R., & Gyoba, J. (2016). Sounds modulate the perceived duration of visual stimuli via crossmodal integration. Multisensory Research, 29(4-5), 319-335.
doi: 10.1163/22134808-00002518 URL pmid: 29384606 |
[2] |
Azabou, E., Rohaut, B., Porcher, R., Heming, N., Kandelman, S., Allary, J., … the GENeR. (2018). Mismatch negativity to predict subsequent awakening in deeply sedated critically ill patients. British Journal of Anaesthesia, 121(6), 1290-1297.
doi: 10.1016/j.bja.2018.06.029 URL pmid: 30442256 |
[3] |
Bernardinis, M., Atashzar, S. F., Jog, M. S., & Patel, R. V. (2019). Differential temporal perception abilities in Parkinson's disease patients based on timing magnitude. Scientific Reports, 9(1), 19638.
doi: 10.1038/s41598-019-55827-y URL pmid: 31873093 |
[4] |
Blankenship, P. A., Cheatwood, J. L., & Wallace, D. G. (2017). Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Structure and Function, 222(6), 2697-2710.
URL pmid: 28154968 |
[5] |
Blomeley, F. J., Lowe, C. F., & Wearden, J. H. (2004). Reinforcer concentration effects on a fixed-interval schedule. Behavioural Processes, 67(1), 55-66.
URL pmid: 15182926 |
[6] |
Body, S., Cheung, T. H. C., Bezzina, G., Asgari, K., Fone, K. C. F., Glennon, J. C., … Szabadi, E. (2006). Effects of d-amphetamine and DOI (2, 5-dimethoxy-4-iodoamphetamine) on timing behavior: Interaction between D1 and 5-HT2A receptors. Psychopharmacology, 189(3), 331-343.
URL pmid: 17051415 |
[7] |
Body, S., Chiang, T. J., Mobini, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (2002). Effect of 8-OH-DPAT on temporal discrimination following central 5-hydroxytryptamine depletion. Pharmacology Biochemistry and Behavior, 71(4), 787-793.
doi: 10.1016/S0091-3057(01)00674-8 URL |
[8] |
Body, S., Kheramin, S., Mobini, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., & Szabadi, E. (2002). Antagonism by WAY-100635 of the effects of 8-OH-DPAT on performance on a free-operant timing schedule in intact and 5-HT-depleted rats. Behavioural Pharmacology, 13(8), 603-614.
doi: 10.1097/00008877-200212000-00001 URL pmid: 12478210 |
[9] |
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765.
URL pmid: 16163383 |
[10] |
Buhusi, C. V., & Meck, W. H. (2006). Time sharing in rats: A peak-interval procedure with gaps and distracters. Behavioural Processes, 71(2-3), 107-115.
URL pmid: 16413701 |
[11] |
Buhusi, C. V., & Meck, W. H. (2009). Relativity theory and time perception: Single or multiple clocks? Plos One, 4(7), e6268.
doi: 10.1371/journal.pone.0006268 URL pmid: 19623247 |
[12] |
Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129-1141.
URL pmid: 10648718 |
[13] | Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 85(1), 114-122. |
[14] |
Cheng, R. K., Scott, A. C., Penney, T. B., Williams, C. L., & Meck, W. H. (2008). Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats. Brain Research, 1237, 167-175.
URL pmid: 18801344 |
[15] |
Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology-Animal Behavior Processes, 3(3), 216-228.
URL pmid: 881613 |
[16] |
Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology-Animal Behavior Processes, 20(2), 135-155.
URL pmid: 8189184 |
[17] |
Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25.
doi: 10.1038/npp.2010.113 URL pmid: 20668434 |
[18] |
Daniels, C. W., Watterson, E., Garcia, R., Mazur, G. J., Brackney, R. J., & Sanabria, F. (2015). Revisiting the effect of nicotine on interval timing. Behavioural Brain Research, 283, 238-250.
URL pmid: 25637907 |
[19] |
Deane, A. R., Millar, J., Bilkey, D. K., & Ward, R. D. (2017). Maternal immune activation in rats produces temporal perception impairments in adult offspring analogous to those observed in schizophrenia. Plos One, 12(11), e0187719.
URL pmid: 29108010 |
[20] | de Corte, B. J., Wagner, L. M., Matell, M. S., & Narayanan, N. S. (2019). Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 356, 375-379. |
[21] |
Dews, P. B. (1978). Studies on responding under fixed-interval schedules of reinforcement: II. The scalloped pattern of the cumulative record. Journal of the Experimental Analysis of Behavior, 29(1), 67-75.
URL pmid: 16812040 |
[22] |
Doenyas, C., Mutluer, T., Genc, E., & Balcı, F. (2019). Error monitoring in decision-making and timing is disrupted in autism spectrum disorder. Autism Research, 12(2), 239-248.
doi: 10.1002/aur.2041 URL pmid: 30485714 |
[23] | Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology-Paris, 107(4), 255-264. |
[24] |
Eckard, M. L., & Kyonka, E. G. E. (2018). Differential reinforcement of low rates differentially decreased timing precision. Behavioural Processes, 151, 111-118.
URL pmid: 29608943 |
[25] |
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732-744.
doi: 10.1038/nrn3827 URL pmid: 25269553 |
[26] |
Faure, A., Es-Seddiqi, M., Brown, B. L., Nguyen, H. P., Riess, O., von Horsten, S., … Doyère, V. (2013). Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 7, 130.
URL pmid: 24133419 |
[27] |
Garces, D., El Massioui, N., Lamirault, C., Riess, O., Nguyen, H. P., Brown, B. L., & Doyère, V. (2018). The alteration of emotion regulation precedes the deficits in interval timing in the BACHD rat model for Huntington disease. Frontiers in Integrative Neuroscience, 12, 14.
URL pmid: 29867384 |
[28] | Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy Sciences, 423(1), 52-77. |
[29] |
Graham, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (1994). Facilitated acquisition of a temporal discrimination following destruction of the ascending 5-hydroxytryptaminergic pathways. Psychopharmacology, 116(3), 373-378.
URL pmid: 7534424 |
[30] |
Grommet, E. K., Hemmes, N. S., & Brown, B. L. (2019). The role of clock and memory processes in the timing of fear cues by humans in the temporal bisection task. Behavioural Processes, 164, 217-229.
URL pmid: 31102605 |
[31] |
Halberstadt, A. L., Sindhunata, I. S., Scheffers, K., Flynn, A. D., Sharp, R. F., Geyer, M. A., & Young, J. W. (2016). Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice. Neuropharmacology, 107, 364-375.
doi: 10.1016/j.neuropharm.2016.03.038 URL pmid: 27020041 |
[32] | Hass, J., & Durstewitz, D. (2016). Time at the center, or time at the side? Assessing current models of time perception. Current Opinion in Behavioral Sciences, 8, 238-244. |
[33] |
Hata, T. (2011). Glutamate - A forgotten target for interval timing. Frontiers in Integrative Neuroscience, 5, 27.
doi: 10.3389/fnint.2011.00027 URL pmid: 21734871 |
[34] | Herrnstein, R. J. (1964). Aperiodicity as a factor in choice. Journal of the Experimental Analysis of Behavior, 7(2), 179-182. |
[35] | Hilgard, E. R. (1939). The behavior of organisms. Psychological Bulletin, 36(2), 121-125. |
[36] | Höhn, S., Dallérac, G., Faure, A., Urbach, Y. K., Nguyen, H. P., Riess, O., … Doyère, V. (2011). Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease. Journal of Neuroscienc, 31(24), 8986-8997. |
[37] | Ito, M. (1981). Control of monkey's spaced responding by sample durations. Japanese Psychological Research, 23(4), 213-218. |
[38] | Jaldow, E. J., & Oakley, D. A. (1990). Performance on a differential reinforcement of low-rate schedule in neodecorticated rats and rats with hippocampal lesions. Psychobiology, 18(4), 394-403. |
[39] | Jones, C. R., & Jahanshahi, M. (2009). The substantia nigra, the basal ganglia, dopamine and temporal processing. Journal of Neural Transmission Supplementa, (73), 161-171. |
[40] |
Jurek, L., Longuet, Y., Baltazar, M., Amestoy, A., Schmitt, V., Desmurget, M., & Geoffray, M. M. (2019). How did I get so late so soon? A review of time processing and management in autism. Behavioural Brain Research, 374, 112121.
doi: 10.1016/j.bbr.2019.112121 URL pmid: 31376445 |
[41] |
Kamada, T., & Hata, T. (2018). Insular cortex inactivation generalizes fear-induced underestimation of interval timing in a temporal bisection task. Behavioural Brain Research, 347, 219-226.
URL pmid: 29551731 |
[42] |
Kamada, T., & Hata, T. (2019). Basolateral amygdala inactivation eliminates fear-induced underestimation of time in a temporal bisection task. Behavioural Brain Research, 356, 227-235.
URL pmid: 30098408 |
[43] |
Kim, J., Ghim, J. W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. Journal of Neuroscience, 33(34), 13834-13847.
URL pmid: 23966703 |
[44] |
Kim, J., Jung, A. H., Byun, J., Jo, S., & Jung, M. W. (2009). Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Frontiers in Behavioral Neuroscience, 3, 38.
URL pmid: 19915730 |
[45] |
Kim, Y. C., Han, S. W., Alberico, S. L., Ruggiero, R. N., de Corte, B., Chen, K. H., & Narayanan, N. S. (2017). Optogenetic stimulation of frontal D1 neurons compensates for impaired temporal control of action in dopamine-depleted mice. Current Biology, 27(1), 39-47.
URL pmid: 27989675 |
[46] |
Kim, Y. C., & Narayanan, N. S. (2019). Prefrontal D1 dopamine-receptor neurons and delta resonance in interval timing. Cerebral Cortex, 29(5), 2051-2060.
doi: 10.1093/cercor/bhy083 URL pmid: 29897417 |
[47] |
Kleinman, M. R., Sohn, H., & Lee, D. (2016). A two-stage model of concurrent interval timing in monkeys. Journal of Neurophysiology, 116(3), 1068-1081.
URL pmid: 27334954 |
[48] |
Kurti, A. N., & Matell, M. S. (2011). Nucleus accumbens dopamine modulates response rate but not response timing in an interval timing task. Behavioral Neuroscience, 125(2), 215-225.
URL pmid: 21463023 |
[49] | Lejeune, H., Ferrara, A., Soffie, M., Bronchart, M., & Wearden, J. H. (1998). Peak procedure performance in young adult and aged rats: Acquisition and adaptation to a changing temporal criterion. Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, 51(3), 193-217. |
[50] | Lejeune, H., Wearden, J. H. (1991). The comparative psychology of fixed-interval responding: Some quantitative analyses. Learning and Motivation, 22(1-2), 84-111. |
[51] |
Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38(2), 317-327.
doi: 10.1016/s0896-6273(03)00185-5 URL pmid: 12718864 |
[52] |
Lipponen, A., Kurkela, J. L. O., Kyläheiko, I., Hölttä, S., Ruusuvirta, T., Hämäläinen, J. A., & Astikainen, P. (2019). Auditory-evoked potentials to changes in sound duration in urethane-anaesthetized mice. European Journal of Neuroscience, 50(2), 1911-1919.
URL pmid: 30687973 |
[53] |
Liu, X. H., Wang, N., Wang, J. Y., & Luo, F. (2019). Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Scientific Reports, 9, 18683.
doi: 10.1038/s41598-019-55168-w URL pmid: 31822729 |
[54] |
Marinho, V., Oliveira, T., Bandeira, J., Pinto, G. R., Gomes, A., Lima, V., … Teixeira, S. (2018). Genetic influence alters the brain synchronism in perception and timing. Journal of Biomedical Science, 25(1), 61.
doi: 10.1186/s12929-018-0463-z URL pmid: 30086746 |
[55] |
Marshall, A. T., Smith, A. P., & Kirkpatrick, K. (2014). Mechanisms of impulsive choice: I. Individual differences in interval timing and reward processing. Journal of the Experimental Analysis of Behavior, 102(1), 86-101.
URL pmid: 24965705 |
[56] |
Matell, M. S., Kim, J. S., & Hartshorne, L. (2014). Timing in a variable interval procedure: Evidence for a memory singularity. Behavioural Processes, 101, 49-57.
URL pmid: 24012783 |
[57] |
Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170.
doi: 10.1016/j.cogbrainres.2004.06.012 URL pmid: 15464348 |
[58] |
Matell, M. S., Meck, W. H., & Nicolelis, M. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117(4), 760-773.
doi: 10.1037/0735-7044.117.4.760 URL pmid: 12931961 |
[59] |
Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3-4), 227-242.
doi: 10.1016/0926-6410(96)00009-2 URL pmid: 8806025 |
[60] |
Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109(1), 93-107.
doi: 10.1016/j.brainres.2006.06.031 URL pmid: 16890210 |
[61] | Meck, W. H., Cheng, R. K., MacDonald, C. J., Gainetdinov, R. R., Caron, M. G., & Cevik, M. Ö. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62(3), 1221-1229. |
[62] |
Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457-464.
URL pmid: 2820435 |
[63] |
Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory-A retrospective analysis. Behavioral Neuroscience, 127(5), 642-654.
URL pmid: 24128354 |
[64] |
Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145-152.
URL pmid: 18708142 |
[65] |
Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113-1122.
URL pmid: 25913405 |
[66] |
Monterosso, J., & Ainslie, G. (1999). Beyond discounting: Possible experimental models of impulse control. Psychopharmacology, 146(4), 339-347.
doi: 10.1007/pl00005480 URL pmid: 10550485 |
[67] |
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590.
doi: 10.1016/j.clinph.2007.04.026 URL pmid: 17931964 |
[68] |
Nowak, K., Oron, A., Szymaszek, A., Leminen, M., Näätänen, R., & Szelag, E. (2016). Electrophysiological indicators of the age-related deterioration in the sensitivity to auditory duration deviance. Frontiers in Aging Neuroscience, 8, 2.
URL pmid: 26834628 |
[69] |
Oprisan, S. A., Aft, T., Buhusi, M., & Buhusi, C. V. (2018). Scalar timing in memory: A temporal map in the hippocampus. Journal of Theoretical Biology, 438, 133-142.
URL pmid: 29155279 |
[70] |
Orduña, V., García, A., Menez, M., Hong, E., & Bouzas, A. (2008). Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps. Behavioural Brain Research, 191(1), 72-76.
doi: 10.1016/j.bbr.2008.03.012 URL pmid: 18436313 |
[71] |
Parker, K. L., Chen, K. H., Kingyon, J. R., Cavanagh, J. F., & Narayanan, N. S. (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. Journal of Neuroscience, 34(50), 16774-16783.
doi: 10.1523/JNEUROSCI.2772-14.2014 URL pmid: 25505330 |
[72] |
Parker, K. L., Ruggiero, R. N., & Narayanan, N. S. (2015). Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Frontiers in Behavioral Neuroscience, 9, 294.
doi: 10.3389/fnbeh.2015.00294 URL pmid: 26617499 |
[73] |
Rey, A. E., Michael, G. A., Dondas, C., Thar, M., Garcia-Larrea, L., & Mazza, S. (2017). Pain dilates time perception. Scientific Reports, 7(1), 15682.
doi: 10.1038/s41598-017-15982-6 URL pmid: 29146989 |
[74] |
Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 7(3), 242-268.
URL pmid: 7252428 |
[75] |
Roger, C., Hasbroucq, T., Rabat, A., Vidal, F., & Burle, B. (2009). Neurophysics of temporal discrimination in the rat: A mismatch negativity study. Psychophysiology, 46(5), 1028-1032.
doi: 10.1111/j.1469-8986.2009.00840.x URL pmid: 19497011 |
[76] |
Sidman, M. (1956). Time discrimination and behavioral interaction in a free operant situation. Journal of comparative and physiological psychology, 49(5), 469-473.
doi: 10.1037/h0041892 URL pmid: 13376755 |
[77] |
Smith, A. P., Marshall, A. T., & Kirkpatrick, K. (2015). Mechanisms of impulsive choice: II. Time-based interventions to improve self-control. Behavioural Processes, 112, 29-42.
doi: 10.1016/j.beproc.2014.10.010 URL pmid: 25444771 |
[78] |
Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of the Experimental Analysis of Behavior, 11(3), 223-238.
doi: 10.1901/jeab.1968.11-223 URL pmid: 5660703 |
[79] |
Stubbs, D. A. (1980). Temporal discrimination and a free-operant psychophysical procedure. Journal of the Experimental Analysis of Behavior, 33(2), 167-185.
URL pmid: 7365406 |
[80] | Sukhotina, I. A., Dravolina, O. A., Novitskaya, Y., Zvartau, E. E., Danysz, W., & Bespalov, A. Y. (2008). Effects of mGlu1 receptor blockade on working memory, time estimation, and impulsivity in rats. Psychopharmacology (Berl), 196(2), 211-220. |
[81] | Sussman, E. S. (2007). A new view on the MMN and attention debate - The role of context in processing auditory events. Journal of Psychophysiology, 21(3-4), 164-175. |
[82] | Swanton, D. N., Matell, M. S. (2011). Stimulus compounding in interval timing: The modality-duration relationship of the anchor durations results in qualitatively different response patterns to the compound cue Journal of Experimental Psychology-Animal Behavioral Processes, 37(1), 94-107. |
[83] |
Tam, S. K. E., Jennings, D. J., & Bonardi, C. (2013). Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS. Experimental Brain Research, 227(4), 547-559.
doi: 10.1007/s00221-013-3530-4 URL pmid: 23652722 |
[84] |
Thönes, S., & Oberfeld, D. (2015). Time perception in depression: A meta-analysis. Journal of Affective Disorders, 175, 359-372.
doi: 10.1016/j.jad.2014.12.057 URL pmid: 25665496 |
[85] |
Toda, K., Lusk, N. A., Watson, G. D. R., Kim, N., Lu, D., Li, H. E., … Yin, H. H. (2017). Nigrotectal stimulation stops interval timing in mice. Current Biology, 27(24), 3763-3770.
URL pmid: 29199075 |
[86] |
Wallace, D. G., Wallace, P. S., Field, E., & Whishaw, I. Q. (2006). Pharmacological manipulations of food protection behavior in rats: Evidence for dopaminergic contributions to time perception during a natural behavior. Brain Research, 1112(1), 213-221.
doi: 10.1016/j.brainres.2006.07.015 URL pmid: 16890923 |
[87] |
Wilson, M. P., & Keller, F. S. (1953). On the selective reinforcement of spaced responses. Journal of Comparative and Physiological Psychology, 46(3), 190-193.
doi: 10.1037/h0057705 URL pmid: 13061646 |
[88] |
Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217-223.
doi: 10.1038/nrn3452 URL pmid: 23403747 |
[89] | Xu, M., Zhang, S. Y., Dan, Y., & Poo, M. M. (2014). Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proceedings of the National Academy of Sciences, 111(1), 480-485. |
[90] |
Yamaguchi, K., & Sakurai, Y. (2014). Novel behavioral tasks to explore cerebellar temporal processing in milliseconds in rats. Behavioural Brain Research, 263, 138-143.
URL pmid: 24487009 |
[1] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[5] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[6] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[7] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
[8] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[9] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[10] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
[11] | CHEN Qunlin, DING Ke. Serial order effect during divergent thinking: A new perspective on the dynamic mechanism of creative thought processes [J]. Advances in Psychological Science, 2022, 30(11): 2507-2517. |
[12] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[13] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[14] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[15] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||